]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
a1a881e68a9aa86a1aa76c27931e02202a57a08d
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_btree_trace.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_rtalloc.h"
40 #include "xfs_error.h"
41 #include "xfs_itable.h"
42 #include "xfs_fsops.h"
43 #include "xfs_attr.h"
44 #include "xfs_buf_item.h"
45 #include "xfs_utils.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_log_priv.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_filestream.h"
50 #include "xfs_da_btree.h"
51 #include "xfs_extfree_item.h"
52 #include "xfs_mru_cache.h"
53 #include "xfs_inode_item.h"
54 #include "xfs_sync.h"
55 #include "xfs_trace.h"
56
57 #include <linux/namei.h>
58 #include <linux/init.h>
59 #include <linux/slab.h>
60 #include <linux/mount.h>
61 #include <linux/mempool.h>
62 #include <linux/writeback.h>
63 #include <linux/kthread.h>
64 #include <linux/freezer.h>
65 #include <linux/parser.h>
66
67 static const struct super_operations xfs_super_operations;
68 static kmem_zone_t *xfs_ioend_zone;
69 mempool_t *xfs_ioend_pool;
70
71 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
72 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
73 #define MNTOPT_LOGDEV "logdev" /* log device */
74 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
75 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
76 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
77 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
78 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
79 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
80 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
81 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
82 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
83 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
84 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
85 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
86 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
87 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
88 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
89 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
90 * unwritten extent conversion */
91 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
92 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
93 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
94 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
95 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
96 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
97 * in stat(). */
98 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
99 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
100 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
101 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
102 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
103 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
104 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
105 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
106 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
107 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
108 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
109 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
110 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
111 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
112 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
113 #define MNTOPT_DELAYLOG "delaylog" /* Delayed logging enabled */
114 #define MNTOPT_NODELAYLOG "nodelaylog" /* Delayed logging disabled */
115 #define MNTOPT_DISCARD "discard" /* Discard unused blocks */
116 #define MNTOPT_NODISCARD "nodiscard" /* Do not discard unused blocks */
117
118 /*
119 * Table driven mount option parser.
120 *
121 * Currently only used for remount, but it will be used for mount
122 * in the future, too.
123 */
124 enum {
125 Opt_barrier, Opt_nobarrier, Opt_err
126 };
127
128 static const match_table_t tokens = {
129 {Opt_barrier, "barrier"},
130 {Opt_nobarrier, "nobarrier"},
131 {Opt_err, NULL}
132 };
133
134
135 STATIC unsigned long
136 suffix_strtoul(char *s, char **endp, unsigned int base)
137 {
138 int last, shift_left_factor = 0;
139 char *value = s;
140
141 last = strlen(value) - 1;
142 if (value[last] == 'K' || value[last] == 'k') {
143 shift_left_factor = 10;
144 value[last] = '\0';
145 }
146 if (value[last] == 'M' || value[last] == 'm') {
147 shift_left_factor = 20;
148 value[last] = '\0';
149 }
150 if (value[last] == 'G' || value[last] == 'g') {
151 shift_left_factor = 30;
152 value[last] = '\0';
153 }
154
155 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
156 }
157
158 /*
159 * This function fills in xfs_mount_t fields based on mount args.
160 * Note: the superblock has _not_ yet been read in.
161 *
162 * Note that this function leaks the various device name allocations on
163 * failure. The caller takes care of them.
164 */
165 STATIC int
166 xfs_parseargs(
167 struct xfs_mount *mp,
168 char *options)
169 {
170 struct super_block *sb = mp->m_super;
171 char *this_char, *value, *eov;
172 int dsunit = 0;
173 int dswidth = 0;
174 int iosize = 0;
175 __uint8_t iosizelog = 0;
176
177 /*
178 * set up the mount name first so all the errors will refer to the
179 * correct device.
180 */
181 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
182 if (!mp->m_fsname)
183 return ENOMEM;
184 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
185
186 /*
187 * Copy binary VFS mount flags we are interested in.
188 */
189 if (sb->s_flags & MS_RDONLY)
190 mp->m_flags |= XFS_MOUNT_RDONLY;
191 if (sb->s_flags & MS_DIRSYNC)
192 mp->m_flags |= XFS_MOUNT_DIRSYNC;
193 if (sb->s_flags & MS_SYNCHRONOUS)
194 mp->m_flags |= XFS_MOUNT_WSYNC;
195
196 /*
197 * Set some default flags that could be cleared by the mount option
198 * parsing.
199 */
200 mp->m_flags |= XFS_MOUNT_BARRIER;
201 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
202 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
203 mp->m_flags |= XFS_MOUNT_DELAYLOG;
204
205 /*
206 * These can be overridden by the mount option parsing.
207 */
208 mp->m_logbufs = -1;
209 mp->m_logbsize = -1;
210
211 if (!options)
212 goto done;
213
214 while ((this_char = strsep(&options, ",")) != NULL) {
215 if (!*this_char)
216 continue;
217 if ((value = strchr(this_char, '=')) != NULL)
218 *value++ = 0;
219
220 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
221 if (!value || !*value) {
222 xfs_warn(mp, "%s option requires an argument",
223 this_char);
224 return EINVAL;
225 }
226 mp->m_logbufs = simple_strtoul(value, &eov, 10);
227 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
228 if (!value || !*value) {
229 xfs_warn(mp, "%s option requires an argument",
230 this_char);
231 return EINVAL;
232 }
233 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
234 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
235 if (!value || !*value) {
236 xfs_warn(mp, "%s option requires an argument",
237 this_char);
238 return EINVAL;
239 }
240 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
241 if (!mp->m_logname)
242 return ENOMEM;
243 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
244 xfs_warn(mp, "%s option not allowed on this system",
245 this_char);
246 return EINVAL;
247 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
248 if (!value || !*value) {
249 xfs_warn(mp, "%s option requires an argument",
250 this_char);
251 return EINVAL;
252 }
253 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
254 if (!mp->m_rtname)
255 return ENOMEM;
256 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
257 if (!value || !*value) {
258 xfs_warn(mp, "%s option requires an argument",
259 this_char);
260 return EINVAL;
261 }
262 iosize = simple_strtoul(value, &eov, 10);
263 iosizelog = ffs(iosize) - 1;
264 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
265 if (!value || !*value) {
266 xfs_warn(mp, "%s option requires an argument",
267 this_char);
268 return EINVAL;
269 }
270 iosize = suffix_strtoul(value, &eov, 10);
271 iosizelog = ffs(iosize) - 1;
272 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
273 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
274 mp->m_flags |= XFS_MOUNT_GRPID;
275 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
276 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
277 mp->m_flags &= ~XFS_MOUNT_GRPID;
278 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
279 mp->m_flags |= XFS_MOUNT_WSYNC;
280 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
281 mp->m_flags |= XFS_MOUNT_NORECOVERY;
282 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
283 mp->m_flags |= XFS_MOUNT_NOALIGN;
284 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
285 mp->m_flags |= XFS_MOUNT_SWALLOC;
286 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
287 if (!value || !*value) {
288 xfs_warn(mp, "%s option requires an argument",
289 this_char);
290 return EINVAL;
291 }
292 dsunit = simple_strtoul(value, &eov, 10);
293 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
294 if (!value || !*value) {
295 xfs_warn(mp, "%s option requires an argument",
296 this_char);
297 return EINVAL;
298 }
299 dswidth = simple_strtoul(value, &eov, 10);
300 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
301 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
302 #if !XFS_BIG_INUMS
303 xfs_warn(mp, "%s option not allowed on this system",
304 this_char);
305 return EINVAL;
306 #endif
307 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
308 mp->m_flags |= XFS_MOUNT_NOUUID;
309 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
310 mp->m_flags |= XFS_MOUNT_BARRIER;
311 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
312 mp->m_flags &= ~XFS_MOUNT_BARRIER;
313 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
314 mp->m_flags |= XFS_MOUNT_IKEEP;
315 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
316 mp->m_flags &= ~XFS_MOUNT_IKEEP;
317 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
318 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
319 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
320 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
321 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
322 mp->m_flags |= XFS_MOUNT_ATTR2;
323 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
324 mp->m_flags &= ~XFS_MOUNT_ATTR2;
325 mp->m_flags |= XFS_MOUNT_NOATTR2;
326 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
327 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
328 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
329 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
330 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
331 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
332 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
333 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
334 !strcmp(this_char, MNTOPT_UQUOTA) ||
335 !strcmp(this_char, MNTOPT_USRQUOTA)) {
336 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
337 XFS_UQUOTA_ENFD);
338 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
339 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
340 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
341 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
342 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
343 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
344 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
345 XFS_OQUOTA_ENFD);
346 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
347 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
348 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
349 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
350 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
351 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
352 XFS_OQUOTA_ENFD);
353 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
354 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
355 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
356 } else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
357 mp->m_flags |= XFS_MOUNT_DELAYLOG;
358 } else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
359 mp->m_flags &= ~XFS_MOUNT_DELAYLOG;
360 } else if (!strcmp(this_char, MNTOPT_DISCARD)) {
361 mp->m_flags |= XFS_MOUNT_DISCARD;
362 } else if (!strcmp(this_char, MNTOPT_NODISCARD)) {
363 mp->m_flags &= ~XFS_MOUNT_DISCARD;
364 } else if (!strcmp(this_char, "ihashsize")) {
365 xfs_warn(mp,
366 "ihashsize no longer used, option is deprecated.");
367 } else if (!strcmp(this_char, "osyncisdsync")) {
368 xfs_warn(mp,
369 "osyncisdsync has no effect, option is deprecated.");
370 } else if (!strcmp(this_char, "osyncisosync")) {
371 xfs_warn(mp,
372 "osyncisosync has no effect, option is deprecated.");
373 } else if (!strcmp(this_char, "irixsgid")) {
374 xfs_warn(mp,
375 "irixsgid is now a sysctl(2) variable, option is deprecated.");
376 } else {
377 xfs_warn(mp, "unknown mount option [%s].", this_char);
378 return EINVAL;
379 }
380 }
381
382 /*
383 * no recovery flag requires a read-only mount
384 */
385 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
386 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
387 xfs_warn(mp, "no-recovery mounts must be read-only.");
388 return EINVAL;
389 }
390
391 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
392 xfs_warn(mp,
393 "sunit and swidth options incompatible with the noalign option");
394 return EINVAL;
395 }
396
397 if ((mp->m_flags & XFS_MOUNT_DISCARD) &&
398 !(mp->m_flags & XFS_MOUNT_DELAYLOG)) {
399 xfs_warn(mp,
400 "the discard option is incompatible with the nodelaylog option");
401 return EINVAL;
402 }
403
404 #ifndef CONFIG_XFS_QUOTA
405 if (XFS_IS_QUOTA_RUNNING(mp)) {
406 xfs_warn(mp, "quota support not available in this kernel.");
407 return EINVAL;
408 }
409 #endif
410
411 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
412 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
413 xfs_warn(mp, "cannot mount with both project and group quota");
414 return EINVAL;
415 }
416
417 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
418 xfs_warn(mp, "sunit and swidth must be specified together");
419 return EINVAL;
420 }
421
422 if (dsunit && (dswidth % dsunit != 0)) {
423 xfs_warn(mp,
424 "stripe width (%d) must be a multiple of the stripe unit (%d)",
425 dswidth, dsunit);
426 return EINVAL;
427 }
428
429 done:
430 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
431 /*
432 * At this point the superblock has not been read
433 * in, therefore we do not know the block size.
434 * Before the mount call ends we will convert
435 * these to FSBs.
436 */
437 if (dsunit) {
438 mp->m_dalign = dsunit;
439 mp->m_flags |= XFS_MOUNT_RETERR;
440 }
441
442 if (dswidth)
443 mp->m_swidth = dswidth;
444 }
445
446 if (mp->m_logbufs != -1 &&
447 mp->m_logbufs != 0 &&
448 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
449 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
450 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
451 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
452 return XFS_ERROR(EINVAL);
453 }
454 if (mp->m_logbsize != -1 &&
455 mp->m_logbsize != 0 &&
456 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
457 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
458 !is_power_of_2(mp->m_logbsize))) {
459 xfs_warn(mp,
460 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
461 mp->m_logbsize);
462 return XFS_ERROR(EINVAL);
463 }
464
465 if (iosizelog) {
466 if (iosizelog > XFS_MAX_IO_LOG ||
467 iosizelog < XFS_MIN_IO_LOG) {
468 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
469 iosizelog, XFS_MIN_IO_LOG,
470 XFS_MAX_IO_LOG);
471 return XFS_ERROR(EINVAL);
472 }
473
474 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
475 mp->m_readio_log = iosizelog;
476 mp->m_writeio_log = iosizelog;
477 }
478
479 return 0;
480 }
481
482 struct proc_xfs_info {
483 int flag;
484 char *str;
485 };
486
487 STATIC int
488 xfs_showargs(
489 struct xfs_mount *mp,
490 struct seq_file *m)
491 {
492 static struct proc_xfs_info xfs_info_set[] = {
493 /* the few simple ones we can get from the mount struct */
494 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
495 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
496 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
497 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
498 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
499 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
500 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
501 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
502 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
503 { XFS_MOUNT_DELAYLOG, "," MNTOPT_DELAYLOG },
504 { XFS_MOUNT_DISCARD, "," MNTOPT_DISCARD },
505 { 0, NULL }
506 };
507 static struct proc_xfs_info xfs_info_unset[] = {
508 /* the few simple ones we can get from the mount struct */
509 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
510 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
511 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
512 { 0, NULL }
513 };
514 struct proc_xfs_info *xfs_infop;
515
516 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
517 if (mp->m_flags & xfs_infop->flag)
518 seq_puts(m, xfs_infop->str);
519 }
520 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
521 if (!(mp->m_flags & xfs_infop->flag))
522 seq_puts(m, xfs_infop->str);
523 }
524
525 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
526 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
527 (int)(1 << mp->m_writeio_log) >> 10);
528
529 if (mp->m_logbufs > 0)
530 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
531 if (mp->m_logbsize > 0)
532 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
533
534 if (mp->m_logname)
535 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
536 if (mp->m_rtname)
537 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
538
539 if (mp->m_dalign > 0)
540 seq_printf(m, "," MNTOPT_SUNIT "=%d",
541 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
542 if (mp->m_swidth > 0)
543 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
544 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
545
546 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
547 seq_puts(m, "," MNTOPT_USRQUOTA);
548 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
549 seq_puts(m, "," MNTOPT_UQUOTANOENF);
550
551 /* Either project or group quotas can be active, not both */
552
553 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
554 if (mp->m_qflags & XFS_OQUOTA_ENFD)
555 seq_puts(m, "," MNTOPT_PRJQUOTA);
556 else
557 seq_puts(m, "," MNTOPT_PQUOTANOENF);
558 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
559 if (mp->m_qflags & XFS_OQUOTA_ENFD)
560 seq_puts(m, "," MNTOPT_GRPQUOTA);
561 else
562 seq_puts(m, "," MNTOPT_GQUOTANOENF);
563 }
564
565 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
566 seq_puts(m, "," MNTOPT_NOQUOTA);
567
568 return 0;
569 }
570 __uint64_t
571 xfs_max_file_offset(
572 unsigned int blockshift)
573 {
574 unsigned int pagefactor = 1;
575 unsigned int bitshift = BITS_PER_LONG - 1;
576
577 /* Figure out maximum filesize, on Linux this can depend on
578 * the filesystem blocksize (on 32 bit platforms).
579 * __block_write_begin does this in an [unsigned] long...
580 * page->index << (PAGE_CACHE_SHIFT - bbits)
581 * So, for page sized blocks (4K on 32 bit platforms),
582 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
583 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
584 * but for smaller blocksizes it is less (bbits = log2 bsize).
585 * Note1: get_block_t takes a long (implicit cast from above)
586 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
587 * can optionally convert the [unsigned] long from above into
588 * an [unsigned] long long.
589 */
590
591 #if BITS_PER_LONG == 32
592 # if defined(CONFIG_LBDAF)
593 ASSERT(sizeof(sector_t) == 8);
594 pagefactor = PAGE_CACHE_SIZE;
595 bitshift = BITS_PER_LONG;
596 # else
597 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
598 # endif
599 #endif
600
601 return (((__uint64_t)pagefactor) << bitshift) - 1;
602 }
603
604 STATIC int
605 xfs_blkdev_get(
606 xfs_mount_t *mp,
607 const char *name,
608 struct block_device **bdevp)
609 {
610 int error = 0;
611
612 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
613 mp);
614 if (IS_ERR(*bdevp)) {
615 error = PTR_ERR(*bdevp);
616 xfs_warn(mp, "Invalid device [%s], error=%d\n", name, error);
617 }
618
619 return -error;
620 }
621
622 STATIC void
623 xfs_blkdev_put(
624 struct block_device *bdev)
625 {
626 if (bdev)
627 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
628 }
629
630 void
631 xfs_blkdev_issue_flush(
632 xfs_buftarg_t *buftarg)
633 {
634 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL);
635 }
636
637 STATIC void
638 xfs_close_devices(
639 struct xfs_mount *mp)
640 {
641 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
642 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
643 xfs_free_buftarg(mp, mp->m_logdev_targp);
644 xfs_blkdev_put(logdev);
645 }
646 if (mp->m_rtdev_targp) {
647 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
648 xfs_free_buftarg(mp, mp->m_rtdev_targp);
649 xfs_blkdev_put(rtdev);
650 }
651 xfs_free_buftarg(mp, mp->m_ddev_targp);
652 }
653
654 /*
655 * The file system configurations are:
656 * (1) device (partition) with data and internal log
657 * (2) logical volume with data and log subvolumes.
658 * (3) logical volume with data, log, and realtime subvolumes.
659 *
660 * We only have to handle opening the log and realtime volumes here if
661 * they are present. The data subvolume has already been opened by
662 * get_sb_bdev() and is stored in sb->s_bdev.
663 */
664 STATIC int
665 xfs_open_devices(
666 struct xfs_mount *mp)
667 {
668 struct block_device *ddev = mp->m_super->s_bdev;
669 struct block_device *logdev = NULL, *rtdev = NULL;
670 int error;
671
672 /*
673 * Open real time and log devices - order is important.
674 */
675 if (mp->m_logname) {
676 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
677 if (error)
678 goto out;
679 }
680
681 if (mp->m_rtname) {
682 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
683 if (error)
684 goto out_close_logdev;
685
686 if (rtdev == ddev || rtdev == logdev) {
687 xfs_warn(mp,
688 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
689 error = EINVAL;
690 goto out_close_rtdev;
691 }
692 }
693
694 /*
695 * Setup xfs_mount buffer target pointers
696 */
697 error = ENOMEM;
698 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, 0, mp->m_fsname);
699 if (!mp->m_ddev_targp)
700 goto out_close_rtdev;
701
702 if (rtdev) {
703 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, 1,
704 mp->m_fsname);
705 if (!mp->m_rtdev_targp)
706 goto out_free_ddev_targ;
707 }
708
709 if (logdev && logdev != ddev) {
710 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, 1,
711 mp->m_fsname);
712 if (!mp->m_logdev_targp)
713 goto out_free_rtdev_targ;
714 } else {
715 mp->m_logdev_targp = mp->m_ddev_targp;
716 }
717
718 return 0;
719
720 out_free_rtdev_targ:
721 if (mp->m_rtdev_targp)
722 xfs_free_buftarg(mp, mp->m_rtdev_targp);
723 out_free_ddev_targ:
724 xfs_free_buftarg(mp, mp->m_ddev_targp);
725 out_close_rtdev:
726 if (rtdev)
727 xfs_blkdev_put(rtdev);
728 out_close_logdev:
729 if (logdev && logdev != ddev)
730 xfs_blkdev_put(logdev);
731 out:
732 return error;
733 }
734
735 /*
736 * Setup xfs_mount buffer target pointers based on superblock
737 */
738 STATIC int
739 xfs_setup_devices(
740 struct xfs_mount *mp)
741 {
742 int error;
743
744 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
745 mp->m_sb.sb_sectsize);
746 if (error)
747 return error;
748
749 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
750 unsigned int log_sector_size = BBSIZE;
751
752 if (xfs_sb_version_hassector(&mp->m_sb))
753 log_sector_size = mp->m_sb.sb_logsectsize;
754 error = xfs_setsize_buftarg(mp->m_logdev_targp,
755 mp->m_sb.sb_blocksize,
756 log_sector_size);
757 if (error)
758 return error;
759 }
760 if (mp->m_rtdev_targp) {
761 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
762 mp->m_sb.sb_blocksize,
763 mp->m_sb.sb_sectsize);
764 if (error)
765 return error;
766 }
767
768 return 0;
769 }
770
771 /* Catch misguided souls that try to use this interface on XFS */
772 STATIC struct inode *
773 xfs_fs_alloc_inode(
774 struct super_block *sb)
775 {
776 BUG();
777 return NULL;
778 }
779
780 /*
781 * Now that the generic code is guaranteed not to be accessing
782 * the linux inode, we can reclaim the inode.
783 */
784 STATIC void
785 xfs_fs_destroy_inode(
786 struct inode *inode)
787 {
788 struct xfs_inode *ip = XFS_I(inode);
789
790 trace_xfs_destroy_inode(ip);
791
792 XFS_STATS_INC(vn_reclaim);
793
794 /* bad inode, get out here ASAP */
795 if (is_bad_inode(inode))
796 goto out_reclaim;
797
798 xfs_ioend_wait(ip);
799
800 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
801
802 /*
803 * We should never get here with one of the reclaim flags already set.
804 */
805 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
806 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
807
808 /*
809 * We always use background reclaim here because even if the
810 * inode is clean, it still may be under IO and hence we have
811 * to take the flush lock. The background reclaim path handles
812 * this more efficiently than we can here, so simply let background
813 * reclaim tear down all inodes.
814 */
815 out_reclaim:
816 xfs_inode_set_reclaim_tag(ip);
817 }
818
819 /*
820 * Slab object creation initialisation for the XFS inode.
821 * This covers only the idempotent fields in the XFS inode;
822 * all other fields need to be initialised on allocation
823 * from the slab. This avoids the need to repeatedly initialise
824 * fields in the xfs inode that left in the initialise state
825 * when freeing the inode.
826 */
827 STATIC void
828 xfs_fs_inode_init_once(
829 void *inode)
830 {
831 struct xfs_inode *ip = inode;
832
833 memset(ip, 0, sizeof(struct xfs_inode));
834
835 /* vfs inode */
836 inode_init_once(VFS_I(ip));
837
838 /* xfs inode */
839 atomic_set(&ip->i_iocount, 0);
840 atomic_set(&ip->i_pincount, 0);
841 spin_lock_init(&ip->i_flags_lock);
842 init_waitqueue_head(&ip->i_ipin_wait);
843 /*
844 * Because we want to use a counting completion, complete
845 * the flush completion once to allow a single access to
846 * the flush completion without blocking.
847 */
848 init_completion(&ip->i_flush);
849 complete(&ip->i_flush);
850
851 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
852 "xfsino", ip->i_ino);
853 }
854
855 /*
856 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
857 * we catch unlogged VFS level updates to the inode.
858 *
859 * We need the barrier() to maintain correct ordering between unlogged
860 * updates and the transaction commit code that clears the i_update_core
861 * field. This requires all updates to be completed before marking the
862 * inode dirty.
863 */
864 STATIC void
865 xfs_fs_dirty_inode(
866 struct inode *inode,
867 int flags)
868 {
869 barrier();
870 XFS_I(inode)->i_update_core = 1;
871 }
872
873 STATIC int
874 xfs_log_inode(
875 struct xfs_inode *ip)
876 {
877 struct xfs_mount *mp = ip->i_mount;
878 struct xfs_trans *tp;
879 int error;
880
881 xfs_iunlock(ip, XFS_ILOCK_SHARED);
882 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
883 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
884
885 if (error) {
886 xfs_trans_cancel(tp, 0);
887 /* we need to return with the lock hold shared */
888 xfs_ilock(ip, XFS_ILOCK_SHARED);
889 return error;
890 }
891
892 xfs_ilock(ip, XFS_ILOCK_EXCL);
893
894 /*
895 * Note - it's possible that we might have pushed ourselves out of the
896 * way during trans_reserve which would flush the inode. But there's
897 * no guarantee that the inode buffer has actually gone out yet (it's
898 * delwri). Plus the buffer could be pinned anyway if it's part of
899 * an inode in another recent transaction. So we play it safe and
900 * fire off the transaction anyway.
901 */
902 xfs_trans_ijoin(tp, ip);
903 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
904 error = xfs_trans_commit(tp, 0);
905 xfs_ilock_demote(ip, XFS_ILOCK_EXCL);
906
907 return error;
908 }
909
910 STATIC int
911 xfs_fs_write_inode(
912 struct inode *inode,
913 struct writeback_control *wbc)
914 {
915 struct xfs_inode *ip = XFS_I(inode);
916 struct xfs_mount *mp = ip->i_mount;
917 int error = EAGAIN;
918
919 trace_xfs_write_inode(ip);
920
921 if (XFS_FORCED_SHUTDOWN(mp))
922 return XFS_ERROR(EIO);
923
924 if (wbc->sync_mode == WB_SYNC_ALL) {
925 /*
926 * Make sure the inode has made it it into the log. Instead
927 * of forcing it all the way to stable storage using a
928 * synchronous transaction we let the log force inside the
929 * ->sync_fs call do that for thus, which reduces the number
930 * of synchronous log foces dramatically.
931 */
932 xfs_ioend_wait(ip);
933 xfs_ilock(ip, XFS_ILOCK_SHARED);
934 if (ip->i_update_core) {
935 error = xfs_log_inode(ip);
936 if (error)
937 goto out_unlock;
938 }
939 } else {
940 /*
941 * We make this non-blocking if the inode is contended, return
942 * EAGAIN to indicate to the caller that they did not succeed.
943 * This prevents the flush path from blocking on inodes inside
944 * another operation right now, they get caught later by
945 * xfs_sync.
946 */
947 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
948 goto out;
949
950 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
951 goto out_unlock;
952
953 /*
954 * Now we have the flush lock and the inode is not pinned, we
955 * can check if the inode is really clean as we know that
956 * there are no pending transaction completions, it is not
957 * waiting on the delayed write queue and there is no IO in
958 * progress.
959 */
960 if (xfs_inode_clean(ip)) {
961 xfs_ifunlock(ip);
962 error = 0;
963 goto out_unlock;
964 }
965 error = xfs_iflush(ip, SYNC_TRYLOCK);
966 }
967
968 out_unlock:
969 xfs_iunlock(ip, XFS_ILOCK_SHARED);
970 out:
971 /*
972 * if we failed to write out the inode then mark
973 * it dirty again so we'll try again later.
974 */
975 if (error)
976 xfs_mark_inode_dirty_sync(ip);
977 return -error;
978 }
979
980 STATIC void
981 xfs_fs_evict_inode(
982 struct inode *inode)
983 {
984 xfs_inode_t *ip = XFS_I(inode);
985
986 trace_xfs_evict_inode(ip);
987
988 truncate_inode_pages(&inode->i_data, 0);
989 end_writeback(inode);
990 XFS_STATS_INC(vn_rele);
991 XFS_STATS_INC(vn_remove);
992 XFS_STATS_DEC(vn_active);
993
994 /*
995 * The iolock is used by the file system to coordinate reads,
996 * writes, and block truncates. Up to this point the lock
997 * protected concurrent accesses by users of the inode. But
998 * from here forward we're doing some final processing of the
999 * inode because we're done with it, and although we reuse the
1000 * iolock for protection it is really a distinct lock class
1001 * (in the lockdep sense) from before. To keep lockdep happy
1002 * (and basically indicate what we are doing), we explicitly
1003 * re-init the iolock here.
1004 */
1005 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
1006 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
1007 lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
1008 &xfs_iolock_reclaimable, "xfs_iolock_reclaimable");
1009
1010 xfs_inactive(ip);
1011 }
1012
1013 STATIC void
1014 xfs_free_fsname(
1015 struct xfs_mount *mp)
1016 {
1017 kfree(mp->m_fsname);
1018 kfree(mp->m_rtname);
1019 kfree(mp->m_logname);
1020 }
1021
1022 STATIC void
1023 xfs_fs_put_super(
1024 struct super_block *sb)
1025 {
1026 struct xfs_mount *mp = XFS_M(sb);
1027
1028 /*
1029 * Unregister the memory shrinker before we tear down the mount
1030 * structure so we don't have memory reclaim racing with us here.
1031 */
1032 xfs_inode_shrinker_unregister(mp);
1033 xfs_syncd_stop(mp);
1034
1035 /*
1036 * Blow away any referenced inode in the filestreams cache.
1037 * This can and will cause log traffic as inodes go inactive
1038 * here.
1039 */
1040 xfs_filestream_unmount(mp);
1041
1042 XFS_bflush(mp->m_ddev_targp);
1043
1044 xfs_unmountfs(mp);
1045 xfs_freesb(mp);
1046 xfs_icsb_destroy_counters(mp);
1047 xfs_close_devices(mp);
1048 xfs_free_fsname(mp);
1049 kfree(mp);
1050 }
1051
1052 STATIC int
1053 xfs_fs_sync_fs(
1054 struct super_block *sb,
1055 int wait)
1056 {
1057 struct xfs_mount *mp = XFS_M(sb);
1058 int error;
1059
1060 /*
1061 * Not much we can do for the first async pass. Writing out the
1062 * superblock would be counter-productive as we are going to redirty
1063 * when writing out other data and metadata (and writing out a single
1064 * block is quite fast anyway).
1065 *
1066 * Try to asynchronously kick off quota syncing at least.
1067 */
1068 if (!wait) {
1069 xfs_qm_sync(mp, SYNC_TRYLOCK);
1070 return 0;
1071 }
1072
1073 error = xfs_quiesce_data(mp);
1074 if (error)
1075 return -error;
1076
1077 if (laptop_mode) {
1078 /*
1079 * The disk must be active because we're syncing.
1080 * We schedule xfssyncd now (now that the disk is
1081 * active) instead of later (when it might not be).
1082 */
1083 flush_delayed_work_sync(&mp->m_sync_work);
1084 }
1085
1086 return 0;
1087 }
1088
1089 STATIC int
1090 xfs_fs_statfs(
1091 struct dentry *dentry,
1092 struct kstatfs *statp)
1093 {
1094 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1095 xfs_sb_t *sbp = &mp->m_sb;
1096 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1097 __uint64_t fakeinos, id;
1098 xfs_extlen_t lsize;
1099 __int64_t ffree;
1100
1101 statp->f_type = XFS_SB_MAGIC;
1102 statp->f_namelen = MAXNAMELEN - 1;
1103
1104 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1105 statp->f_fsid.val[0] = (u32)id;
1106 statp->f_fsid.val[1] = (u32)(id >> 32);
1107
1108 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1109
1110 spin_lock(&mp->m_sb_lock);
1111 statp->f_bsize = sbp->sb_blocksize;
1112 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1113 statp->f_blocks = sbp->sb_dblocks - lsize;
1114 statp->f_bfree = statp->f_bavail =
1115 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1116 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1117 statp->f_files =
1118 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1119 if (mp->m_maxicount)
1120 statp->f_files = min_t(typeof(statp->f_files),
1121 statp->f_files,
1122 mp->m_maxicount);
1123
1124 /* make sure statp->f_ffree does not underflow */
1125 ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1126 statp->f_ffree = max_t(__int64_t, ffree, 0);
1127
1128 spin_unlock(&mp->m_sb_lock);
1129
1130 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1131 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1132 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1133 xfs_qm_statvfs(ip, statp);
1134 return 0;
1135 }
1136
1137 STATIC void
1138 xfs_save_resvblks(struct xfs_mount *mp)
1139 {
1140 __uint64_t resblks = 0;
1141
1142 mp->m_resblks_save = mp->m_resblks;
1143 xfs_reserve_blocks(mp, &resblks, NULL);
1144 }
1145
1146 STATIC void
1147 xfs_restore_resvblks(struct xfs_mount *mp)
1148 {
1149 __uint64_t resblks;
1150
1151 if (mp->m_resblks_save) {
1152 resblks = mp->m_resblks_save;
1153 mp->m_resblks_save = 0;
1154 } else
1155 resblks = xfs_default_resblks(mp);
1156
1157 xfs_reserve_blocks(mp, &resblks, NULL);
1158 }
1159
1160 STATIC int
1161 xfs_fs_remount(
1162 struct super_block *sb,
1163 int *flags,
1164 char *options)
1165 {
1166 struct xfs_mount *mp = XFS_M(sb);
1167 substring_t args[MAX_OPT_ARGS];
1168 char *p;
1169 int error;
1170
1171 while ((p = strsep(&options, ",")) != NULL) {
1172 int token;
1173
1174 if (!*p)
1175 continue;
1176
1177 token = match_token(p, tokens, args);
1178 switch (token) {
1179 case Opt_barrier:
1180 mp->m_flags |= XFS_MOUNT_BARRIER;
1181 break;
1182 case Opt_nobarrier:
1183 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1184 break;
1185 default:
1186 /*
1187 * Logically we would return an error here to prevent
1188 * users from believing they might have changed
1189 * mount options using remount which can't be changed.
1190 *
1191 * But unfortunately mount(8) adds all options from
1192 * mtab and fstab to the mount arguments in some cases
1193 * so we can't blindly reject options, but have to
1194 * check for each specified option if it actually
1195 * differs from the currently set option and only
1196 * reject it if that's the case.
1197 *
1198 * Until that is implemented we return success for
1199 * every remount request, and silently ignore all
1200 * options that we can't actually change.
1201 */
1202 #if 0
1203 xfs_info(mp,
1204 "mount option \"%s\" not supported for remount\n", p);
1205 return -EINVAL;
1206 #else
1207 break;
1208 #endif
1209 }
1210 }
1211
1212 /* ro -> rw */
1213 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1214 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1215
1216 /*
1217 * If this is the first remount to writeable state we
1218 * might have some superblock changes to update.
1219 */
1220 if (mp->m_update_flags) {
1221 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1222 if (error) {
1223 xfs_warn(mp, "failed to write sb changes");
1224 return error;
1225 }
1226 mp->m_update_flags = 0;
1227 }
1228
1229 /*
1230 * Fill out the reserve pool if it is empty. Use the stashed
1231 * value if it is non-zero, otherwise go with the default.
1232 */
1233 xfs_restore_resvblks(mp);
1234 }
1235
1236 /* rw -> ro */
1237 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1238 /*
1239 * After we have synced the data but before we sync the
1240 * metadata, we need to free up the reserve block pool so that
1241 * the used block count in the superblock on disk is correct at
1242 * the end of the remount. Stash the current reserve pool size
1243 * so that if we get remounted rw, we can return it to the same
1244 * size.
1245 */
1246
1247 xfs_quiesce_data(mp);
1248 xfs_save_resvblks(mp);
1249 xfs_quiesce_attr(mp);
1250 mp->m_flags |= XFS_MOUNT_RDONLY;
1251 }
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * Second stage of a freeze. The data is already frozen so we only
1258 * need to take care of the metadata. Once that's done write a dummy
1259 * record to dirty the log in case of a crash while frozen.
1260 */
1261 STATIC int
1262 xfs_fs_freeze(
1263 struct super_block *sb)
1264 {
1265 struct xfs_mount *mp = XFS_M(sb);
1266
1267 xfs_save_resvblks(mp);
1268 xfs_quiesce_attr(mp);
1269 return -xfs_fs_log_dummy(mp);
1270 }
1271
1272 STATIC int
1273 xfs_fs_unfreeze(
1274 struct super_block *sb)
1275 {
1276 struct xfs_mount *mp = XFS_M(sb);
1277
1278 xfs_restore_resvblks(mp);
1279 return 0;
1280 }
1281
1282 STATIC int
1283 xfs_fs_show_options(
1284 struct seq_file *m,
1285 struct vfsmount *mnt)
1286 {
1287 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1288 }
1289
1290 /*
1291 * This function fills in xfs_mount_t fields based on mount args.
1292 * Note: the superblock _has_ now been read in.
1293 */
1294 STATIC int
1295 xfs_finish_flags(
1296 struct xfs_mount *mp)
1297 {
1298 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1299
1300 /* Fail a mount where the logbuf is smaller than the log stripe */
1301 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1302 if (mp->m_logbsize <= 0 &&
1303 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1304 mp->m_logbsize = mp->m_sb.sb_logsunit;
1305 } else if (mp->m_logbsize > 0 &&
1306 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1307 xfs_warn(mp,
1308 "logbuf size must be greater than or equal to log stripe size");
1309 return XFS_ERROR(EINVAL);
1310 }
1311 } else {
1312 /* Fail a mount if the logbuf is larger than 32K */
1313 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1314 xfs_warn(mp,
1315 "logbuf size for version 1 logs must be 16K or 32K");
1316 return XFS_ERROR(EINVAL);
1317 }
1318 }
1319
1320 /*
1321 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1322 * told by noattr2 to turn it off
1323 */
1324 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1325 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1326 mp->m_flags |= XFS_MOUNT_ATTR2;
1327
1328 /*
1329 * prohibit r/w mounts of read-only filesystems
1330 */
1331 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1332 xfs_warn(mp,
1333 "cannot mount a read-only filesystem as read-write");
1334 return XFS_ERROR(EROFS);
1335 }
1336
1337 return 0;
1338 }
1339
1340 STATIC int
1341 xfs_fs_fill_super(
1342 struct super_block *sb,
1343 void *data,
1344 int silent)
1345 {
1346 struct inode *root;
1347 struct xfs_mount *mp = NULL;
1348 int flags = 0, error = ENOMEM;
1349
1350 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1351 if (!mp)
1352 goto out;
1353
1354 spin_lock_init(&mp->m_sb_lock);
1355 mutex_init(&mp->m_growlock);
1356 atomic_set(&mp->m_active_trans, 0);
1357
1358 mp->m_super = sb;
1359 sb->s_fs_info = mp;
1360
1361 error = xfs_parseargs(mp, (char *)data);
1362 if (error)
1363 goto out_free_fsname;
1364
1365 sb_min_blocksize(sb, BBSIZE);
1366 sb->s_xattr = xfs_xattr_handlers;
1367 sb->s_export_op = &xfs_export_operations;
1368 #ifdef CONFIG_XFS_QUOTA
1369 sb->s_qcop = &xfs_quotactl_operations;
1370 #endif
1371 sb->s_op = &xfs_super_operations;
1372
1373 if (silent)
1374 flags |= XFS_MFSI_QUIET;
1375
1376 error = xfs_open_devices(mp);
1377 if (error)
1378 goto out_free_fsname;
1379
1380 error = xfs_icsb_init_counters(mp);
1381 if (error)
1382 goto out_close_devices;
1383
1384 error = xfs_readsb(mp, flags);
1385 if (error)
1386 goto out_destroy_counters;
1387
1388 error = xfs_finish_flags(mp);
1389 if (error)
1390 goto out_free_sb;
1391
1392 error = xfs_setup_devices(mp);
1393 if (error)
1394 goto out_free_sb;
1395
1396 error = xfs_filestream_mount(mp);
1397 if (error)
1398 goto out_free_sb;
1399
1400 /*
1401 * we must configure the block size in the superblock before we run the
1402 * full mount process as the mount process can lookup and cache inodes.
1403 * For the same reason we must also initialise the syncd and register
1404 * the inode cache shrinker so that inodes can be reclaimed during
1405 * operations like a quotacheck that iterate all inodes in the
1406 * filesystem.
1407 */
1408 sb->s_magic = XFS_SB_MAGIC;
1409 sb->s_blocksize = mp->m_sb.sb_blocksize;
1410 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1411 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1412 sb->s_time_gran = 1;
1413 set_posix_acl_flag(sb);
1414
1415 error = xfs_syncd_init(mp);
1416 if (error)
1417 goto out_filestream_unmount;
1418
1419 xfs_inode_shrinker_register(mp);
1420
1421 error = xfs_mountfs(mp);
1422 if (error)
1423 goto out_syncd_stop;
1424
1425 root = igrab(VFS_I(mp->m_rootip));
1426 if (!root) {
1427 error = ENOENT;
1428 goto fail_unmount;
1429 }
1430 if (is_bad_inode(root)) {
1431 error = EINVAL;
1432 goto fail_vnrele;
1433 }
1434 sb->s_root = d_alloc_root(root);
1435 if (!sb->s_root) {
1436 error = ENOMEM;
1437 goto fail_vnrele;
1438 }
1439
1440 return 0;
1441
1442 out_syncd_stop:
1443 xfs_inode_shrinker_unregister(mp);
1444 xfs_syncd_stop(mp);
1445 out_filestream_unmount:
1446 xfs_filestream_unmount(mp);
1447 out_free_sb:
1448 xfs_freesb(mp);
1449 out_destroy_counters:
1450 xfs_icsb_destroy_counters(mp);
1451 out_close_devices:
1452 xfs_close_devices(mp);
1453 out_free_fsname:
1454 xfs_free_fsname(mp);
1455 kfree(mp);
1456 out:
1457 return -error;
1458
1459 fail_vnrele:
1460 if (sb->s_root) {
1461 dput(sb->s_root);
1462 sb->s_root = NULL;
1463 } else {
1464 iput(root);
1465 }
1466
1467 fail_unmount:
1468 xfs_inode_shrinker_unregister(mp);
1469 xfs_syncd_stop(mp);
1470
1471 /*
1472 * Blow away any referenced inode in the filestreams cache.
1473 * This can and will cause log traffic as inodes go inactive
1474 * here.
1475 */
1476 xfs_filestream_unmount(mp);
1477
1478 XFS_bflush(mp->m_ddev_targp);
1479
1480 xfs_unmountfs(mp);
1481 goto out_free_sb;
1482 }
1483
1484 STATIC struct dentry *
1485 xfs_fs_mount(
1486 struct file_system_type *fs_type,
1487 int flags,
1488 const char *dev_name,
1489 void *data)
1490 {
1491 return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1492 }
1493
1494 static const struct super_operations xfs_super_operations = {
1495 .alloc_inode = xfs_fs_alloc_inode,
1496 .destroy_inode = xfs_fs_destroy_inode,
1497 .dirty_inode = xfs_fs_dirty_inode,
1498 .write_inode = xfs_fs_write_inode,
1499 .evict_inode = xfs_fs_evict_inode,
1500 .put_super = xfs_fs_put_super,
1501 .sync_fs = xfs_fs_sync_fs,
1502 .freeze_fs = xfs_fs_freeze,
1503 .unfreeze_fs = xfs_fs_unfreeze,
1504 .statfs = xfs_fs_statfs,
1505 .remount_fs = xfs_fs_remount,
1506 .show_options = xfs_fs_show_options,
1507 };
1508
1509 static struct file_system_type xfs_fs_type = {
1510 .owner = THIS_MODULE,
1511 .name = "xfs",
1512 .mount = xfs_fs_mount,
1513 .kill_sb = kill_block_super,
1514 .fs_flags = FS_REQUIRES_DEV,
1515 };
1516
1517 STATIC int __init
1518 xfs_init_zones(void)
1519 {
1520
1521 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1522 if (!xfs_ioend_zone)
1523 goto out;
1524
1525 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1526 xfs_ioend_zone);
1527 if (!xfs_ioend_pool)
1528 goto out_destroy_ioend_zone;
1529
1530 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1531 "xfs_log_ticket");
1532 if (!xfs_log_ticket_zone)
1533 goto out_destroy_ioend_pool;
1534
1535 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1536 "xfs_bmap_free_item");
1537 if (!xfs_bmap_free_item_zone)
1538 goto out_destroy_log_ticket_zone;
1539
1540 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1541 "xfs_btree_cur");
1542 if (!xfs_btree_cur_zone)
1543 goto out_destroy_bmap_free_item_zone;
1544
1545 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1546 "xfs_da_state");
1547 if (!xfs_da_state_zone)
1548 goto out_destroy_btree_cur_zone;
1549
1550 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1551 if (!xfs_dabuf_zone)
1552 goto out_destroy_da_state_zone;
1553
1554 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1555 if (!xfs_ifork_zone)
1556 goto out_destroy_dabuf_zone;
1557
1558 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1559 if (!xfs_trans_zone)
1560 goto out_destroy_ifork_zone;
1561
1562 xfs_log_item_desc_zone =
1563 kmem_zone_init(sizeof(struct xfs_log_item_desc),
1564 "xfs_log_item_desc");
1565 if (!xfs_log_item_desc_zone)
1566 goto out_destroy_trans_zone;
1567
1568 /*
1569 * The size of the zone allocated buf log item is the maximum
1570 * size possible under XFS. This wastes a little bit of memory,
1571 * but it is much faster.
1572 */
1573 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1574 (((XFS_MAX_BLOCKSIZE / XFS_BLF_CHUNK) /
1575 NBWORD) * sizeof(int))), "xfs_buf_item");
1576 if (!xfs_buf_item_zone)
1577 goto out_destroy_log_item_desc_zone;
1578
1579 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1580 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1581 sizeof(xfs_extent_t))), "xfs_efd_item");
1582 if (!xfs_efd_zone)
1583 goto out_destroy_buf_item_zone;
1584
1585 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1586 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1587 sizeof(xfs_extent_t))), "xfs_efi_item");
1588 if (!xfs_efi_zone)
1589 goto out_destroy_efd_zone;
1590
1591 xfs_inode_zone =
1592 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1593 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1594 xfs_fs_inode_init_once);
1595 if (!xfs_inode_zone)
1596 goto out_destroy_efi_zone;
1597
1598 xfs_ili_zone =
1599 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1600 KM_ZONE_SPREAD, NULL);
1601 if (!xfs_ili_zone)
1602 goto out_destroy_inode_zone;
1603
1604 return 0;
1605
1606 out_destroy_inode_zone:
1607 kmem_zone_destroy(xfs_inode_zone);
1608 out_destroy_efi_zone:
1609 kmem_zone_destroy(xfs_efi_zone);
1610 out_destroy_efd_zone:
1611 kmem_zone_destroy(xfs_efd_zone);
1612 out_destroy_buf_item_zone:
1613 kmem_zone_destroy(xfs_buf_item_zone);
1614 out_destroy_log_item_desc_zone:
1615 kmem_zone_destroy(xfs_log_item_desc_zone);
1616 out_destroy_trans_zone:
1617 kmem_zone_destroy(xfs_trans_zone);
1618 out_destroy_ifork_zone:
1619 kmem_zone_destroy(xfs_ifork_zone);
1620 out_destroy_dabuf_zone:
1621 kmem_zone_destroy(xfs_dabuf_zone);
1622 out_destroy_da_state_zone:
1623 kmem_zone_destroy(xfs_da_state_zone);
1624 out_destroy_btree_cur_zone:
1625 kmem_zone_destroy(xfs_btree_cur_zone);
1626 out_destroy_bmap_free_item_zone:
1627 kmem_zone_destroy(xfs_bmap_free_item_zone);
1628 out_destroy_log_ticket_zone:
1629 kmem_zone_destroy(xfs_log_ticket_zone);
1630 out_destroy_ioend_pool:
1631 mempool_destroy(xfs_ioend_pool);
1632 out_destroy_ioend_zone:
1633 kmem_zone_destroy(xfs_ioend_zone);
1634 out:
1635 return -ENOMEM;
1636 }
1637
1638 STATIC void
1639 xfs_destroy_zones(void)
1640 {
1641 kmem_zone_destroy(xfs_ili_zone);
1642 kmem_zone_destroy(xfs_inode_zone);
1643 kmem_zone_destroy(xfs_efi_zone);
1644 kmem_zone_destroy(xfs_efd_zone);
1645 kmem_zone_destroy(xfs_buf_item_zone);
1646 kmem_zone_destroy(xfs_log_item_desc_zone);
1647 kmem_zone_destroy(xfs_trans_zone);
1648 kmem_zone_destroy(xfs_ifork_zone);
1649 kmem_zone_destroy(xfs_dabuf_zone);
1650 kmem_zone_destroy(xfs_da_state_zone);
1651 kmem_zone_destroy(xfs_btree_cur_zone);
1652 kmem_zone_destroy(xfs_bmap_free_item_zone);
1653 kmem_zone_destroy(xfs_log_ticket_zone);
1654 mempool_destroy(xfs_ioend_pool);
1655 kmem_zone_destroy(xfs_ioend_zone);
1656
1657 }
1658
1659 STATIC int __init
1660 xfs_init_workqueues(void)
1661 {
1662 /*
1663 * max_active is set to 8 to give enough concurency to allow
1664 * multiple work operations on each CPU to run. This allows multiple
1665 * filesystems to be running sync work concurrently, and scales with
1666 * the number of CPUs in the system.
1667 */
1668 xfs_syncd_wq = alloc_workqueue("xfssyncd", WQ_CPU_INTENSIVE, 8);
1669 if (!xfs_syncd_wq)
1670 goto out;
1671
1672 xfs_ail_wq = alloc_workqueue("xfsail", WQ_CPU_INTENSIVE, 8);
1673 if (!xfs_ail_wq)
1674 goto out_destroy_syncd;
1675
1676 return 0;
1677
1678 out_destroy_syncd:
1679 destroy_workqueue(xfs_syncd_wq);
1680 out:
1681 return -ENOMEM;
1682 }
1683
1684 STATIC void
1685 xfs_destroy_workqueues(void)
1686 {
1687 destroy_workqueue(xfs_ail_wq);
1688 destroy_workqueue(xfs_syncd_wq);
1689 }
1690
1691 STATIC int __init
1692 init_xfs_fs(void)
1693 {
1694 int error;
1695
1696 printk(KERN_INFO XFS_VERSION_STRING " with "
1697 XFS_BUILD_OPTIONS " enabled\n");
1698
1699 xfs_ioend_init();
1700 xfs_dir_startup();
1701
1702 error = xfs_init_zones();
1703 if (error)
1704 goto out;
1705
1706 error = xfs_init_workqueues();
1707 if (error)
1708 goto out_destroy_zones;
1709
1710 error = xfs_mru_cache_init();
1711 if (error)
1712 goto out_destroy_wq;
1713
1714 error = xfs_filestream_init();
1715 if (error)
1716 goto out_mru_cache_uninit;
1717
1718 error = xfs_buf_init();
1719 if (error)
1720 goto out_filestream_uninit;
1721
1722 error = xfs_init_procfs();
1723 if (error)
1724 goto out_buf_terminate;
1725
1726 error = xfs_sysctl_register();
1727 if (error)
1728 goto out_cleanup_procfs;
1729
1730 vfs_initquota();
1731
1732 error = register_filesystem(&xfs_fs_type);
1733 if (error)
1734 goto out_sysctl_unregister;
1735 return 0;
1736
1737 out_sysctl_unregister:
1738 xfs_sysctl_unregister();
1739 out_cleanup_procfs:
1740 xfs_cleanup_procfs();
1741 out_buf_terminate:
1742 xfs_buf_terminate();
1743 out_filestream_uninit:
1744 xfs_filestream_uninit();
1745 out_mru_cache_uninit:
1746 xfs_mru_cache_uninit();
1747 out_destroy_wq:
1748 xfs_destroy_workqueues();
1749 out_destroy_zones:
1750 xfs_destroy_zones();
1751 out:
1752 return error;
1753 }
1754
1755 STATIC void __exit
1756 exit_xfs_fs(void)
1757 {
1758 vfs_exitquota();
1759 unregister_filesystem(&xfs_fs_type);
1760 xfs_sysctl_unregister();
1761 xfs_cleanup_procfs();
1762 xfs_buf_terminate();
1763 xfs_filestream_uninit();
1764 xfs_mru_cache_uninit();
1765 xfs_destroy_workqueues();
1766 xfs_destroy_zones();
1767 }
1768
1769 module_init(init_xfs_fs);
1770 module_exit(exit_xfs_fs);
1771
1772 MODULE_AUTHOR("Silicon Graphics, Inc.");
1773 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1774 MODULE_LICENSE("GPL");