]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69 struct super_block *sb,
70 int silent)
71 {
72 struct xfs_mount_args *args;
73
74 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75 args->logbufs = args->logbufsize = -1;
76 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78 /* Copy the already-parsed mount(2) flags we're interested in */
79 if (sb->s_flags & MS_DIRSYNC)
80 args->flags |= XFSMNT_DIRSYNC;
81 if (sb->s_flags & MS_SYNCHRONOUS)
82 args->flags |= XFSMNT_WSYNC;
83 if (silent)
84 args->flags |= XFSMNT_QUIET;
85 args->flags |= XFSMNT_32BITINODES;
86
87 return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92 unsigned int blockshift)
93 {
94 unsigned int pagefactor = 1;
95 unsigned int bitshift = BITS_PER_LONG - 1;
96
97 /* Figure out maximum filesize, on Linux this can depend on
98 * the filesystem blocksize (on 32 bit platforms).
99 * __block_prepare_write does this in an [unsigned] long...
100 * page->index << (PAGE_CACHE_SHIFT - bbits)
101 * So, for page sized blocks (4K on 32 bit platforms),
102 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104 * but for smaller blocksizes it is less (bbits = log2 bsize).
105 * Note1: get_block_t takes a long (implicit cast from above)
106 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107 * can optionally convert the [unsigned] long from above into
108 * an [unsigned] long long.
109 */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113 ASSERT(sizeof(sector_t) == 8);
114 pagefactor = PAGE_CACHE_SIZE;
115 bitshift = BITS_PER_LONG;
116 # else
117 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121 return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126 struct inode *inode)
127 {
128 switch (inode->i_mode & S_IFMT) {
129 case S_IFREG:
130 inode->i_op = &xfs_inode_operations;
131 inode->i_fop = &xfs_file_operations;
132 inode->i_mapping->a_ops = &xfs_address_space_operations;
133 break;
134 case S_IFDIR:
135 inode->i_op = &xfs_dir_inode_operations;
136 inode->i_fop = &xfs_dir_file_operations;
137 break;
138 case S_IFLNK:
139 inode->i_op = &xfs_symlink_inode_operations;
140 if (inode->i_blocks)
141 inode->i_mapping->a_ops = &xfs_address_space_operations;
142 break;
143 default:
144 inode->i_op = &xfs_inode_operations;
145 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146 break;
147 }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152 xfs_mount_t *mp,
153 bhv_vnode_t *vp,
154 xfs_inode_t *ip)
155 {
156 struct inode *inode = vn_to_inode(vp);
157
158 inode->i_mode = ip->i_d.di_mode;
159 inode->i_nlink = ip->i_d.di_nlink;
160 inode->i_uid = ip->i_d.di_uid;
161 inode->i_gid = ip->i_d.di_gid;
162
163 switch (inode->i_mode & S_IFMT) {
164 case S_IFBLK:
165 case S_IFCHR:
166 inode->i_rdev =
167 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168 sysv_minor(ip->i_df.if_u2.if_rdev));
169 break;
170 default:
171 inode->i_rdev = 0;
172 break;
173 }
174
175 inode->i_generation = ip->i_d.di_gen;
176 i_size_write(inode, ip->i_d.di_size);
177 inode->i_blocks =
178 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
180 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
181 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
182 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
183 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
184 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
185 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186 inode->i_flags |= S_IMMUTABLE;
187 else
188 inode->i_flags &= ~S_IMMUTABLE;
189 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190 inode->i_flags |= S_APPEND;
191 else
192 inode->i_flags &= ~S_APPEND;
193 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194 inode->i_flags |= S_SYNC;
195 else
196 inode->i_flags &= ~S_SYNC;
197 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198 inode->i_flags |= S_NOATIME;
199 else
200 inode->i_flags &= ~S_NOATIME;
201 xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206 struct xfs_mount *mp,
207 bhv_vnode_t *vp,
208 struct xfs_inode *ip)
209 {
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!ip->i_vnode) {
213 ip->i_vnode = vp;
214 inode->i_private = ip;
215 }
216
217 /*
218 * We need to set the ops vectors, and unlock the inode, but if
219 * we have been called during the new inode create process, it is
220 * too early to fill in the Linux inode. We will get called a
221 * second time once the inode is properly set up, and then we can
222 * finish our work.
223 */
224 if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225 xfs_revalidate_inode(mp, vp, ip);
226 xfs_set_inodeops(inode);
227
228 xfs_iflags_clear(ip, XFS_INEW);
229 barrier();
230
231 unlock_new_inode(inode);
232 }
233 }
234
235 int
236 xfs_blkdev_get(
237 xfs_mount_t *mp,
238 const char *name,
239 struct block_device **bdevp)
240 {
241 int error = 0;
242
243 *bdevp = open_bdev_excl(name, 0, mp);
244 if (IS_ERR(*bdevp)) {
245 error = PTR_ERR(*bdevp);
246 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247 }
248
249 return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254 struct block_device *bdev)
255 {
256 if (bdev)
257 close_bdev_excl(bdev);
258 }
259
260 /*
261 * Try to write out the superblock using barriers.
262 */
263 STATIC int
264 xfs_barrier_test(
265 xfs_mount_t *mp)
266 {
267 xfs_buf_t *sbp = xfs_getsb(mp, 0);
268 int error;
269
270 XFS_BUF_UNDONE(sbp);
271 XFS_BUF_UNREAD(sbp);
272 XFS_BUF_UNDELAYWRITE(sbp);
273 XFS_BUF_WRITE(sbp);
274 XFS_BUF_UNASYNC(sbp);
275 XFS_BUF_ORDERED(sbp);
276
277 xfsbdstrat(mp, sbp);
278 error = xfs_iowait(sbp);
279
280 /*
281 * Clear all the flags we set and possible error state in the
282 * buffer. We only did the write to try out whether barriers
283 * worked and shouldn't leave any traces in the superblock
284 * buffer.
285 */
286 XFS_BUF_DONE(sbp);
287 XFS_BUF_ERROR(sbp, 0);
288 XFS_BUF_UNORDERED(sbp);
289
290 xfs_buf_relse(sbp);
291 return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297 int error;
298
299 if (mp->m_logdev_targp != mp->m_ddev_targp) {
300 xfs_fs_cmn_err(CE_NOTE, mp,
301 "Disabling barriers, not supported with external log device");
302 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303 return;
304 }
305
306 if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
307 QUEUE_ORDERED_NONE) {
308 xfs_fs_cmn_err(CE_NOTE, mp,
309 "Disabling barriers, not supported by the underlying device");
310 mp->m_flags &= ~XFS_MOUNT_BARRIER;
311 return;
312 }
313
314 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
315 xfs_fs_cmn_err(CE_NOTE, mp,
316 "Disabling barriers, underlying device is readonly");
317 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318 return;
319 }
320
321 error = xfs_barrier_test(mp);
322 if (error) {
323 xfs_fs_cmn_err(CE_NOTE, mp,
324 "Disabling barriers, trial barrier write failed");
325 mp->m_flags &= ~XFS_MOUNT_BARRIER;
326 return;
327 }
328 }
329
330 void
331 xfs_blkdev_issue_flush(
332 xfs_buftarg_t *buftarg)
333 {
334 blkdev_issue_flush(buftarg->bt_bdev, NULL);
335 }
336
337 STATIC struct inode *
338 xfs_fs_alloc_inode(
339 struct super_block *sb)
340 {
341 bhv_vnode_t *vp;
342
343 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
344 if (unlikely(!vp))
345 return NULL;
346 return vn_to_inode(vp);
347 }
348
349 STATIC void
350 xfs_fs_destroy_inode(
351 struct inode *inode)
352 {
353 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
354 }
355
356 STATIC void
357 xfs_fs_inode_init_once(
358 kmem_zone_t *zonep,
359 void *vnode)
360 {
361 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
362 }
363
364 STATIC int
365 xfs_init_zones(void)
366 {
367 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
368 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
369 KM_ZONE_SPREAD,
370 xfs_fs_inode_init_once);
371 if (!xfs_vnode_zone)
372 goto out;
373
374 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
375 if (!xfs_ioend_zone)
376 goto out_destroy_vnode_zone;
377
378 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
379 xfs_ioend_zone);
380 if (!xfs_ioend_pool)
381 goto out_free_ioend_zone;
382 return 0;
383
384 out_free_ioend_zone:
385 kmem_zone_destroy(xfs_ioend_zone);
386 out_destroy_vnode_zone:
387 kmem_zone_destroy(xfs_vnode_zone);
388 out:
389 return -ENOMEM;
390 }
391
392 STATIC void
393 xfs_destroy_zones(void)
394 {
395 mempool_destroy(xfs_ioend_pool);
396 kmem_zone_destroy(xfs_vnode_zone);
397 kmem_zone_destroy(xfs_ioend_zone);
398 }
399
400 /*
401 * Attempt to flush the inode, this will actually fail
402 * if the inode is pinned, but we dirty the inode again
403 * at the point when it is unpinned after a log write,
404 * since this is when the inode itself becomes flushable.
405 */
406 STATIC int
407 xfs_fs_write_inode(
408 struct inode *inode,
409 int sync)
410 {
411 int error = 0, flags = FLUSH_INODE;
412
413 vn_trace_entry(XFS_I(inode), __FUNCTION__,
414 (inst_t *)__return_address);
415 if (sync) {
416 filemap_fdatawait(inode->i_mapping);
417 flags |= FLUSH_SYNC;
418 }
419 error = xfs_inode_flush(XFS_I(inode), flags);
420 /*
421 * if we failed to write out the inode then mark
422 * it dirty again so we'll try again later.
423 */
424 if (error)
425 mark_inode_dirty_sync(inode);
426
427 return -error;
428 }
429
430 STATIC void
431 xfs_fs_clear_inode(
432 struct inode *inode)
433 {
434 xfs_inode_t *ip = XFS_I(inode);
435
436 /*
437 * ip can be null when xfs_iget_core calls xfs_idestroy if we
438 * find an inode with di_mode == 0 but without IGET_CREATE set.
439 */
440 if (ip) {
441 vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
442
443 XFS_STATS_INC(vn_rele);
444 XFS_STATS_INC(vn_remove);
445 XFS_STATS_INC(vn_reclaim);
446 XFS_STATS_DEC(vn_active);
447
448 xfs_inactive(ip);
449 xfs_iflags_clear(ip, XFS_IMODIFIED);
450 if (xfs_reclaim(ip))
451 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
452 }
453
454 ASSERT(XFS_I(inode) == NULL);
455 }
456
457 /*
458 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
459 * Doing this has two advantages:
460 * - It saves on stack space, which is tight in certain situations
461 * - It can be used (with care) as a mechanism to avoid deadlocks.
462 * Flushing while allocating in a full filesystem requires both.
463 */
464 STATIC void
465 xfs_syncd_queue_work(
466 struct xfs_mount *mp,
467 void *data,
468 void (*syncer)(struct xfs_mount *, void *))
469 {
470 struct bhv_vfs_sync_work *work;
471
472 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
473 INIT_LIST_HEAD(&work->w_list);
474 work->w_syncer = syncer;
475 work->w_data = data;
476 work->w_mount = mp;
477 spin_lock(&mp->m_sync_lock);
478 list_add_tail(&work->w_list, &mp->m_sync_list);
479 spin_unlock(&mp->m_sync_lock);
480 wake_up_process(mp->m_sync_task);
481 }
482
483 /*
484 * Flush delayed allocate data, attempting to free up reserved space
485 * from existing allocations. At this point a new allocation attempt
486 * has failed with ENOSPC and we are in the process of scratching our
487 * heads, looking about for more room...
488 */
489 STATIC void
490 xfs_flush_inode_work(
491 struct xfs_mount *mp,
492 void *arg)
493 {
494 struct inode *inode = arg;
495 filemap_flush(inode->i_mapping);
496 iput(inode);
497 }
498
499 void
500 xfs_flush_inode(
501 xfs_inode_t *ip)
502 {
503 struct inode *inode = ip->i_vnode;
504
505 igrab(inode);
506 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
507 delay(msecs_to_jiffies(500));
508 }
509
510 /*
511 * This is the "bigger hammer" version of xfs_flush_inode_work...
512 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
513 */
514 STATIC void
515 xfs_flush_device_work(
516 struct xfs_mount *mp,
517 void *arg)
518 {
519 struct inode *inode = arg;
520 sync_blockdev(mp->m_super->s_bdev);
521 iput(inode);
522 }
523
524 void
525 xfs_flush_device(
526 xfs_inode_t *ip)
527 {
528 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
529
530 igrab(inode);
531 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
532 delay(msecs_to_jiffies(500));
533 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
534 }
535
536 STATIC void
537 xfs_sync_worker(
538 struct xfs_mount *mp,
539 void *unused)
540 {
541 int error;
542
543 if (!(mp->m_flags & XFS_MOUNT_RDONLY))
544 error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
545 SYNC_REFCACHE | SYNC_SUPER);
546 mp->m_sync_seq++;
547 wake_up(&mp->m_wait_single_sync_task);
548 }
549
550 STATIC int
551 xfssyncd(
552 void *arg)
553 {
554 struct xfs_mount *mp = arg;
555 long timeleft;
556 bhv_vfs_sync_work_t *work, *n;
557 LIST_HEAD (tmp);
558
559 set_freezable();
560 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
561 for (;;) {
562 timeleft = schedule_timeout_interruptible(timeleft);
563 /* swsusp */
564 try_to_freeze();
565 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
566 break;
567
568 spin_lock(&mp->m_sync_lock);
569 /*
570 * We can get woken by laptop mode, to do a sync -
571 * that's the (only!) case where the list would be
572 * empty with time remaining.
573 */
574 if (!timeleft || list_empty(&mp->m_sync_list)) {
575 if (!timeleft)
576 timeleft = xfs_syncd_centisecs *
577 msecs_to_jiffies(10);
578 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
579 list_add_tail(&mp->m_sync_work.w_list,
580 &mp->m_sync_list);
581 }
582 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
583 list_move(&work->w_list, &tmp);
584 spin_unlock(&mp->m_sync_lock);
585
586 list_for_each_entry_safe(work, n, &tmp, w_list) {
587 (*work->w_syncer)(mp, work->w_data);
588 list_del(&work->w_list);
589 if (work == &mp->m_sync_work)
590 continue;
591 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
592 }
593 }
594
595 return 0;
596 }
597
598 STATIC void
599 xfs_fs_put_super(
600 struct super_block *sb)
601 {
602 struct xfs_mount *mp = XFS_M(sb);
603 int error;
604
605 kthread_stop(mp->m_sync_task);
606
607 xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
608 error = xfs_unmount(mp, 0, NULL);
609 if (error)
610 printk("XFS: unmount got error=%d\n", error);
611 }
612
613 STATIC void
614 xfs_fs_write_super(
615 struct super_block *sb)
616 {
617 if (!(sb->s_flags & MS_RDONLY))
618 xfs_sync(XFS_M(sb), SYNC_FSDATA);
619 sb->s_dirt = 0;
620 }
621
622 STATIC int
623 xfs_fs_sync_super(
624 struct super_block *sb,
625 int wait)
626 {
627 struct xfs_mount *mp = XFS_M(sb);
628 int error;
629 int flags;
630
631 /*
632 * Treat a sync operation like a freeze. This is to work
633 * around a race in sync_inodes() which works in two phases
634 * - an asynchronous flush, which can write out an inode
635 * without waiting for file size updates to complete, and a
636 * synchronous flush, which wont do anything because the
637 * async flush removed the inode's dirty flag. Also
638 * sync_inodes() will not see any files that just have
639 * outstanding transactions to be flushed because we don't
640 * dirty the Linux inode until after the transaction I/O
641 * completes.
642 */
643 if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
644 /*
645 * First stage of freeze - no more writers will make progress
646 * now we are here, so we flush delwri and delalloc buffers
647 * here, then wait for all I/O to complete. Data is frozen at
648 * that point. Metadata is not frozen, transactions can still
649 * occur here so don't bother flushing the buftarg (i.e
650 * SYNC_QUIESCE) because it'll just get dirty again.
651 */
652 flags = SYNC_DATA_QUIESCE;
653 } else
654 flags = SYNC_FSDATA;
655
656 error = xfs_sync(mp, flags);
657 sb->s_dirt = 0;
658
659 if (unlikely(laptop_mode)) {
660 int prev_sync_seq = mp->m_sync_seq;
661
662 /*
663 * The disk must be active because we're syncing.
664 * We schedule xfssyncd now (now that the disk is
665 * active) instead of later (when it might not be).
666 */
667 wake_up_process(mp->m_sync_task);
668 /*
669 * We have to wait for the sync iteration to complete.
670 * If we don't, the disk activity caused by the sync
671 * will come after the sync is completed, and that
672 * triggers another sync from laptop mode.
673 */
674 wait_event(mp->m_wait_single_sync_task,
675 mp->m_sync_seq != prev_sync_seq);
676 }
677
678 return -error;
679 }
680
681 STATIC int
682 xfs_fs_statfs(
683 struct dentry *dentry,
684 struct kstatfs *statp)
685 {
686 return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
687 vn_from_inode(dentry->d_inode));
688 }
689
690 STATIC int
691 xfs_fs_remount(
692 struct super_block *sb,
693 int *flags,
694 char *options)
695 {
696 struct xfs_mount *mp = XFS_M(sb);
697 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
698 int error;
699
700 error = xfs_parseargs(mp, options, args, 1);
701 if (!error)
702 error = xfs_mntupdate(mp, flags, args);
703 kmem_free(args, sizeof(*args));
704 return -error;
705 }
706
707 STATIC void
708 xfs_fs_lockfs(
709 struct super_block *sb)
710 {
711 xfs_freeze(XFS_M(sb));
712 }
713
714 STATIC int
715 xfs_fs_show_options(
716 struct seq_file *m,
717 struct vfsmount *mnt)
718 {
719 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
720 }
721
722 STATIC int
723 xfs_fs_quotasync(
724 struct super_block *sb,
725 int type)
726 {
727 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
728 }
729
730 STATIC int
731 xfs_fs_getxstate(
732 struct super_block *sb,
733 struct fs_quota_stat *fqs)
734 {
735 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
736 }
737
738 STATIC int
739 xfs_fs_setxstate(
740 struct super_block *sb,
741 unsigned int flags,
742 int op)
743 {
744 return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
745 }
746
747 STATIC int
748 xfs_fs_getxquota(
749 struct super_block *sb,
750 int type,
751 qid_t id,
752 struct fs_disk_quota *fdq)
753 {
754 return -XFS_QM_QUOTACTL(XFS_M(sb),
755 (type == USRQUOTA) ? Q_XGETQUOTA :
756 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
757 Q_XGETPQUOTA), id, (caddr_t)fdq);
758 }
759
760 STATIC int
761 xfs_fs_setxquota(
762 struct super_block *sb,
763 int type,
764 qid_t id,
765 struct fs_disk_quota *fdq)
766 {
767 return -XFS_QM_QUOTACTL(XFS_M(sb),
768 (type == USRQUOTA) ? Q_XSETQLIM :
769 ((type == GRPQUOTA) ? Q_XSETGQLIM :
770 Q_XSETPQLIM), id, (caddr_t)fdq);
771 }
772
773 STATIC int
774 xfs_fs_fill_super(
775 struct super_block *sb,
776 void *data,
777 int silent)
778 {
779 struct inode *rootvp;
780 struct xfs_mount *mp = NULL;
781 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
782 struct kstatfs statvfs;
783 int error;
784
785 mp = xfs_mount_init();
786
787 INIT_LIST_HEAD(&mp->m_sync_list);
788 spin_lock_init(&mp->m_sync_lock);
789 init_waitqueue_head(&mp->m_wait_single_sync_task);
790
791 mp->m_super = sb;
792 sb->s_fs_info = mp;
793
794 if (sb->s_flags & MS_RDONLY)
795 mp->m_flags |= XFS_MOUNT_RDONLY;
796
797 error = xfs_parseargs(mp, (char *)data, args, 0);
798 if (error)
799 goto fail_vfsop;
800
801 sb_min_blocksize(sb, BBSIZE);
802 sb->s_export_op = &xfs_export_operations;
803 sb->s_qcop = &xfs_quotactl_operations;
804 sb->s_op = &xfs_super_operations;
805
806 error = xfs_mount(mp, args, NULL);
807 if (error)
808 goto fail_vfsop;
809
810 error = xfs_statvfs(mp, &statvfs, NULL);
811 if (error)
812 goto fail_unmount;
813
814 sb->s_dirt = 1;
815 sb->s_magic = statvfs.f_type;
816 sb->s_blocksize = statvfs.f_bsize;
817 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
818 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
819 sb->s_time_gran = 1;
820 set_posix_acl_flag(sb);
821
822 error = xfs_root(mp, &rootvp);
823 if (error)
824 goto fail_unmount;
825
826 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
827 if (!sb->s_root) {
828 error = ENOMEM;
829 goto fail_vnrele;
830 }
831 if (is_bad_inode(sb->s_root->d_inode)) {
832 error = EINVAL;
833 goto fail_vnrele;
834 }
835
836 mp->m_sync_work.w_syncer = xfs_sync_worker;
837 mp->m_sync_work.w_mount = mp;
838 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
839 if (IS_ERR(mp->m_sync_task)) {
840 error = -PTR_ERR(mp->m_sync_task);
841 goto fail_vnrele;
842 }
843
844 vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
845 (inst_t *)__return_address);
846
847 kmem_free(args, sizeof(*args));
848 return 0;
849
850 fail_vnrele:
851 if (sb->s_root) {
852 dput(sb->s_root);
853 sb->s_root = NULL;
854 } else {
855 VN_RELE(rootvp);
856 }
857
858 fail_unmount:
859 xfs_unmount(mp, 0, NULL);
860
861 fail_vfsop:
862 kmem_free(args, sizeof(*args));
863 return -error;
864 }
865
866 STATIC int
867 xfs_fs_get_sb(
868 struct file_system_type *fs_type,
869 int flags,
870 const char *dev_name,
871 void *data,
872 struct vfsmount *mnt)
873 {
874 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
875 mnt);
876 }
877
878 static struct super_operations xfs_super_operations = {
879 .alloc_inode = xfs_fs_alloc_inode,
880 .destroy_inode = xfs_fs_destroy_inode,
881 .write_inode = xfs_fs_write_inode,
882 .clear_inode = xfs_fs_clear_inode,
883 .put_super = xfs_fs_put_super,
884 .write_super = xfs_fs_write_super,
885 .sync_fs = xfs_fs_sync_super,
886 .write_super_lockfs = xfs_fs_lockfs,
887 .statfs = xfs_fs_statfs,
888 .remount_fs = xfs_fs_remount,
889 .show_options = xfs_fs_show_options,
890 };
891
892 static struct quotactl_ops xfs_quotactl_operations = {
893 .quota_sync = xfs_fs_quotasync,
894 .get_xstate = xfs_fs_getxstate,
895 .set_xstate = xfs_fs_setxstate,
896 .get_xquota = xfs_fs_getxquota,
897 .set_xquota = xfs_fs_setxquota,
898 };
899
900 static struct file_system_type xfs_fs_type = {
901 .owner = THIS_MODULE,
902 .name = "xfs",
903 .get_sb = xfs_fs_get_sb,
904 .kill_sb = kill_block_super,
905 .fs_flags = FS_REQUIRES_DEV,
906 };
907
908
909 STATIC int __init
910 init_xfs_fs( void )
911 {
912 int error;
913 static char message[] __initdata = KERN_INFO \
914 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
915
916 printk(message);
917
918 ktrace_init(64);
919
920 error = xfs_init_zones();
921 if (error < 0)
922 goto undo_zones;
923
924 error = xfs_buf_init();
925 if (error < 0)
926 goto undo_buffers;
927
928 vn_init();
929 xfs_init();
930 uuid_init();
931 vfs_initquota();
932
933 error = register_filesystem(&xfs_fs_type);
934 if (error)
935 goto undo_register;
936 return 0;
937
938 undo_register:
939 xfs_buf_terminate();
940
941 undo_buffers:
942 xfs_destroy_zones();
943
944 undo_zones:
945 return error;
946 }
947
948 STATIC void __exit
949 exit_xfs_fs( void )
950 {
951 vfs_exitquota();
952 unregister_filesystem(&xfs_fs_type);
953 xfs_cleanup();
954 xfs_buf_terminate();
955 xfs_destroy_zones();
956 ktrace_uninit();
957 }
958
959 module_init(init_xfs_fs);
960 module_exit(exit_xfs_fs);
961
962 MODULE_AUTHOR("Silicon Graphics, Inc.");
963 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
964 MODULE_LICENSE("GPL");