]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_btree_trace.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_rtalloc.h"
43 #include "xfs_error.h"
44 #include "xfs_itable.h"
45 #include "xfs_fsops.h"
46 #include "xfs_rw.h"
47 #include "xfs_attr.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_utils.h"
50 #include "xfs_vnodeops.h"
51 #include "xfs_version.h"
52 #include "xfs_log_priv.h"
53 #include "xfs_trans_priv.h"
54 #include "xfs_filestream.h"
55 #include "xfs_da_btree.h"
56 #include "xfs_extfree_item.h"
57 #include "xfs_mru_cache.h"
58 #include "xfs_inode_item.h"
59 #include "xfs_sync.h"
60 #include "xfs_trace.h"
61
62 #include <linux/namei.h>
63 #include <linux/init.h>
64 #include <linux/slab.h>
65 #include <linux/mount.h>
66 #include <linux/mempool.h>
67 #include <linux/writeback.h>
68 #include <linux/kthread.h>
69 #include <linux/freezer.h>
70 #include <linux/parser.h>
71
72 static const struct super_operations xfs_super_operations;
73 static kmem_zone_t *xfs_ioend_zone;
74 mempool_t *xfs_ioend_pool;
75
76 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
77 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
78 #define MNTOPT_LOGDEV "logdev" /* log device */
79 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
80 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
81 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
82 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
83 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
84 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
85 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
86 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
87 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
88 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
89 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
90 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
91 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
92 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
93 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
94 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
95 * unwritten extent conversion */
96 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
97 #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
98 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
99 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
100 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
101 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
102 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
103 * in stat(). */
104 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
105 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
106 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
107 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
108 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
109 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
110 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
111 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
112 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
113 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
114 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
115 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
116 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
117 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
118 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
119 #define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */
120 #define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */
121 #define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */
122
123 /*
124 * Table driven mount option parser.
125 *
126 * Currently only used for remount, but it will be used for mount
127 * in the future, too.
128 */
129 enum {
130 Opt_barrier, Opt_nobarrier, Opt_err
131 };
132
133 static const match_table_t tokens = {
134 {Opt_barrier, "barrier"},
135 {Opt_nobarrier, "nobarrier"},
136 {Opt_err, NULL}
137 };
138
139
140 STATIC unsigned long
141 suffix_strtoul(char *s, char **endp, unsigned int base)
142 {
143 int last, shift_left_factor = 0;
144 char *value = s;
145
146 last = strlen(value) - 1;
147 if (value[last] == 'K' || value[last] == 'k') {
148 shift_left_factor = 10;
149 value[last] = '\0';
150 }
151 if (value[last] == 'M' || value[last] == 'm') {
152 shift_left_factor = 20;
153 value[last] = '\0';
154 }
155 if (value[last] == 'G' || value[last] == 'g') {
156 shift_left_factor = 30;
157 value[last] = '\0';
158 }
159
160 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
161 }
162
163 /*
164 * This function fills in xfs_mount_t fields based on mount args.
165 * Note: the superblock has _not_ yet been read in.
166 *
167 * Note that this function leaks the various device name allocations on
168 * failure. The caller takes care of them.
169 */
170 STATIC int
171 xfs_parseargs(
172 struct xfs_mount *mp,
173 char *options,
174 char **mtpt)
175 {
176 struct super_block *sb = mp->m_super;
177 char *this_char, *value, *eov;
178 int dsunit = 0;
179 int dswidth = 0;
180 int iosize = 0;
181 int dmapi_implies_ikeep = 1;
182 __uint8_t iosizelog = 0;
183
184 /*
185 * Copy binary VFS mount flags we are interested in.
186 */
187 if (sb->s_flags & MS_RDONLY)
188 mp->m_flags |= XFS_MOUNT_RDONLY;
189 if (sb->s_flags & MS_DIRSYNC)
190 mp->m_flags |= XFS_MOUNT_DIRSYNC;
191 if (sb->s_flags & MS_SYNCHRONOUS)
192 mp->m_flags |= XFS_MOUNT_WSYNC;
193
194 /*
195 * Set some default flags that could be cleared by the mount option
196 * parsing.
197 */
198 mp->m_flags |= XFS_MOUNT_BARRIER;
199 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
200 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
201
202 /*
203 * These can be overridden by the mount option parsing.
204 */
205 mp->m_logbufs = -1;
206 mp->m_logbsize = -1;
207
208 if (!options)
209 goto done;
210
211 while ((this_char = strsep(&options, ",")) != NULL) {
212 if (!*this_char)
213 continue;
214 if ((value = strchr(this_char, '=')) != NULL)
215 *value++ = 0;
216
217 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
218 if (!value || !*value) {
219 cmn_err(CE_WARN,
220 "XFS: %s option requires an argument",
221 this_char);
222 return EINVAL;
223 }
224 mp->m_logbufs = simple_strtoul(value, &eov, 10);
225 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
226 if (!value || !*value) {
227 cmn_err(CE_WARN,
228 "XFS: %s option requires an argument",
229 this_char);
230 return EINVAL;
231 }
232 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
233 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
234 if (!value || !*value) {
235 cmn_err(CE_WARN,
236 "XFS: %s option requires an argument",
237 this_char);
238 return EINVAL;
239 }
240 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
241 if (!mp->m_logname)
242 return ENOMEM;
243 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
244 if (!value || !*value) {
245 cmn_err(CE_WARN,
246 "XFS: %s option requires an argument",
247 this_char);
248 return EINVAL;
249 }
250 *mtpt = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
251 if (!*mtpt)
252 return ENOMEM;
253 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
254 if (!value || !*value) {
255 cmn_err(CE_WARN,
256 "XFS: %s option requires an argument",
257 this_char);
258 return EINVAL;
259 }
260 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
261 if (!mp->m_rtname)
262 return ENOMEM;
263 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
264 if (!value || !*value) {
265 cmn_err(CE_WARN,
266 "XFS: %s option requires an argument",
267 this_char);
268 return EINVAL;
269 }
270 iosize = simple_strtoul(value, &eov, 10);
271 iosizelog = ffs(iosize) - 1;
272 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
273 if (!value || !*value) {
274 cmn_err(CE_WARN,
275 "XFS: %s option requires an argument",
276 this_char);
277 return EINVAL;
278 }
279 iosize = suffix_strtoul(value, &eov, 10);
280 iosizelog = ffs(iosize) - 1;
281 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
282 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
283 mp->m_flags |= XFS_MOUNT_GRPID;
284 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
285 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
286 mp->m_flags &= ~XFS_MOUNT_GRPID;
287 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
288 mp->m_flags |= XFS_MOUNT_WSYNC;
289 } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
290 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
291 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
292 mp->m_flags |= XFS_MOUNT_NORECOVERY;
293 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
294 mp->m_flags |= XFS_MOUNT_NOALIGN;
295 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
296 mp->m_flags |= XFS_MOUNT_SWALLOC;
297 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
298 if (!value || !*value) {
299 cmn_err(CE_WARN,
300 "XFS: %s option requires an argument",
301 this_char);
302 return EINVAL;
303 }
304 dsunit = simple_strtoul(value, &eov, 10);
305 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
306 if (!value || !*value) {
307 cmn_err(CE_WARN,
308 "XFS: %s option requires an argument",
309 this_char);
310 return EINVAL;
311 }
312 dswidth = simple_strtoul(value, &eov, 10);
313 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
314 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
315 #if !XFS_BIG_INUMS
316 cmn_err(CE_WARN,
317 "XFS: %s option not allowed on this system",
318 this_char);
319 return EINVAL;
320 #endif
321 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
322 mp->m_flags |= XFS_MOUNT_NOUUID;
323 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
324 mp->m_flags |= XFS_MOUNT_BARRIER;
325 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
326 mp->m_flags &= ~XFS_MOUNT_BARRIER;
327 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
328 mp->m_flags |= XFS_MOUNT_IKEEP;
329 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
330 dmapi_implies_ikeep = 0;
331 mp->m_flags &= ~XFS_MOUNT_IKEEP;
332 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
333 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
334 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
335 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
336 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
337 mp->m_flags |= XFS_MOUNT_ATTR2;
338 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
339 mp->m_flags &= ~XFS_MOUNT_ATTR2;
340 mp->m_flags |= XFS_MOUNT_NOATTR2;
341 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
342 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
343 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
344 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
345 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
346 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
347 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
348 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
349 !strcmp(this_char, MNTOPT_UQUOTA) ||
350 !strcmp(this_char, MNTOPT_USRQUOTA)) {
351 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
352 XFS_UQUOTA_ENFD);
353 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
354 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
355 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
356 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
357 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
358 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
359 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
360 XFS_OQUOTA_ENFD);
361 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
362 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
363 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
364 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
365 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
366 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
367 XFS_OQUOTA_ENFD);
368 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
369 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
370 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
371 } else if (!strcmp(this_char, MNTOPT_DMAPI)) {
372 mp->m_flags |= XFS_MOUNT_DMAPI;
373 } else if (!strcmp(this_char, MNTOPT_XDSM)) {
374 mp->m_flags |= XFS_MOUNT_DMAPI;
375 } else if (!strcmp(this_char, MNTOPT_DMI)) {
376 mp->m_flags |= XFS_MOUNT_DMAPI;
377 } else if (!strcmp(this_char, "ihashsize")) {
378 cmn_err(CE_WARN,
379 "XFS: ihashsize no longer used, option is deprecated.");
380 } else if (!strcmp(this_char, "osyncisdsync")) {
381 /* no-op, this is now the default */
382 cmn_err(CE_WARN,
383 "XFS: osyncisdsync is now the default, option is deprecated.");
384 } else if (!strcmp(this_char, "irixsgid")) {
385 cmn_err(CE_WARN,
386 "XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
387 } else {
388 cmn_err(CE_WARN,
389 "XFS: unknown mount option [%s].", this_char);
390 return EINVAL;
391 }
392 }
393
394 /*
395 * no recovery flag requires a read-only mount
396 */
397 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
398 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
399 cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only.");
400 return EINVAL;
401 }
402
403 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
404 cmn_err(CE_WARN,
405 "XFS: sunit and swidth options incompatible with the noalign option");
406 return EINVAL;
407 }
408
409 #ifndef CONFIG_XFS_QUOTA
410 if (XFS_IS_QUOTA_RUNNING(mp)) {
411 cmn_err(CE_WARN,
412 "XFS: quota support not available in this kernel.");
413 return EINVAL;
414 }
415 #endif
416
417 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
418 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
419 cmn_err(CE_WARN,
420 "XFS: cannot mount with both project and group quota");
421 return EINVAL;
422 }
423
424 if ((mp->m_flags & XFS_MOUNT_DMAPI) && (!*mtpt || *mtpt[0] == '\0')) {
425 printk("XFS: %s option needs the mount point option as well\n",
426 MNTOPT_DMAPI);
427 return EINVAL;
428 }
429
430 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
431 cmn_err(CE_WARN,
432 "XFS: sunit and swidth must be specified together");
433 return EINVAL;
434 }
435
436 if (dsunit && (dswidth % dsunit != 0)) {
437 cmn_err(CE_WARN,
438 "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
439 dswidth, dsunit);
440 return EINVAL;
441 }
442
443 /*
444 * Applications using DMI filesystems often expect the
445 * inode generation number to be monotonically increasing.
446 * If we delete inode chunks we break this assumption, so
447 * keep unused inode chunks on disk for DMI filesystems
448 * until we come up with a better solution.
449 * Note that if "ikeep" or "noikeep" mount options are
450 * supplied, then they are honored.
451 */
452 if ((mp->m_flags & XFS_MOUNT_DMAPI) && dmapi_implies_ikeep)
453 mp->m_flags |= XFS_MOUNT_IKEEP;
454
455 done:
456 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
457 /*
458 * At this point the superblock has not been read
459 * in, therefore we do not know the block size.
460 * Before the mount call ends we will convert
461 * these to FSBs.
462 */
463 if (dsunit) {
464 mp->m_dalign = dsunit;
465 mp->m_flags |= XFS_MOUNT_RETERR;
466 }
467
468 if (dswidth)
469 mp->m_swidth = dswidth;
470 }
471
472 if (mp->m_logbufs != -1 &&
473 mp->m_logbufs != 0 &&
474 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
475 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
476 cmn_err(CE_WARN,
477 "XFS: invalid logbufs value: %d [not %d-%d]",
478 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
479 return XFS_ERROR(EINVAL);
480 }
481 if (mp->m_logbsize != -1 &&
482 mp->m_logbsize != 0 &&
483 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
484 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
485 !is_power_of_2(mp->m_logbsize))) {
486 cmn_err(CE_WARN,
487 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
488 mp->m_logbsize);
489 return XFS_ERROR(EINVAL);
490 }
491
492 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
493 if (!mp->m_fsname)
494 return ENOMEM;
495 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
496
497 if (iosizelog) {
498 if (iosizelog > XFS_MAX_IO_LOG ||
499 iosizelog < XFS_MIN_IO_LOG) {
500 cmn_err(CE_WARN,
501 "XFS: invalid log iosize: %d [not %d-%d]",
502 iosizelog, XFS_MIN_IO_LOG,
503 XFS_MAX_IO_LOG);
504 return XFS_ERROR(EINVAL);
505 }
506
507 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
508 mp->m_readio_log = iosizelog;
509 mp->m_writeio_log = iosizelog;
510 }
511
512 return 0;
513 }
514
515 struct proc_xfs_info {
516 int flag;
517 char *str;
518 };
519
520 STATIC int
521 xfs_showargs(
522 struct xfs_mount *mp,
523 struct seq_file *m)
524 {
525 static struct proc_xfs_info xfs_info_set[] = {
526 /* the few simple ones we can get from the mount struct */
527 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
528 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
529 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
530 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
531 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
532 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
533 { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
534 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
535 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
536 { XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI },
537 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
538 { 0, NULL }
539 };
540 static struct proc_xfs_info xfs_info_unset[] = {
541 /* the few simple ones we can get from the mount struct */
542 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
543 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
544 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
545 { 0, NULL }
546 };
547 struct proc_xfs_info *xfs_infop;
548
549 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
550 if (mp->m_flags & xfs_infop->flag)
551 seq_puts(m, xfs_infop->str);
552 }
553 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
554 if (!(mp->m_flags & xfs_infop->flag))
555 seq_puts(m, xfs_infop->str);
556 }
557
558 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
559 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
560 (int)(1 << mp->m_writeio_log) >> 10);
561
562 if (mp->m_logbufs > 0)
563 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
564 if (mp->m_logbsize > 0)
565 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
566
567 if (mp->m_logname)
568 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
569 if (mp->m_rtname)
570 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
571
572 if (mp->m_dalign > 0)
573 seq_printf(m, "," MNTOPT_SUNIT "=%d",
574 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
575 if (mp->m_swidth > 0)
576 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
577 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
578
579 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
580 seq_puts(m, "," MNTOPT_USRQUOTA);
581 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
582 seq_puts(m, "," MNTOPT_UQUOTANOENF);
583
584 /* Either project or group quotas can be active, not both */
585
586 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
587 if (mp->m_qflags & XFS_OQUOTA_ENFD)
588 seq_puts(m, "," MNTOPT_PRJQUOTA);
589 else
590 seq_puts(m, "," MNTOPT_PQUOTANOENF);
591 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
592 if (mp->m_qflags & XFS_OQUOTA_ENFD)
593 seq_puts(m, "," MNTOPT_GRPQUOTA);
594 else
595 seq_puts(m, "," MNTOPT_GQUOTANOENF);
596 }
597
598 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
599 seq_puts(m, "," MNTOPT_NOQUOTA);
600
601 return 0;
602 }
603 __uint64_t
604 xfs_max_file_offset(
605 unsigned int blockshift)
606 {
607 unsigned int pagefactor = 1;
608 unsigned int bitshift = BITS_PER_LONG - 1;
609
610 /* Figure out maximum filesize, on Linux this can depend on
611 * the filesystem blocksize (on 32 bit platforms).
612 * __block_prepare_write does this in an [unsigned] long...
613 * page->index << (PAGE_CACHE_SHIFT - bbits)
614 * So, for page sized blocks (4K on 32 bit platforms),
615 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
616 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
617 * but for smaller blocksizes it is less (bbits = log2 bsize).
618 * Note1: get_block_t takes a long (implicit cast from above)
619 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
620 * can optionally convert the [unsigned] long from above into
621 * an [unsigned] long long.
622 */
623
624 #if BITS_PER_LONG == 32
625 # if defined(CONFIG_LBDAF)
626 ASSERT(sizeof(sector_t) == 8);
627 pagefactor = PAGE_CACHE_SIZE;
628 bitshift = BITS_PER_LONG;
629 # else
630 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
631 # endif
632 #endif
633
634 return (((__uint64_t)pagefactor) << bitshift) - 1;
635 }
636
637 STATIC int
638 xfs_blkdev_get(
639 xfs_mount_t *mp,
640 const char *name,
641 struct block_device **bdevp)
642 {
643 int error = 0;
644
645 *bdevp = open_bdev_exclusive(name, FMODE_READ|FMODE_WRITE, mp);
646 if (IS_ERR(*bdevp)) {
647 error = PTR_ERR(*bdevp);
648 printk("XFS: Invalid device [%s], error=%d\n", name, error);
649 }
650
651 return -error;
652 }
653
654 STATIC void
655 xfs_blkdev_put(
656 struct block_device *bdev)
657 {
658 if (bdev)
659 close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE);
660 }
661
662 /*
663 * Try to write out the superblock using barriers.
664 */
665 STATIC int
666 xfs_barrier_test(
667 xfs_mount_t *mp)
668 {
669 xfs_buf_t *sbp = xfs_getsb(mp, 0);
670 int error;
671
672 XFS_BUF_UNDONE(sbp);
673 XFS_BUF_UNREAD(sbp);
674 XFS_BUF_UNDELAYWRITE(sbp);
675 XFS_BUF_WRITE(sbp);
676 XFS_BUF_UNASYNC(sbp);
677 XFS_BUF_ORDERED(sbp);
678
679 xfsbdstrat(mp, sbp);
680 error = xfs_iowait(sbp);
681
682 /*
683 * Clear all the flags we set and possible error state in the
684 * buffer. We only did the write to try out whether barriers
685 * worked and shouldn't leave any traces in the superblock
686 * buffer.
687 */
688 XFS_BUF_DONE(sbp);
689 XFS_BUF_ERROR(sbp, 0);
690 XFS_BUF_UNORDERED(sbp);
691
692 xfs_buf_relse(sbp);
693 return error;
694 }
695
696 STATIC void
697 xfs_mountfs_check_barriers(xfs_mount_t *mp)
698 {
699 int error;
700
701 if (mp->m_logdev_targp != mp->m_ddev_targp) {
702 xfs_fs_cmn_err(CE_NOTE, mp,
703 "Disabling barriers, not supported with external log device");
704 mp->m_flags &= ~XFS_MOUNT_BARRIER;
705 return;
706 }
707
708 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
709 xfs_fs_cmn_err(CE_NOTE, mp,
710 "Disabling barriers, underlying device is readonly");
711 mp->m_flags &= ~XFS_MOUNT_BARRIER;
712 return;
713 }
714
715 error = xfs_barrier_test(mp);
716 if (error) {
717 xfs_fs_cmn_err(CE_NOTE, mp,
718 "Disabling barriers, trial barrier write failed");
719 mp->m_flags &= ~XFS_MOUNT_BARRIER;
720 return;
721 }
722 }
723
724 void
725 xfs_blkdev_issue_flush(
726 xfs_buftarg_t *buftarg)
727 {
728 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL,
729 BLKDEV_IFL_WAIT);
730 }
731
732 STATIC void
733 xfs_close_devices(
734 struct xfs_mount *mp)
735 {
736 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
737 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
738 xfs_free_buftarg(mp, mp->m_logdev_targp);
739 xfs_blkdev_put(logdev);
740 }
741 if (mp->m_rtdev_targp) {
742 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
743 xfs_free_buftarg(mp, mp->m_rtdev_targp);
744 xfs_blkdev_put(rtdev);
745 }
746 xfs_free_buftarg(mp, mp->m_ddev_targp);
747 }
748
749 /*
750 * The file system configurations are:
751 * (1) device (partition) with data and internal log
752 * (2) logical volume with data and log subvolumes.
753 * (3) logical volume with data, log, and realtime subvolumes.
754 *
755 * We only have to handle opening the log and realtime volumes here if
756 * they are present. The data subvolume has already been opened by
757 * get_sb_bdev() and is stored in sb->s_bdev.
758 */
759 STATIC int
760 xfs_open_devices(
761 struct xfs_mount *mp)
762 {
763 struct block_device *ddev = mp->m_super->s_bdev;
764 struct block_device *logdev = NULL, *rtdev = NULL;
765 int error;
766
767 /*
768 * Open real time and log devices - order is important.
769 */
770 if (mp->m_logname) {
771 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
772 if (error)
773 goto out;
774 }
775
776 if (mp->m_rtname) {
777 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
778 if (error)
779 goto out_close_logdev;
780
781 if (rtdev == ddev || rtdev == logdev) {
782 cmn_err(CE_WARN,
783 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
784 error = EINVAL;
785 goto out_close_rtdev;
786 }
787 }
788
789 /*
790 * Setup xfs_mount buffer target pointers
791 */
792 error = ENOMEM;
793 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0, mp->m_fsname);
794 if (!mp->m_ddev_targp)
795 goto out_close_rtdev;
796
797 if (rtdev) {
798 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1, mp->m_fsname);
799 if (!mp->m_rtdev_targp)
800 goto out_free_ddev_targ;
801 }
802
803 if (logdev && logdev != ddev) {
804 mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1, mp->m_fsname);
805 if (!mp->m_logdev_targp)
806 goto out_free_rtdev_targ;
807 } else {
808 mp->m_logdev_targp = mp->m_ddev_targp;
809 }
810
811 return 0;
812
813 out_free_rtdev_targ:
814 if (mp->m_rtdev_targp)
815 xfs_free_buftarg(mp, mp->m_rtdev_targp);
816 out_free_ddev_targ:
817 xfs_free_buftarg(mp, mp->m_ddev_targp);
818 out_close_rtdev:
819 if (rtdev)
820 xfs_blkdev_put(rtdev);
821 out_close_logdev:
822 if (logdev && logdev != ddev)
823 xfs_blkdev_put(logdev);
824 out:
825 return error;
826 }
827
828 /*
829 * Setup xfs_mount buffer target pointers based on superblock
830 */
831 STATIC int
832 xfs_setup_devices(
833 struct xfs_mount *mp)
834 {
835 int error;
836
837 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
838 mp->m_sb.sb_sectsize);
839 if (error)
840 return error;
841
842 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
843 unsigned int log_sector_size = BBSIZE;
844
845 if (xfs_sb_version_hassector(&mp->m_sb))
846 log_sector_size = mp->m_sb.sb_logsectsize;
847 error = xfs_setsize_buftarg(mp->m_logdev_targp,
848 mp->m_sb.sb_blocksize,
849 log_sector_size);
850 if (error)
851 return error;
852 }
853 if (mp->m_rtdev_targp) {
854 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
855 mp->m_sb.sb_blocksize,
856 mp->m_sb.sb_sectsize);
857 if (error)
858 return error;
859 }
860
861 return 0;
862 }
863
864 /*
865 * XFS AIL push thread support
866 */
867 void
868 xfsaild_wakeup(
869 struct xfs_ail *ailp,
870 xfs_lsn_t threshold_lsn)
871 {
872 ailp->xa_target = threshold_lsn;
873 wake_up_process(ailp->xa_task);
874 }
875
876 STATIC int
877 xfsaild(
878 void *data)
879 {
880 struct xfs_ail *ailp = data;
881 xfs_lsn_t last_pushed_lsn = 0;
882 long tout = 0; /* milliseconds */
883
884 while (!kthread_should_stop()) {
885 schedule_timeout_interruptible(tout ?
886 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
887
888 /* swsusp */
889 try_to_freeze();
890
891 ASSERT(ailp->xa_mount->m_log);
892 if (XFS_FORCED_SHUTDOWN(ailp->xa_mount))
893 continue;
894
895 tout = xfsaild_push(ailp, &last_pushed_lsn);
896 }
897
898 return 0;
899 } /* xfsaild */
900
901 int
902 xfsaild_start(
903 struct xfs_ail *ailp)
904 {
905 ailp->xa_target = 0;
906 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
907 ailp->xa_mount->m_fsname);
908 if (IS_ERR(ailp->xa_task))
909 return -PTR_ERR(ailp->xa_task);
910 return 0;
911 }
912
913 void
914 xfsaild_stop(
915 struct xfs_ail *ailp)
916 {
917 kthread_stop(ailp->xa_task);
918 }
919
920
921 /* Catch misguided souls that try to use this interface on XFS */
922 STATIC struct inode *
923 xfs_fs_alloc_inode(
924 struct super_block *sb)
925 {
926 BUG();
927 return NULL;
928 }
929
930 /*
931 * Now that the generic code is guaranteed not to be accessing
932 * the linux inode, we can reclaim the inode.
933 */
934 STATIC void
935 xfs_fs_destroy_inode(
936 struct inode *inode)
937 {
938 struct xfs_inode *ip = XFS_I(inode);
939
940 xfs_itrace_entry(ip);
941
942 XFS_STATS_INC(vn_reclaim);
943
944 /* bad inode, get out here ASAP */
945 if (is_bad_inode(inode))
946 goto out_reclaim;
947
948 xfs_ioend_wait(ip);
949
950 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
951
952 /*
953 * We should never get here with one of the reclaim flags already set.
954 */
955 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
956 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
957
958 /*
959 * We always use background reclaim here because even if the
960 * inode is clean, it still may be under IO and hence we have
961 * to take the flush lock. The background reclaim path handles
962 * this more efficiently than we can here, so simply let background
963 * reclaim tear down all inodes.
964 */
965 out_reclaim:
966 xfs_inode_set_reclaim_tag(ip);
967 }
968
969 /*
970 * Slab object creation initialisation for the XFS inode.
971 * This covers only the idempotent fields in the XFS inode;
972 * all other fields need to be initialised on allocation
973 * from the slab. This avoids the need to repeatedly intialise
974 * fields in the xfs inode that left in the initialise state
975 * when freeing the inode.
976 */
977 STATIC void
978 xfs_fs_inode_init_once(
979 void *inode)
980 {
981 struct xfs_inode *ip = inode;
982
983 memset(ip, 0, sizeof(struct xfs_inode));
984
985 /* vfs inode */
986 inode_init_once(VFS_I(ip));
987
988 /* xfs inode */
989 atomic_set(&ip->i_iocount, 0);
990 atomic_set(&ip->i_pincount, 0);
991 spin_lock_init(&ip->i_flags_lock);
992 init_waitqueue_head(&ip->i_ipin_wait);
993 /*
994 * Because we want to use a counting completion, complete
995 * the flush completion once to allow a single access to
996 * the flush completion without blocking.
997 */
998 init_completion(&ip->i_flush);
999 complete(&ip->i_flush);
1000
1001 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1002 "xfsino", ip->i_ino);
1003 }
1004
1005 /*
1006 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
1007 * we catch unlogged VFS level updates to the inode. Care must be taken
1008 * here - the transaction code calls mark_inode_dirty_sync() to mark the
1009 * VFS inode dirty in a transaction and clears the i_update_core field;
1010 * it must clear the field after calling mark_inode_dirty_sync() to
1011 * correctly indicate that the dirty state has been propagated into the
1012 * inode log item.
1013 *
1014 * We need the barrier() to maintain correct ordering between unlogged
1015 * updates and the transaction commit code that clears the i_update_core
1016 * field. This requires all updates to be completed before marking the
1017 * inode dirty.
1018 */
1019 STATIC void
1020 xfs_fs_dirty_inode(
1021 struct inode *inode)
1022 {
1023 barrier();
1024 XFS_I(inode)->i_update_core = 1;
1025 }
1026
1027 STATIC int
1028 xfs_log_inode(
1029 struct xfs_inode *ip)
1030 {
1031 struct xfs_mount *mp = ip->i_mount;
1032 struct xfs_trans *tp;
1033 int error;
1034
1035 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1036 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1037 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
1038
1039 if (error) {
1040 xfs_trans_cancel(tp, 0);
1041 /* we need to return with the lock hold shared */
1042 xfs_ilock(ip, XFS_ILOCK_SHARED);
1043 return error;
1044 }
1045
1046 xfs_ilock(ip, XFS_ILOCK_EXCL);
1047
1048 /*
1049 * Note - it's possible that we might have pushed ourselves out of the
1050 * way during trans_reserve which would flush the inode. But there's
1051 * no guarantee that the inode buffer has actually gone out yet (it's
1052 * delwri). Plus the buffer could be pinned anyway if it's part of
1053 * an inode in another recent transaction. So we play it safe and
1054 * fire off the transaction anyway.
1055 */
1056 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1057 xfs_trans_ihold(tp, ip);
1058 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1059 xfs_trans_set_sync(tp);
1060 error = xfs_trans_commit(tp, 0);
1061 xfs_ilock_demote(ip, XFS_ILOCK_EXCL);
1062
1063 return error;
1064 }
1065
1066 STATIC int
1067 xfs_fs_write_inode(
1068 struct inode *inode,
1069 struct writeback_control *wbc)
1070 {
1071 struct xfs_inode *ip = XFS_I(inode);
1072 struct xfs_mount *mp = ip->i_mount;
1073 int error = EAGAIN;
1074
1075 xfs_itrace_entry(ip);
1076
1077 if (XFS_FORCED_SHUTDOWN(mp))
1078 return XFS_ERROR(EIO);
1079
1080 if (wbc->sync_mode == WB_SYNC_ALL) {
1081 /*
1082 * Make sure the inode has hit stable storage. By using the
1083 * log and the fsync transactions we reduce the IOs we have
1084 * to do here from two (log and inode) to just the log.
1085 *
1086 * Note: We still need to do a delwri write of the inode after
1087 * this to flush it to the backing buffer so that bulkstat
1088 * works properly if this is the first time the inode has been
1089 * written. Because we hold the ilock atomically over the
1090 * transaction commit and the inode flush we are guaranteed
1091 * that the inode is not pinned when it returns. If the flush
1092 * lock is already held, then the inode has already been
1093 * flushed once and we don't need to flush it again. Hence
1094 * the code will only flush the inode if it isn't already
1095 * being flushed.
1096 */
1097 xfs_ioend_wait(ip);
1098 xfs_ilock(ip, XFS_ILOCK_SHARED);
1099 if (ip->i_update_core) {
1100 error = xfs_log_inode(ip);
1101 if (error)
1102 goto out_unlock;
1103 }
1104 } else {
1105 /*
1106 * We make this non-blocking if the inode is contended, return
1107 * EAGAIN to indicate to the caller that they did not succeed.
1108 * This prevents the flush path from blocking on inodes inside
1109 * another operation right now, they get caught later by xfs_sync.
1110 */
1111 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1112 goto out;
1113 }
1114
1115 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
1116 goto out_unlock;
1117
1118 /*
1119 * Now we have the flush lock and the inode is not pinned, we can check
1120 * if the inode is really clean as we know that there are no pending
1121 * transaction completions, it is not waiting on the delayed write
1122 * queue and there is no IO in progress.
1123 */
1124 if (xfs_inode_clean(ip)) {
1125 xfs_ifunlock(ip);
1126 error = 0;
1127 goto out_unlock;
1128 }
1129 error = xfs_iflush(ip, 0);
1130
1131 out_unlock:
1132 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1133 out:
1134 /*
1135 * if we failed to write out the inode then mark
1136 * it dirty again so we'll try again later.
1137 */
1138 if (error)
1139 xfs_mark_inode_dirty_sync(ip);
1140 return -error;
1141 }
1142
1143 STATIC void
1144 xfs_fs_clear_inode(
1145 struct inode *inode)
1146 {
1147 xfs_inode_t *ip = XFS_I(inode);
1148
1149 xfs_itrace_entry(ip);
1150 XFS_STATS_INC(vn_rele);
1151 XFS_STATS_INC(vn_remove);
1152 XFS_STATS_DEC(vn_active);
1153
1154 /*
1155 * The iolock is used by the file system to coordinate reads,
1156 * writes, and block truncates. Up to this point the lock
1157 * protected concurrent accesses by users of the inode. But
1158 * from here forward we're doing some final processing of the
1159 * inode because we're done with it, and although we reuse the
1160 * iolock for protection it is really a distinct lock class
1161 * (in the lockdep sense) from before. To keep lockdep happy
1162 * (and basically indicate what we are doing), we explicitly
1163 * re-init the iolock here.
1164 */
1165 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
1166 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
1167
1168 xfs_inactive(ip);
1169 }
1170
1171 STATIC void
1172 xfs_free_fsname(
1173 struct xfs_mount *mp)
1174 {
1175 kfree(mp->m_fsname);
1176 kfree(mp->m_rtname);
1177 kfree(mp->m_logname);
1178 }
1179
1180 STATIC void
1181 xfs_fs_put_super(
1182 struct super_block *sb)
1183 {
1184 struct xfs_mount *mp = XFS_M(sb);
1185
1186 xfs_syncd_stop(mp);
1187
1188 if (!(sb->s_flags & MS_RDONLY)) {
1189 /*
1190 * XXX(hch): this should be SYNC_WAIT.
1191 *
1192 * Or more likely not needed at all because the VFS is already
1193 * calling ->sync_fs after shutting down all filestem
1194 * operations and just before calling ->put_super.
1195 */
1196 xfs_sync_data(mp, 0);
1197 xfs_sync_attr(mp, 0);
1198 }
1199
1200 XFS_SEND_PREUNMOUNT(mp);
1201
1202 /*
1203 * Blow away any referenced inode in the filestreams cache.
1204 * This can and will cause log traffic as inodes go inactive
1205 * here.
1206 */
1207 xfs_filestream_unmount(mp);
1208
1209 XFS_bflush(mp->m_ddev_targp);
1210
1211 XFS_SEND_UNMOUNT(mp);
1212
1213 xfs_unmountfs(mp);
1214 xfs_freesb(mp);
1215 xfs_inode_shrinker_unregister(mp);
1216 xfs_icsb_destroy_counters(mp);
1217 xfs_close_devices(mp);
1218 xfs_dmops_put(mp);
1219 xfs_free_fsname(mp);
1220 kfree(mp);
1221 }
1222
1223 STATIC int
1224 xfs_fs_sync_fs(
1225 struct super_block *sb,
1226 int wait)
1227 {
1228 struct xfs_mount *mp = XFS_M(sb);
1229 int error;
1230
1231 /*
1232 * Not much we can do for the first async pass. Writing out the
1233 * superblock would be counter-productive as we are going to redirty
1234 * when writing out other data and metadata (and writing out a single
1235 * block is quite fast anyway).
1236 *
1237 * Try to asynchronously kick off quota syncing at least.
1238 */
1239 if (!wait) {
1240 xfs_qm_sync(mp, SYNC_TRYLOCK);
1241 return 0;
1242 }
1243
1244 error = xfs_quiesce_data(mp);
1245 if (error)
1246 return -error;
1247
1248 if (laptop_mode) {
1249 int prev_sync_seq = mp->m_sync_seq;
1250
1251 /*
1252 * The disk must be active because we're syncing.
1253 * We schedule xfssyncd now (now that the disk is
1254 * active) instead of later (when it might not be).
1255 */
1256 wake_up_process(mp->m_sync_task);
1257 /*
1258 * We have to wait for the sync iteration to complete.
1259 * If we don't, the disk activity caused by the sync
1260 * will come after the sync is completed, and that
1261 * triggers another sync from laptop mode.
1262 */
1263 wait_event(mp->m_wait_single_sync_task,
1264 mp->m_sync_seq != prev_sync_seq);
1265 }
1266
1267 return 0;
1268 }
1269
1270 STATIC int
1271 xfs_fs_statfs(
1272 struct dentry *dentry,
1273 struct kstatfs *statp)
1274 {
1275 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1276 xfs_sb_t *sbp = &mp->m_sb;
1277 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1278 __uint64_t fakeinos, id;
1279 xfs_extlen_t lsize;
1280
1281 statp->f_type = XFS_SB_MAGIC;
1282 statp->f_namelen = MAXNAMELEN - 1;
1283
1284 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1285 statp->f_fsid.val[0] = (u32)id;
1286 statp->f_fsid.val[1] = (u32)(id >> 32);
1287
1288 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1289
1290 spin_lock(&mp->m_sb_lock);
1291 statp->f_bsize = sbp->sb_blocksize;
1292 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1293 statp->f_blocks = sbp->sb_dblocks - lsize;
1294 statp->f_bfree = statp->f_bavail =
1295 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1296 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1297 statp->f_files =
1298 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1299 if (mp->m_maxicount)
1300 statp->f_files = min_t(typeof(statp->f_files),
1301 statp->f_files,
1302 mp->m_maxicount);
1303 statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1304 spin_unlock(&mp->m_sb_lock);
1305
1306 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1307 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1308 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1309 xfs_qm_statvfs(ip, statp);
1310 return 0;
1311 }
1312
1313 STATIC void
1314 xfs_save_resvblks(struct xfs_mount *mp)
1315 {
1316 __uint64_t resblks = 0;
1317
1318 mp->m_resblks_save = mp->m_resblks;
1319 xfs_reserve_blocks(mp, &resblks, NULL);
1320 }
1321
1322 STATIC void
1323 xfs_restore_resvblks(struct xfs_mount *mp)
1324 {
1325 __uint64_t resblks;
1326
1327 if (mp->m_resblks_save) {
1328 resblks = mp->m_resblks_save;
1329 mp->m_resblks_save = 0;
1330 } else
1331 resblks = xfs_default_resblks(mp);
1332
1333 xfs_reserve_blocks(mp, &resblks, NULL);
1334 }
1335
1336 STATIC int
1337 xfs_fs_remount(
1338 struct super_block *sb,
1339 int *flags,
1340 char *options)
1341 {
1342 struct xfs_mount *mp = XFS_M(sb);
1343 substring_t args[MAX_OPT_ARGS];
1344 char *p;
1345 int error;
1346
1347 while ((p = strsep(&options, ",")) != NULL) {
1348 int token;
1349
1350 if (!*p)
1351 continue;
1352
1353 token = match_token(p, tokens, args);
1354 switch (token) {
1355 case Opt_barrier:
1356 mp->m_flags |= XFS_MOUNT_BARRIER;
1357
1358 /*
1359 * Test if barriers are actually working if we can,
1360 * else delay this check until the filesystem is
1361 * marked writeable.
1362 */
1363 if (!(mp->m_flags & XFS_MOUNT_RDONLY))
1364 xfs_mountfs_check_barriers(mp);
1365 break;
1366 case Opt_nobarrier:
1367 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1368 break;
1369 default:
1370 /*
1371 * Logically we would return an error here to prevent
1372 * users from believing they might have changed
1373 * mount options using remount which can't be changed.
1374 *
1375 * But unfortunately mount(8) adds all options from
1376 * mtab and fstab to the mount arguments in some cases
1377 * so we can't blindly reject options, but have to
1378 * check for each specified option if it actually
1379 * differs from the currently set option and only
1380 * reject it if that's the case.
1381 *
1382 * Until that is implemented we return success for
1383 * every remount request, and silently ignore all
1384 * options that we can't actually change.
1385 */
1386 #if 0
1387 printk(KERN_INFO
1388 "XFS: mount option \"%s\" not supported for remount\n", p);
1389 return -EINVAL;
1390 #else
1391 break;
1392 #endif
1393 }
1394 }
1395
1396 /* ro -> rw */
1397 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1398 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1399 if (mp->m_flags & XFS_MOUNT_BARRIER)
1400 xfs_mountfs_check_barriers(mp);
1401
1402 /*
1403 * If this is the first remount to writeable state we
1404 * might have some superblock changes to update.
1405 */
1406 if (mp->m_update_flags) {
1407 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1408 if (error) {
1409 cmn_err(CE_WARN,
1410 "XFS: failed to write sb changes");
1411 return error;
1412 }
1413 mp->m_update_flags = 0;
1414 }
1415
1416 /*
1417 * Fill out the reserve pool if it is empty. Use the stashed
1418 * value if it is non-zero, otherwise go with the default.
1419 */
1420 xfs_restore_resvblks(mp);
1421 }
1422
1423 /* rw -> ro */
1424 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1425 /*
1426 * After we have synced the data but before we sync the
1427 * metadata, we need to free up the reserve block pool so that
1428 * the used block count in the superblock on disk is correct at
1429 * the end of the remount. Stash the current reserve pool size
1430 * so that if we get remounted rw, we can return it to the same
1431 * size.
1432 */
1433
1434 xfs_quiesce_data(mp);
1435 xfs_save_resvblks(mp);
1436 xfs_quiesce_attr(mp);
1437 mp->m_flags |= XFS_MOUNT_RDONLY;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /*
1444 * Second stage of a freeze. The data is already frozen so we only
1445 * need to take care of the metadata. Once that's done write a dummy
1446 * record to dirty the log in case of a crash while frozen.
1447 */
1448 STATIC int
1449 xfs_fs_freeze(
1450 struct super_block *sb)
1451 {
1452 struct xfs_mount *mp = XFS_M(sb);
1453
1454 xfs_save_resvblks(mp);
1455 xfs_quiesce_attr(mp);
1456 return -xfs_fs_log_dummy(mp);
1457 }
1458
1459 STATIC int
1460 xfs_fs_unfreeze(
1461 struct super_block *sb)
1462 {
1463 struct xfs_mount *mp = XFS_M(sb);
1464
1465 xfs_restore_resvblks(mp);
1466 return 0;
1467 }
1468
1469 STATIC int
1470 xfs_fs_show_options(
1471 struct seq_file *m,
1472 struct vfsmount *mnt)
1473 {
1474 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1475 }
1476
1477 /*
1478 * This function fills in xfs_mount_t fields based on mount args.
1479 * Note: the superblock _has_ now been read in.
1480 */
1481 STATIC int
1482 xfs_finish_flags(
1483 struct xfs_mount *mp)
1484 {
1485 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1486
1487 /* Fail a mount where the logbuf is smaller than the log stripe */
1488 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1489 if (mp->m_logbsize <= 0 &&
1490 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1491 mp->m_logbsize = mp->m_sb.sb_logsunit;
1492 } else if (mp->m_logbsize > 0 &&
1493 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1494 cmn_err(CE_WARN,
1495 "XFS: logbuf size must be greater than or equal to log stripe size");
1496 return XFS_ERROR(EINVAL);
1497 }
1498 } else {
1499 /* Fail a mount if the logbuf is larger than 32K */
1500 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1501 cmn_err(CE_WARN,
1502 "XFS: logbuf size for version 1 logs must be 16K or 32K");
1503 return XFS_ERROR(EINVAL);
1504 }
1505 }
1506
1507 /*
1508 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1509 * told by noattr2 to turn it off
1510 */
1511 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1512 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1513 mp->m_flags |= XFS_MOUNT_ATTR2;
1514
1515 /*
1516 * prohibit r/w mounts of read-only filesystems
1517 */
1518 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1519 cmn_err(CE_WARN,
1520 "XFS: cannot mount a read-only filesystem as read-write");
1521 return XFS_ERROR(EROFS);
1522 }
1523
1524 return 0;
1525 }
1526
1527 STATIC int
1528 xfs_fs_fill_super(
1529 struct super_block *sb,
1530 void *data,
1531 int silent)
1532 {
1533 struct inode *root;
1534 struct xfs_mount *mp = NULL;
1535 int flags = 0, error = ENOMEM;
1536 char *mtpt = NULL;
1537
1538 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1539 if (!mp)
1540 goto out;
1541
1542 spin_lock_init(&mp->m_sb_lock);
1543 mutex_init(&mp->m_growlock);
1544 atomic_set(&mp->m_active_trans, 0);
1545 INIT_LIST_HEAD(&mp->m_sync_list);
1546 spin_lock_init(&mp->m_sync_lock);
1547 init_waitqueue_head(&mp->m_wait_single_sync_task);
1548
1549 mp->m_super = sb;
1550 sb->s_fs_info = mp;
1551
1552 error = xfs_parseargs(mp, (char *)data, &mtpt);
1553 if (error)
1554 goto out_free_fsname;
1555
1556 sb_min_blocksize(sb, BBSIZE);
1557 sb->s_xattr = xfs_xattr_handlers;
1558 sb->s_export_op = &xfs_export_operations;
1559 #ifdef CONFIG_XFS_QUOTA
1560 sb->s_qcop = &xfs_quotactl_operations;
1561 #endif
1562 sb->s_op = &xfs_super_operations;
1563
1564 error = xfs_dmops_get(mp);
1565 if (error)
1566 goto out_free_fsname;
1567
1568 if (silent)
1569 flags |= XFS_MFSI_QUIET;
1570
1571 error = xfs_open_devices(mp);
1572 if (error)
1573 goto out_put_dmops;
1574
1575 if (xfs_icsb_init_counters(mp))
1576 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
1577
1578 error = xfs_readsb(mp, flags);
1579 if (error)
1580 goto out_destroy_counters;
1581
1582 error = xfs_finish_flags(mp);
1583 if (error)
1584 goto out_free_sb;
1585
1586 error = xfs_setup_devices(mp);
1587 if (error)
1588 goto out_free_sb;
1589
1590 if (mp->m_flags & XFS_MOUNT_BARRIER)
1591 xfs_mountfs_check_barriers(mp);
1592
1593 error = xfs_filestream_mount(mp);
1594 if (error)
1595 goto out_free_sb;
1596
1597 error = xfs_mountfs(mp);
1598 if (error)
1599 goto out_filestream_unmount;
1600
1601 XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, mtpt, mp->m_fsname);
1602
1603 sb->s_magic = XFS_SB_MAGIC;
1604 sb->s_blocksize = mp->m_sb.sb_blocksize;
1605 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1606 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1607 sb->s_time_gran = 1;
1608 set_posix_acl_flag(sb);
1609
1610 root = igrab(VFS_I(mp->m_rootip));
1611 if (!root) {
1612 error = ENOENT;
1613 goto fail_unmount;
1614 }
1615 if (is_bad_inode(root)) {
1616 error = EINVAL;
1617 goto fail_vnrele;
1618 }
1619 sb->s_root = d_alloc_root(root);
1620 if (!sb->s_root) {
1621 error = ENOMEM;
1622 goto fail_vnrele;
1623 }
1624
1625 error = xfs_syncd_init(mp);
1626 if (error)
1627 goto fail_vnrele;
1628
1629 xfs_inode_shrinker_register(mp);
1630
1631 kfree(mtpt);
1632 return 0;
1633
1634 out_filestream_unmount:
1635 xfs_filestream_unmount(mp);
1636 out_free_sb:
1637 xfs_freesb(mp);
1638 out_destroy_counters:
1639 xfs_icsb_destroy_counters(mp);
1640 xfs_close_devices(mp);
1641 out_put_dmops:
1642 xfs_dmops_put(mp);
1643 out_free_fsname:
1644 xfs_free_fsname(mp);
1645 kfree(mtpt);
1646 kfree(mp);
1647 out:
1648 return -error;
1649
1650 fail_vnrele:
1651 if (sb->s_root) {
1652 dput(sb->s_root);
1653 sb->s_root = NULL;
1654 } else {
1655 iput(root);
1656 }
1657
1658 fail_unmount:
1659 /*
1660 * Blow away any referenced inode in the filestreams cache.
1661 * This can and will cause log traffic as inodes go inactive
1662 * here.
1663 */
1664 xfs_filestream_unmount(mp);
1665
1666 XFS_bflush(mp->m_ddev_targp);
1667
1668 xfs_unmountfs(mp);
1669 goto out_free_sb;
1670 }
1671
1672 STATIC int
1673 xfs_fs_get_sb(
1674 struct file_system_type *fs_type,
1675 int flags,
1676 const char *dev_name,
1677 void *data,
1678 struct vfsmount *mnt)
1679 {
1680 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
1681 mnt);
1682 }
1683
1684 static const struct super_operations xfs_super_operations = {
1685 .alloc_inode = xfs_fs_alloc_inode,
1686 .destroy_inode = xfs_fs_destroy_inode,
1687 .dirty_inode = xfs_fs_dirty_inode,
1688 .write_inode = xfs_fs_write_inode,
1689 .clear_inode = xfs_fs_clear_inode,
1690 .put_super = xfs_fs_put_super,
1691 .sync_fs = xfs_fs_sync_fs,
1692 .freeze_fs = xfs_fs_freeze,
1693 .unfreeze_fs = xfs_fs_unfreeze,
1694 .statfs = xfs_fs_statfs,
1695 .remount_fs = xfs_fs_remount,
1696 .show_options = xfs_fs_show_options,
1697 };
1698
1699 static struct file_system_type xfs_fs_type = {
1700 .owner = THIS_MODULE,
1701 .name = "xfs",
1702 .get_sb = xfs_fs_get_sb,
1703 .kill_sb = kill_block_super,
1704 .fs_flags = FS_REQUIRES_DEV,
1705 };
1706
1707 STATIC int __init
1708 xfs_init_zones(void)
1709 {
1710
1711 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1712 if (!xfs_ioend_zone)
1713 goto out;
1714
1715 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1716 xfs_ioend_zone);
1717 if (!xfs_ioend_pool)
1718 goto out_destroy_ioend_zone;
1719
1720 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1721 "xfs_log_ticket");
1722 if (!xfs_log_ticket_zone)
1723 goto out_destroy_ioend_pool;
1724
1725 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1726 "xfs_bmap_free_item");
1727 if (!xfs_bmap_free_item_zone)
1728 goto out_destroy_log_ticket_zone;
1729
1730 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1731 "xfs_btree_cur");
1732 if (!xfs_btree_cur_zone)
1733 goto out_destroy_bmap_free_item_zone;
1734
1735 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1736 "xfs_da_state");
1737 if (!xfs_da_state_zone)
1738 goto out_destroy_btree_cur_zone;
1739
1740 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1741 if (!xfs_dabuf_zone)
1742 goto out_destroy_da_state_zone;
1743
1744 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1745 if (!xfs_ifork_zone)
1746 goto out_destroy_dabuf_zone;
1747
1748 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1749 if (!xfs_trans_zone)
1750 goto out_destroy_ifork_zone;
1751
1752 /*
1753 * The size of the zone allocated buf log item is the maximum
1754 * size possible under XFS. This wastes a little bit of memory,
1755 * but it is much faster.
1756 */
1757 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1758 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
1759 NBWORD) * sizeof(int))), "xfs_buf_item");
1760 if (!xfs_buf_item_zone)
1761 goto out_destroy_trans_zone;
1762
1763 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1764 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1765 sizeof(xfs_extent_t))), "xfs_efd_item");
1766 if (!xfs_efd_zone)
1767 goto out_destroy_buf_item_zone;
1768
1769 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1770 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1771 sizeof(xfs_extent_t))), "xfs_efi_item");
1772 if (!xfs_efi_zone)
1773 goto out_destroy_efd_zone;
1774
1775 xfs_inode_zone =
1776 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1777 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1778 xfs_fs_inode_init_once);
1779 if (!xfs_inode_zone)
1780 goto out_destroy_efi_zone;
1781
1782 xfs_ili_zone =
1783 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1784 KM_ZONE_SPREAD, NULL);
1785 if (!xfs_ili_zone)
1786 goto out_destroy_inode_zone;
1787
1788 return 0;
1789
1790 out_destroy_inode_zone:
1791 kmem_zone_destroy(xfs_inode_zone);
1792 out_destroy_efi_zone:
1793 kmem_zone_destroy(xfs_efi_zone);
1794 out_destroy_efd_zone:
1795 kmem_zone_destroy(xfs_efd_zone);
1796 out_destroy_buf_item_zone:
1797 kmem_zone_destroy(xfs_buf_item_zone);
1798 out_destroy_trans_zone:
1799 kmem_zone_destroy(xfs_trans_zone);
1800 out_destroy_ifork_zone:
1801 kmem_zone_destroy(xfs_ifork_zone);
1802 out_destroy_dabuf_zone:
1803 kmem_zone_destroy(xfs_dabuf_zone);
1804 out_destroy_da_state_zone:
1805 kmem_zone_destroy(xfs_da_state_zone);
1806 out_destroy_btree_cur_zone:
1807 kmem_zone_destroy(xfs_btree_cur_zone);
1808 out_destroy_bmap_free_item_zone:
1809 kmem_zone_destroy(xfs_bmap_free_item_zone);
1810 out_destroy_log_ticket_zone:
1811 kmem_zone_destroy(xfs_log_ticket_zone);
1812 out_destroy_ioend_pool:
1813 mempool_destroy(xfs_ioend_pool);
1814 out_destroy_ioend_zone:
1815 kmem_zone_destroy(xfs_ioend_zone);
1816 out:
1817 return -ENOMEM;
1818 }
1819
1820 STATIC void
1821 xfs_destroy_zones(void)
1822 {
1823 kmem_zone_destroy(xfs_ili_zone);
1824 kmem_zone_destroy(xfs_inode_zone);
1825 kmem_zone_destroy(xfs_efi_zone);
1826 kmem_zone_destroy(xfs_efd_zone);
1827 kmem_zone_destroy(xfs_buf_item_zone);
1828 kmem_zone_destroy(xfs_trans_zone);
1829 kmem_zone_destroy(xfs_ifork_zone);
1830 kmem_zone_destroy(xfs_dabuf_zone);
1831 kmem_zone_destroy(xfs_da_state_zone);
1832 kmem_zone_destroy(xfs_btree_cur_zone);
1833 kmem_zone_destroy(xfs_bmap_free_item_zone);
1834 kmem_zone_destroy(xfs_log_ticket_zone);
1835 mempool_destroy(xfs_ioend_pool);
1836 kmem_zone_destroy(xfs_ioend_zone);
1837
1838 }
1839
1840 STATIC int __init
1841 init_xfs_fs(void)
1842 {
1843 int error;
1844
1845 printk(KERN_INFO XFS_VERSION_STRING " with "
1846 XFS_BUILD_OPTIONS " enabled\n");
1847
1848 xfs_ioend_init();
1849 xfs_dir_startup();
1850
1851 error = xfs_init_zones();
1852 if (error)
1853 goto out;
1854
1855 error = xfs_mru_cache_init();
1856 if (error)
1857 goto out_destroy_zones;
1858
1859 error = xfs_filestream_init();
1860 if (error)
1861 goto out_mru_cache_uninit;
1862
1863 error = xfs_buf_init();
1864 if (error)
1865 goto out_filestream_uninit;
1866
1867 error = xfs_init_procfs();
1868 if (error)
1869 goto out_buf_terminate;
1870
1871 error = xfs_sysctl_register();
1872 if (error)
1873 goto out_cleanup_procfs;
1874
1875 vfs_initquota();
1876 xfs_inode_shrinker_init();
1877
1878 error = register_filesystem(&xfs_fs_type);
1879 if (error)
1880 goto out_sysctl_unregister;
1881 return 0;
1882
1883 out_sysctl_unregister:
1884 xfs_sysctl_unregister();
1885 out_cleanup_procfs:
1886 xfs_cleanup_procfs();
1887 out_buf_terminate:
1888 xfs_buf_terminate();
1889 out_filestream_uninit:
1890 xfs_filestream_uninit();
1891 out_mru_cache_uninit:
1892 xfs_mru_cache_uninit();
1893 out_destroy_zones:
1894 xfs_destroy_zones();
1895 out:
1896 return error;
1897 }
1898
1899 STATIC void __exit
1900 exit_xfs_fs(void)
1901 {
1902 vfs_exitquota();
1903 unregister_filesystem(&xfs_fs_type);
1904 xfs_inode_shrinker_destroy();
1905 xfs_sysctl_unregister();
1906 xfs_cleanup_procfs();
1907 xfs_buf_terminate();
1908 xfs_filestream_uninit();
1909 xfs_mru_cache_uninit();
1910 xfs_destroy_zones();
1911 }
1912
1913 module_init(init_xfs_fs);
1914 module_exit(exit_xfs_fs);
1915
1916 MODULE_AUTHOR("Silicon Graphics, Inc.");
1917 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1918 MODULE_LICENSE("GPL");