]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_aops.c
block: Abstract out bvec iterator
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_iomap.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_dinode.h"
37 #include <linux/aio.h>
38 #include <linux/gfp.h>
39 #include <linux/mpage.h>
40 #include <linux/pagevec.h>
41 #include <linux/writeback.h>
42
43 void
44 xfs_count_page_state(
45 struct page *page,
46 int *delalloc,
47 int *unwritten)
48 {
49 struct buffer_head *bh, *head;
50
51 *delalloc = *unwritten = 0;
52
53 bh = head = page_buffers(page);
54 do {
55 if (buffer_unwritten(bh))
56 (*unwritten) = 1;
57 else if (buffer_delay(bh))
58 (*delalloc) = 1;
59 } while ((bh = bh->b_this_page) != head);
60 }
61
62 STATIC struct block_device *
63 xfs_find_bdev_for_inode(
64 struct inode *inode)
65 {
66 struct xfs_inode *ip = XFS_I(inode);
67 struct xfs_mount *mp = ip->i_mount;
68
69 if (XFS_IS_REALTIME_INODE(ip))
70 return mp->m_rtdev_targp->bt_bdev;
71 else
72 return mp->m_ddev_targp->bt_bdev;
73 }
74
75 /*
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
80 */
81 STATIC void
82 xfs_destroy_ioend(
83 xfs_ioend_t *ioend)
84 {
85 struct buffer_head *bh, *next;
86
87 for (bh = ioend->io_buffer_head; bh; bh = next) {
88 next = bh->b_private;
89 bh->b_end_io(bh, !ioend->io_error);
90 }
91
92 mempool_free(ioend, xfs_ioend_pool);
93 }
94
95 /*
96 * Fast and loose check if this write could update the on-disk inode size.
97 */
98 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99 {
100 return ioend->io_offset + ioend->io_size >
101 XFS_I(ioend->io_inode)->i_d.di_size;
102 }
103
104 STATIC int
105 xfs_setfilesize_trans_alloc(
106 struct xfs_ioend *ioend)
107 {
108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
109 struct xfs_trans *tp;
110 int error;
111
112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113
114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
115 if (error) {
116 xfs_trans_cancel(tp, 0);
117 return error;
118 }
119
120 ioend->io_append_trans = tp;
121
122 /*
123 * We may pass freeze protection with a transaction. So tell lockdep
124 * we released it.
125 */
126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
127 1, _THIS_IP_);
128 /*
129 * We hand off the transaction to the completion thread now, so
130 * clear the flag here.
131 */
132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
133 return 0;
134 }
135
136 /*
137 * Update on-disk file size now that data has been written to disk.
138 */
139 STATIC int
140 xfs_setfilesize(
141 struct xfs_ioend *ioend)
142 {
143 struct xfs_inode *ip = XFS_I(ioend->io_inode);
144 struct xfs_trans *tp = ioend->io_append_trans;
145 xfs_fsize_t isize;
146
147 /*
148 * The transaction may have been allocated in the I/O submission thread,
149 * thus we need to mark ourselves as beeing in a transaction manually.
150 * Similarly for freeze protection.
151 */
152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
154 0, 1, _THIS_IP_);
155
156 xfs_ilock(ip, XFS_ILOCK_EXCL);
157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
158 if (!isize) {
159 xfs_iunlock(ip, XFS_ILOCK_EXCL);
160 xfs_trans_cancel(tp, 0);
161 return 0;
162 }
163
164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
165
166 ip->i_d.di_size = isize;
167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169
170 return xfs_trans_commit(tp, 0);
171 }
172
173 /*
174 * Schedule IO completion handling on the final put of an ioend.
175 *
176 * If there is no work to do we might as well call it a day and free the
177 * ioend right now.
178 */
179 STATIC void
180 xfs_finish_ioend(
181 struct xfs_ioend *ioend)
182 {
183 if (atomic_dec_and_test(&ioend->io_remaining)) {
184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
185
186 if (ioend->io_type == XFS_IO_UNWRITTEN)
187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
188 else if (ioend->io_append_trans ||
189 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
190 queue_work(mp->m_data_workqueue, &ioend->io_work);
191 else
192 xfs_destroy_ioend(ioend);
193 }
194 }
195
196 /*
197 * IO write completion.
198 */
199 STATIC void
200 xfs_end_io(
201 struct work_struct *work)
202 {
203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
204 struct xfs_inode *ip = XFS_I(ioend->io_inode);
205 int error = 0;
206
207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
208 ioend->io_error = -EIO;
209 goto done;
210 }
211 if (ioend->io_error)
212 goto done;
213
214 /*
215 * For unwritten extents we need to issue transactions to convert a
216 * range to normal written extens after the data I/O has finished.
217 */
218 if (ioend->io_type == XFS_IO_UNWRITTEN) {
219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
220 ioend->io_size);
221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
222 /*
223 * For direct I/O we do not know if we need to allocate blocks
224 * or not so we can't preallocate an append transaction as that
225 * results in nested reservations and log space deadlocks. Hence
226 * allocate the transaction here. While this is sub-optimal and
227 * can block IO completion for some time, we're stuck with doing
228 * it this way until we can pass the ioend to the direct IO
229 * allocation callbacks and avoid nesting that way.
230 */
231 error = xfs_setfilesize_trans_alloc(ioend);
232 if (error)
233 goto done;
234 error = xfs_setfilesize(ioend);
235 } else if (ioend->io_append_trans) {
236 error = xfs_setfilesize(ioend);
237 } else {
238 ASSERT(!xfs_ioend_is_append(ioend));
239 }
240
241 done:
242 if (error)
243 ioend->io_error = -error;
244 xfs_destroy_ioend(ioend);
245 }
246
247 /*
248 * Call IO completion handling in caller context on the final put of an ioend.
249 */
250 STATIC void
251 xfs_finish_ioend_sync(
252 struct xfs_ioend *ioend)
253 {
254 if (atomic_dec_and_test(&ioend->io_remaining))
255 xfs_end_io(&ioend->io_work);
256 }
257
258 /*
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
262 * (vs. incore size).
263 */
264 STATIC xfs_ioend_t *
265 xfs_alloc_ioend(
266 struct inode *inode,
267 unsigned int type)
268 {
269 xfs_ioend_t *ioend;
270
271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272
273 /*
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
277 */
278 atomic_set(&ioend->io_remaining, 1);
279 ioend->io_isdirect = 0;
280 ioend->io_error = 0;
281 ioend->io_list = NULL;
282 ioend->io_type = type;
283 ioend->io_inode = inode;
284 ioend->io_buffer_head = NULL;
285 ioend->io_buffer_tail = NULL;
286 ioend->io_offset = 0;
287 ioend->io_size = 0;
288 ioend->io_append_trans = NULL;
289
290 INIT_WORK(&ioend->io_work, xfs_end_io);
291 return ioend;
292 }
293
294 STATIC int
295 xfs_map_blocks(
296 struct inode *inode,
297 loff_t offset,
298 struct xfs_bmbt_irec *imap,
299 int type,
300 int nonblocking)
301 {
302 struct xfs_inode *ip = XFS_I(inode);
303 struct xfs_mount *mp = ip->i_mount;
304 ssize_t count = 1 << inode->i_blkbits;
305 xfs_fileoff_t offset_fsb, end_fsb;
306 int error = 0;
307 int bmapi_flags = XFS_BMAPI_ENTIRE;
308 int nimaps = 1;
309
310 if (XFS_FORCED_SHUTDOWN(mp))
311 return -XFS_ERROR(EIO);
312
313 if (type == XFS_IO_UNWRITTEN)
314 bmapi_flags |= XFS_BMAPI_IGSTATE;
315
316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
317 if (nonblocking)
318 return -XFS_ERROR(EAGAIN);
319 xfs_ilock(ip, XFS_ILOCK_SHARED);
320 }
321
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
324 ASSERT(offset <= mp->m_super->s_maxbytes);
325
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
333
334 if (error)
335 return -XFS_ERROR(error);
336
337 if (type == XFS_IO_DELALLOC &&
338 (!nimaps || isnullstartblock(imap->br_startblock))) {
339 error = xfs_iomap_write_allocate(ip, offset, imap);
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
342 return -XFS_ERROR(error);
343 }
344
345 #ifdef DEBUG
346 if (type == XFS_IO_UNWRITTEN) {
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 }
351 #endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
355 }
356
357 STATIC int
358 xfs_imap_valid(
359 struct inode *inode,
360 struct xfs_bmbt_irec *imap,
361 xfs_off_t offset)
362 {
363 offset >>= inode->i_blkbits;
364
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
367 }
368
369 /*
370 * BIO completion handler for buffered IO.
371 */
372 STATIC void
373 xfs_end_bio(
374 struct bio *bio,
375 int error)
376 {
377 xfs_ioend_t *ioend = bio->bi_private;
378
379 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
381
382 /* Toss bio and pass work off to an xfsdatad thread */
383 bio->bi_private = NULL;
384 bio->bi_end_io = NULL;
385 bio_put(bio);
386
387 xfs_finish_ioend(ioend);
388 }
389
390 STATIC void
391 xfs_submit_ioend_bio(
392 struct writeback_control *wbc,
393 xfs_ioend_t *ioend,
394 struct bio *bio)
395 {
396 atomic_inc(&ioend->io_remaining);
397 bio->bi_private = ioend;
398 bio->bi_end_io = xfs_end_bio;
399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
400 }
401
402 STATIC struct bio *
403 xfs_alloc_ioend_bio(
404 struct buffer_head *bh)
405 {
406 int nvecs = bio_get_nr_vecs(bh->b_bdev);
407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
408
409 ASSERT(bio->bi_private == NULL);
410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
411 bio->bi_bdev = bh->b_bdev;
412 return bio;
413 }
414
415 STATIC void
416 xfs_start_buffer_writeback(
417 struct buffer_head *bh)
418 {
419 ASSERT(buffer_mapped(bh));
420 ASSERT(buffer_locked(bh));
421 ASSERT(!buffer_delay(bh));
422 ASSERT(!buffer_unwritten(bh));
423
424 mark_buffer_async_write(bh);
425 set_buffer_uptodate(bh);
426 clear_buffer_dirty(bh);
427 }
428
429 STATIC void
430 xfs_start_page_writeback(
431 struct page *page,
432 int clear_dirty,
433 int buffers)
434 {
435 ASSERT(PageLocked(page));
436 ASSERT(!PageWriteback(page));
437 if (clear_dirty)
438 clear_page_dirty_for_io(page);
439 set_page_writeback(page);
440 unlock_page(page);
441 /* If no buffers on the page are to be written, finish it here */
442 if (!buffers)
443 end_page_writeback(page);
444 }
445
446 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
447 {
448 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
449 }
450
451 /*
452 * Submit all of the bios for all of the ioends we have saved up, covering the
453 * initial writepage page and also any probed pages.
454 *
455 * Because we may have multiple ioends spanning a page, we need to start
456 * writeback on all the buffers before we submit them for I/O. If we mark the
457 * buffers as we got, then we can end up with a page that only has buffers
458 * marked async write and I/O complete on can occur before we mark the other
459 * buffers async write.
460 *
461 * The end result of this is that we trip a bug in end_page_writeback() because
462 * we call it twice for the one page as the code in end_buffer_async_write()
463 * assumes that all buffers on the page are started at the same time.
464 *
465 * The fix is two passes across the ioend list - one to start writeback on the
466 * buffer_heads, and then submit them for I/O on the second pass.
467 *
468 * If @fail is non-zero, it means that we have a situation where some part of
469 * the submission process has failed after we have marked paged for writeback
470 * and unlocked them. In this situation, we need to fail the ioend chain rather
471 * than submit it to IO. This typically only happens on a filesystem shutdown.
472 */
473 STATIC void
474 xfs_submit_ioend(
475 struct writeback_control *wbc,
476 xfs_ioend_t *ioend,
477 int fail)
478 {
479 xfs_ioend_t *head = ioend;
480 xfs_ioend_t *next;
481 struct buffer_head *bh;
482 struct bio *bio;
483 sector_t lastblock = 0;
484
485 /* Pass 1 - start writeback */
486 do {
487 next = ioend->io_list;
488 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
489 xfs_start_buffer_writeback(bh);
490 } while ((ioend = next) != NULL);
491
492 /* Pass 2 - submit I/O */
493 ioend = head;
494 do {
495 next = ioend->io_list;
496 bio = NULL;
497
498 /*
499 * If we are failing the IO now, just mark the ioend with an
500 * error and finish it. This will run IO completion immediately
501 * as there is only one reference to the ioend at this point in
502 * time.
503 */
504 if (fail) {
505 ioend->io_error = -fail;
506 xfs_finish_ioend(ioend);
507 continue;
508 }
509
510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
511
512 if (!bio) {
513 retry:
514 bio = xfs_alloc_ioend_bio(bh);
515 } else if (bh->b_blocknr != lastblock + 1) {
516 xfs_submit_ioend_bio(wbc, ioend, bio);
517 goto retry;
518 }
519
520 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
521 xfs_submit_ioend_bio(wbc, ioend, bio);
522 goto retry;
523 }
524
525 lastblock = bh->b_blocknr;
526 }
527 if (bio)
528 xfs_submit_ioend_bio(wbc, ioend, bio);
529 xfs_finish_ioend(ioend);
530 } while ((ioend = next) != NULL);
531 }
532
533 /*
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
537 */
538 STATIC void
539 xfs_cancel_ioend(
540 xfs_ioend_t *ioend)
541 {
542 xfs_ioend_t *next;
543 struct buffer_head *bh, *next_bh;
544
545 do {
546 next = ioend->io_list;
547 bh = ioend->io_buffer_head;
548 do {
549 next_bh = bh->b_private;
550 clear_buffer_async_write(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
556 }
557
558 /*
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
563 */
564 STATIC void
565 xfs_add_to_ioend(
566 struct inode *inode,
567 struct buffer_head *bh,
568 xfs_off_t offset,
569 unsigned int type,
570 xfs_ioend_t **result,
571 int need_ioend)
572 {
573 xfs_ioend_t *ioend = *result;
574
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
577
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
582 if (previous)
583 previous->io_list = ioend;
584 *result = ioend;
585 } else {
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
588 }
589
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
592 }
593
594 STATIC void
595 xfs_map_buffer(
596 struct inode *inode,
597 struct buffer_head *bh,
598 struct xfs_bmbt_irec *imap,
599 xfs_off_t offset)
600 {
601 sector_t bn;
602 struct xfs_mount *m = XFS_I(inode)->i_mount;
603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
605
606 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
608
609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
610 ((offset - iomap_offset) >> inode->i_blkbits);
611
612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
613
614 bh->b_blocknr = bn;
615 set_buffer_mapped(bh);
616 }
617
618 STATIC void
619 xfs_map_at_offset(
620 struct inode *inode,
621 struct buffer_head *bh,
622 struct xfs_bmbt_irec *imap,
623 xfs_off_t offset)
624 {
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
627
628 xfs_map_buffer(inode, bh, imap, offset);
629 set_buffer_mapped(bh);
630 clear_buffer_delay(bh);
631 clear_buffer_unwritten(bh);
632 }
633
634 /*
635 * Test if a given page is suitable for writing as part of an unwritten
636 * or delayed allocate extent.
637 */
638 STATIC int
639 xfs_check_page_type(
640 struct page *page,
641 unsigned int type)
642 {
643 if (PageWriteback(page))
644 return 0;
645
646 if (page->mapping && page_has_buffers(page)) {
647 struct buffer_head *bh, *head;
648 int acceptable = 0;
649
650 bh = head = page_buffers(page);
651 do {
652 if (buffer_unwritten(bh))
653 acceptable += (type == XFS_IO_UNWRITTEN);
654 else if (buffer_delay(bh))
655 acceptable += (type == XFS_IO_DELALLOC);
656 else if (buffer_dirty(bh) && buffer_mapped(bh))
657 acceptable += (type == XFS_IO_OVERWRITE);
658 else
659 break;
660 } while ((bh = bh->b_this_page) != head);
661
662 if (acceptable)
663 return 1;
664 }
665
666 return 0;
667 }
668
669 /*
670 * Allocate & map buffers for page given the extent map. Write it out.
671 * except for the original page of a writepage, this is called on
672 * delalloc/unwritten pages only, for the original page it is possible
673 * that the page has no mapping at all.
674 */
675 STATIC int
676 xfs_convert_page(
677 struct inode *inode,
678 struct page *page,
679 loff_t tindex,
680 struct xfs_bmbt_irec *imap,
681 xfs_ioend_t **ioendp,
682 struct writeback_control *wbc)
683 {
684 struct buffer_head *bh, *head;
685 xfs_off_t end_offset;
686 unsigned long p_offset;
687 unsigned int type;
688 int len, page_dirty;
689 int count = 0, done = 0, uptodate = 1;
690 xfs_off_t offset = page_offset(page);
691
692 if (page->index != tindex)
693 goto fail;
694 if (!trylock_page(page))
695 goto fail;
696 if (PageWriteback(page))
697 goto fail_unlock_page;
698 if (page->mapping != inode->i_mapping)
699 goto fail_unlock_page;
700 if (!xfs_check_page_type(page, (*ioendp)->io_type))
701 goto fail_unlock_page;
702
703 /*
704 * page_dirty is initially a count of buffers on the page before
705 * EOF and is decremented as we move each into a cleanable state.
706 *
707 * Derivation:
708 *
709 * End offset is the highest offset that this page should represent.
710 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
711 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
712 * hence give us the correct page_dirty count. On any other page,
713 * it will be zero and in that case we need page_dirty to be the
714 * count of buffers on the page.
715 */
716 end_offset = min_t(unsigned long long,
717 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
718 i_size_read(inode));
719
720 /*
721 * If the current map does not span the entire page we are about to try
722 * to write, then give up. The only way we can write a page that spans
723 * multiple mappings in a single writeback iteration is via the
724 * xfs_vm_writepage() function. Data integrity writeback requires the
725 * entire page to be written in a single attempt, otherwise the part of
726 * the page we don't write here doesn't get written as part of the data
727 * integrity sync.
728 *
729 * For normal writeback, we also don't attempt to write partial pages
730 * here as it simply means that write_cache_pages() will see it under
731 * writeback and ignore the page until some point in the future, at
732 * which time this will be the only page in the file that needs
733 * writeback. Hence for more optimal IO patterns, we should always
734 * avoid partial page writeback due to multiple mappings on a page here.
735 */
736 if (!xfs_imap_valid(inode, imap, end_offset))
737 goto fail_unlock_page;
738
739 len = 1 << inode->i_blkbits;
740 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
741 PAGE_CACHE_SIZE);
742 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
743 page_dirty = p_offset / len;
744
745 bh = head = page_buffers(page);
746 do {
747 if (offset >= end_offset)
748 break;
749 if (!buffer_uptodate(bh))
750 uptodate = 0;
751 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
752 done = 1;
753 continue;
754 }
755
756 if (buffer_unwritten(bh) || buffer_delay(bh) ||
757 buffer_mapped(bh)) {
758 if (buffer_unwritten(bh))
759 type = XFS_IO_UNWRITTEN;
760 else if (buffer_delay(bh))
761 type = XFS_IO_DELALLOC;
762 else
763 type = XFS_IO_OVERWRITE;
764
765 if (!xfs_imap_valid(inode, imap, offset)) {
766 done = 1;
767 continue;
768 }
769
770 lock_buffer(bh);
771 if (type != XFS_IO_OVERWRITE)
772 xfs_map_at_offset(inode, bh, imap, offset);
773 xfs_add_to_ioend(inode, bh, offset, type,
774 ioendp, done);
775
776 page_dirty--;
777 count++;
778 } else {
779 done = 1;
780 }
781 } while (offset += len, (bh = bh->b_this_page) != head);
782
783 if (uptodate && bh == head)
784 SetPageUptodate(page);
785
786 if (count) {
787 if (--wbc->nr_to_write <= 0 &&
788 wbc->sync_mode == WB_SYNC_NONE)
789 done = 1;
790 }
791 xfs_start_page_writeback(page, !page_dirty, count);
792
793 return done;
794 fail_unlock_page:
795 unlock_page(page);
796 fail:
797 return 1;
798 }
799
800 /*
801 * Convert & write out a cluster of pages in the same extent as defined
802 * by mp and following the start page.
803 */
804 STATIC void
805 xfs_cluster_write(
806 struct inode *inode,
807 pgoff_t tindex,
808 struct xfs_bmbt_irec *imap,
809 xfs_ioend_t **ioendp,
810 struct writeback_control *wbc,
811 pgoff_t tlast)
812 {
813 struct pagevec pvec;
814 int done = 0, i;
815
816 pagevec_init(&pvec, 0);
817 while (!done && tindex <= tlast) {
818 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
819
820 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
821 break;
822
823 for (i = 0; i < pagevec_count(&pvec); i++) {
824 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
825 imap, ioendp, wbc);
826 if (done)
827 break;
828 }
829
830 pagevec_release(&pvec);
831 cond_resched();
832 }
833 }
834
835 STATIC void
836 xfs_vm_invalidatepage(
837 struct page *page,
838 unsigned int offset,
839 unsigned int length)
840 {
841 trace_xfs_invalidatepage(page->mapping->host, page, offset,
842 length);
843 block_invalidatepage(page, offset, length);
844 }
845
846 /*
847 * If the page has delalloc buffers on it, we need to punch them out before we
848 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
849 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
850 * is done on that same region - the delalloc extent is returned when none is
851 * supposed to be there.
852 *
853 * We prevent this by truncating away the delalloc regions on the page before
854 * invalidating it. Because they are delalloc, we can do this without needing a
855 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
856 * truncation without a transaction as there is no space left for block
857 * reservation (typically why we see a ENOSPC in writeback).
858 *
859 * This is not a performance critical path, so for now just do the punching a
860 * buffer head at a time.
861 */
862 STATIC void
863 xfs_aops_discard_page(
864 struct page *page)
865 {
866 struct inode *inode = page->mapping->host;
867 struct xfs_inode *ip = XFS_I(inode);
868 struct buffer_head *bh, *head;
869 loff_t offset = page_offset(page);
870
871 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
872 goto out_invalidate;
873
874 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
875 goto out_invalidate;
876
877 xfs_alert(ip->i_mount,
878 "page discard on page %p, inode 0x%llx, offset %llu.",
879 page, ip->i_ino, offset);
880
881 xfs_ilock(ip, XFS_ILOCK_EXCL);
882 bh = head = page_buffers(page);
883 do {
884 int error;
885 xfs_fileoff_t start_fsb;
886
887 if (!buffer_delay(bh))
888 goto next_buffer;
889
890 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
891 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
892 if (error) {
893 /* something screwed, just bail */
894 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
895 xfs_alert(ip->i_mount,
896 "page discard unable to remove delalloc mapping.");
897 }
898 break;
899 }
900 next_buffer:
901 offset += 1 << inode->i_blkbits;
902
903 } while ((bh = bh->b_this_page) != head);
904
905 xfs_iunlock(ip, XFS_ILOCK_EXCL);
906 out_invalidate:
907 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
908 return;
909 }
910
911 /*
912 * Write out a dirty page.
913 *
914 * For delalloc space on the page we need to allocate space and flush it.
915 * For unwritten space on the page we need to start the conversion to
916 * regular allocated space.
917 * For any other dirty buffer heads on the page we should flush them.
918 */
919 STATIC int
920 xfs_vm_writepage(
921 struct page *page,
922 struct writeback_control *wbc)
923 {
924 struct inode *inode = page->mapping->host;
925 struct buffer_head *bh, *head;
926 struct xfs_bmbt_irec imap;
927 xfs_ioend_t *ioend = NULL, *iohead = NULL;
928 loff_t offset;
929 unsigned int type;
930 __uint64_t end_offset;
931 pgoff_t end_index, last_index;
932 ssize_t len;
933 int err, imap_valid = 0, uptodate = 1;
934 int count = 0;
935 int nonblocking = 0;
936
937 trace_xfs_writepage(inode, page, 0, 0);
938
939 ASSERT(page_has_buffers(page));
940
941 /*
942 * Refuse to write the page out if we are called from reclaim context.
943 *
944 * This avoids stack overflows when called from deeply used stacks in
945 * random callers for direct reclaim or memcg reclaim. We explicitly
946 * allow reclaim from kswapd as the stack usage there is relatively low.
947 *
948 * This should never happen except in the case of a VM regression so
949 * warn about it.
950 */
951 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
952 PF_MEMALLOC))
953 goto redirty;
954
955 /*
956 * Given that we do not allow direct reclaim to call us, we should
957 * never be called while in a filesystem transaction.
958 */
959 if (WARN_ON(current->flags & PF_FSTRANS))
960 goto redirty;
961
962 /* Is this page beyond the end of the file? */
963 offset = i_size_read(inode);
964 end_index = offset >> PAGE_CACHE_SHIFT;
965 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
966 if (page->index >= end_index) {
967 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
968
969 /*
970 * Skip the page if it is fully outside i_size, e.g. due to a
971 * truncate operation that is in progress. We must redirty the
972 * page so that reclaim stops reclaiming it. Otherwise
973 * xfs_vm_releasepage() is called on it and gets confused.
974 */
975 if (page->index >= end_index + 1 || offset_into_page == 0)
976 goto redirty;
977
978 /*
979 * The page straddles i_size. It must be zeroed out on each
980 * and every writepage invocation because it may be mmapped.
981 * "A file is mapped in multiples of the page size. For a file
982 * that is not a multiple of the page size, the remaining
983 * memory is zeroed when mapped, and writes to that region are
984 * not written out to the file."
985 */
986 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
987 }
988
989 end_offset = min_t(unsigned long long,
990 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
991 offset);
992 len = 1 << inode->i_blkbits;
993
994 bh = head = page_buffers(page);
995 offset = page_offset(page);
996 type = XFS_IO_OVERWRITE;
997
998 if (wbc->sync_mode == WB_SYNC_NONE)
999 nonblocking = 1;
1000
1001 do {
1002 int new_ioend = 0;
1003
1004 if (offset >= end_offset)
1005 break;
1006 if (!buffer_uptodate(bh))
1007 uptodate = 0;
1008
1009 /*
1010 * set_page_dirty dirties all buffers in a page, independent
1011 * of their state. The dirty state however is entirely
1012 * meaningless for holes (!mapped && uptodate), so skip
1013 * buffers covering holes here.
1014 */
1015 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1016 imap_valid = 0;
1017 continue;
1018 }
1019
1020 if (buffer_unwritten(bh)) {
1021 if (type != XFS_IO_UNWRITTEN) {
1022 type = XFS_IO_UNWRITTEN;
1023 imap_valid = 0;
1024 }
1025 } else if (buffer_delay(bh)) {
1026 if (type != XFS_IO_DELALLOC) {
1027 type = XFS_IO_DELALLOC;
1028 imap_valid = 0;
1029 }
1030 } else if (buffer_uptodate(bh)) {
1031 if (type != XFS_IO_OVERWRITE) {
1032 type = XFS_IO_OVERWRITE;
1033 imap_valid = 0;
1034 }
1035 } else {
1036 if (PageUptodate(page))
1037 ASSERT(buffer_mapped(bh));
1038 /*
1039 * This buffer is not uptodate and will not be
1040 * written to disk. Ensure that we will put any
1041 * subsequent writeable buffers into a new
1042 * ioend.
1043 */
1044 imap_valid = 0;
1045 continue;
1046 }
1047
1048 if (imap_valid)
1049 imap_valid = xfs_imap_valid(inode, &imap, offset);
1050 if (!imap_valid) {
1051 /*
1052 * If we didn't have a valid mapping then we need to
1053 * put the new mapping into a separate ioend structure.
1054 * This ensures non-contiguous extents always have
1055 * separate ioends, which is particularly important
1056 * for unwritten extent conversion at I/O completion
1057 * time.
1058 */
1059 new_ioend = 1;
1060 err = xfs_map_blocks(inode, offset, &imap, type,
1061 nonblocking);
1062 if (err)
1063 goto error;
1064 imap_valid = xfs_imap_valid(inode, &imap, offset);
1065 }
1066 if (imap_valid) {
1067 lock_buffer(bh);
1068 if (type != XFS_IO_OVERWRITE)
1069 xfs_map_at_offset(inode, bh, &imap, offset);
1070 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1071 new_ioend);
1072 count++;
1073 }
1074
1075 if (!iohead)
1076 iohead = ioend;
1077
1078 } while (offset += len, ((bh = bh->b_this_page) != head));
1079
1080 if (uptodate && bh == head)
1081 SetPageUptodate(page);
1082
1083 xfs_start_page_writeback(page, 1, count);
1084
1085 /* if there is no IO to be submitted for this page, we are done */
1086 if (!ioend)
1087 return 0;
1088
1089 ASSERT(iohead);
1090
1091 /*
1092 * Any errors from this point onwards need tobe reported through the IO
1093 * completion path as we have marked the initial page as under writeback
1094 * and unlocked it.
1095 */
1096 if (imap_valid) {
1097 xfs_off_t end_index;
1098
1099 end_index = imap.br_startoff + imap.br_blockcount;
1100
1101 /* to bytes */
1102 end_index <<= inode->i_blkbits;
1103
1104 /* to pages */
1105 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1106
1107 /* check against file size */
1108 if (end_index > last_index)
1109 end_index = last_index;
1110
1111 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1112 wbc, end_index);
1113 }
1114
1115
1116 /*
1117 * Reserve log space if we might write beyond the on-disk inode size.
1118 */
1119 err = 0;
1120 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1121 err = xfs_setfilesize_trans_alloc(ioend);
1122
1123 xfs_submit_ioend(wbc, iohead, err);
1124
1125 return 0;
1126
1127 error:
1128 if (iohead)
1129 xfs_cancel_ioend(iohead);
1130
1131 if (err == -EAGAIN)
1132 goto redirty;
1133
1134 xfs_aops_discard_page(page);
1135 ClearPageUptodate(page);
1136 unlock_page(page);
1137 return err;
1138
1139 redirty:
1140 redirty_page_for_writepage(wbc, page);
1141 unlock_page(page);
1142 return 0;
1143 }
1144
1145 STATIC int
1146 xfs_vm_writepages(
1147 struct address_space *mapping,
1148 struct writeback_control *wbc)
1149 {
1150 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1151 return generic_writepages(mapping, wbc);
1152 }
1153
1154 /*
1155 * Called to move a page into cleanable state - and from there
1156 * to be released. The page should already be clean. We always
1157 * have buffer heads in this call.
1158 *
1159 * Returns 1 if the page is ok to release, 0 otherwise.
1160 */
1161 STATIC int
1162 xfs_vm_releasepage(
1163 struct page *page,
1164 gfp_t gfp_mask)
1165 {
1166 int delalloc, unwritten;
1167
1168 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1169
1170 xfs_count_page_state(page, &delalloc, &unwritten);
1171
1172 if (WARN_ON(delalloc))
1173 return 0;
1174 if (WARN_ON(unwritten))
1175 return 0;
1176
1177 return try_to_free_buffers(page);
1178 }
1179
1180 STATIC int
1181 __xfs_get_blocks(
1182 struct inode *inode,
1183 sector_t iblock,
1184 struct buffer_head *bh_result,
1185 int create,
1186 int direct)
1187 {
1188 struct xfs_inode *ip = XFS_I(inode);
1189 struct xfs_mount *mp = ip->i_mount;
1190 xfs_fileoff_t offset_fsb, end_fsb;
1191 int error = 0;
1192 int lockmode = 0;
1193 struct xfs_bmbt_irec imap;
1194 int nimaps = 1;
1195 xfs_off_t offset;
1196 ssize_t size;
1197 int new = 0;
1198
1199 if (XFS_FORCED_SHUTDOWN(mp))
1200 return -XFS_ERROR(EIO);
1201
1202 offset = (xfs_off_t)iblock << inode->i_blkbits;
1203 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1204 size = bh_result->b_size;
1205
1206 if (!create && direct && offset >= i_size_read(inode))
1207 return 0;
1208
1209 /*
1210 * Direct I/O is usually done on preallocated files, so try getting
1211 * a block mapping without an exclusive lock first. For buffered
1212 * writes we already have the exclusive iolock anyway, so avoiding
1213 * a lock roundtrip here by taking the ilock exclusive from the
1214 * beginning is a useful micro optimization.
1215 */
1216 if (create && !direct) {
1217 lockmode = XFS_ILOCK_EXCL;
1218 xfs_ilock(ip, lockmode);
1219 } else {
1220 lockmode = xfs_ilock_map_shared(ip);
1221 }
1222
1223 ASSERT(offset <= mp->m_super->s_maxbytes);
1224 if (offset + size > mp->m_super->s_maxbytes)
1225 size = mp->m_super->s_maxbytes - offset;
1226 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1227 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1228
1229 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1230 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1231 if (error)
1232 goto out_unlock;
1233
1234 if (create &&
1235 (!nimaps ||
1236 (imap.br_startblock == HOLESTARTBLOCK ||
1237 imap.br_startblock == DELAYSTARTBLOCK))) {
1238 if (direct || xfs_get_extsz_hint(ip)) {
1239 /*
1240 * Drop the ilock in preparation for starting the block
1241 * allocation transaction. It will be retaken
1242 * exclusively inside xfs_iomap_write_direct for the
1243 * actual allocation.
1244 */
1245 xfs_iunlock(ip, lockmode);
1246 error = xfs_iomap_write_direct(ip, offset, size,
1247 &imap, nimaps);
1248 if (error)
1249 return -error;
1250 new = 1;
1251 } else {
1252 /*
1253 * Delalloc reservations do not require a transaction,
1254 * we can go on without dropping the lock here. If we
1255 * are allocating a new delalloc block, make sure that
1256 * we set the new flag so that we mark the buffer new so
1257 * that we know that it is newly allocated if the write
1258 * fails.
1259 */
1260 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1261 new = 1;
1262 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1263 if (error)
1264 goto out_unlock;
1265
1266 xfs_iunlock(ip, lockmode);
1267 }
1268
1269 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1270 } else if (nimaps) {
1271 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1272 xfs_iunlock(ip, lockmode);
1273 } else {
1274 trace_xfs_get_blocks_notfound(ip, offset, size);
1275 goto out_unlock;
1276 }
1277
1278 if (imap.br_startblock != HOLESTARTBLOCK &&
1279 imap.br_startblock != DELAYSTARTBLOCK) {
1280 /*
1281 * For unwritten extents do not report a disk address on
1282 * the read case (treat as if we're reading into a hole).
1283 */
1284 if (create || !ISUNWRITTEN(&imap))
1285 xfs_map_buffer(inode, bh_result, &imap, offset);
1286 if (create && ISUNWRITTEN(&imap)) {
1287 if (direct) {
1288 bh_result->b_private = inode;
1289 set_buffer_defer_completion(bh_result);
1290 }
1291 set_buffer_unwritten(bh_result);
1292 }
1293 }
1294
1295 /*
1296 * If this is a realtime file, data may be on a different device.
1297 * to that pointed to from the buffer_head b_bdev currently.
1298 */
1299 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1300
1301 /*
1302 * If we previously allocated a block out beyond eof and we are now
1303 * coming back to use it then we will need to flag it as new even if it
1304 * has a disk address.
1305 *
1306 * With sub-block writes into unwritten extents we also need to mark
1307 * the buffer as new so that the unwritten parts of the buffer gets
1308 * correctly zeroed.
1309 */
1310 if (create &&
1311 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1312 (offset >= i_size_read(inode)) ||
1313 (new || ISUNWRITTEN(&imap))))
1314 set_buffer_new(bh_result);
1315
1316 if (imap.br_startblock == DELAYSTARTBLOCK) {
1317 BUG_ON(direct);
1318 if (create) {
1319 set_buffer_uptodate(bh_result);
1320 set_buffer_mapped(bh_result);
1321 set_buffer_delay(bh_result);
1322 }
1323 }
1324
1325 /*
1326 * If this is O_DIRECT or the mpage code calling tell them how large
1327 * the mapping is, so that we can avoid repeated get_blocks calls.
1328 */
1329 if (direct || size > (1 << inode->i_blkbits)) {
1330 xfs_off_t mapping_size;
1331
1332 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1333 mapping_size <<= inode->i_blkbits;
1334
1335 ASSERT(mapping_size > 0);
1336 if (mapping_size > size)
1337 mapping_size = size;
1338 if (mapping_size > LONG_MAX)
1339 mapping_size = LONG_MAX;
1340
1341 bh_result->b_size = mapping_size;
1342 }
1343
1344 return 0;
1345
1346 out_unlock:
1347 xfs_iunlock(ip, lockmode);
1348 return -error;
1349 }
1350
1351 int
1352 xfs_get_blocks(
1353 struct inode *inode,
1354 sector_t iblock,
1355 struct buffer_head *bh_result,
1356 int create)
1357 {
1358 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1359 }
1360
1361 STATIC int
1362 xfs_get_blocks_direct(
1363 struct inode *inode,
1364 sector_t iblock,
1365 struct buffer_head *bh_result,
1366 int create)
1367 {
1368 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1369 }
1370
1371 /*
1372 * Complete a direct I/O write request.
1373 *
1374 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1375 * need to issue a transaction to convert the range from unwritten to written
1376 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1377 * to do this and we are done. But in case this was a successful AIO
1378 * request this handler is called from interrupt context, from which we
1379 * can't start transactions. In that case offload the I/O completion to
1380 * the workqueues we also use for buffered I/O completion.
1381 */
1382 STATIC void
1383 xfs_end_io_direct_write(
1384 struct kiocb *iocb,
1385 loff_t offset,
1386 ssize_t size,
1387 void *private)
1388 {
1389 struct xfs_ioend *ioend = iocb->private;
1390
1391 /*
1392 * While the generic direct I/O code updates the inode size, it does
1393 * so only after the end_io handler is called, which means our
1394 * end_io handler thinks the on-disk size is outside the in-core
1395 * size. To prevent this just update it a little bit earlier here.
1396 */
1397 if (offset + size > i_size_read(ioend->io_inode))
1398 i_size_write(ioend->io_inode, offset + size);
1399
1400 /*
1401 * blockdev_direct_IO can return an error even after the I/O
1402 * completion handler was called. Thus we need to protect
1403 * against double-freeing.
1404 */
1405 iocb->private = NULL;
1406
1407 ioend->io_offset = offset;
1408 ioend->io_size = size;
1409 if (private && size > 0)
1410 ioend->io_type = XFS_IO_UNWRITTEN;
1411
1412 xfs_finish_ioend_sync(ioend);
1413 }
1414
1415 STATIC ssize_t
1416 xfs_vm_direct_IO(
1417 int rw,
1418 struct kiocb *iocb,
1419 const struct iovec *iov,
1420 loff_t offset,
1421 unsigned long nr_segs)
1422 {
1423 struct inode *inode = iocb->ki_filp->f_mapping->host;
1424 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1425 struct xfs_ioend *ioend = NULL;
1426 ssize_t ret;
1427
1428 if (rw & WRITE) {
1429 size_t size = iov_length(iov, nr_segs);
1430
1431 /*
1432 * We cannot preallocate a size update transaction here as we
1433 * don't know whether allocation is necessary or not. Hence we
1434 * can only tell IO completion that one is necessary if we are
1435 * not doing unwritten extent conversion.
1436 */
1437 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1438 if (offset + size > XFS_I(inode)->i_d.di_size)
1439 ioend->io_isdirect = 1;
1440
1441 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1442 offset, nr_segs,
1443 xfs_get_blocks_direct,
1444 xfs_end_io_direct_write, NULL, 0);
1445 if (ret != -EIOCBQUEUED && iocb->private)
1446 goto out_destroy_ioend;
1447 } else {
1448 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1449 offset, nr_segs,
1450 xfs_get_blocks_direct,
1451 NULL, NULL, 0);
1452 }
1453
1454 return ret;
1455
1456 out_destroy_ioend:
1457 xfs_destroy_ioend(ioend);
1458 return ret;
1459 }
1460
1461 /*
1462 * Punch out the delalloc blocks we have already allocated.
1463 *
1464 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1465 * as the page is still locked at this point.
1466 */
1467 STATIC void
1468 xfs_vm_kill_delalloc_range(
1469 struct inode *inode,
1470 loff_t start,
1471 loff_t end)
1472 {
1473 struct xfs_inode *ip = XFS_I(inode);
1474 xfs_fileoff_t start_fsb;
1475 xfs_fileoff_t end_fsb;
1476 int error;
1477
1478 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1479 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1480 if (end_fsb <= start_fsb)
1481 return;
1482
1483 xfs_ilock(ip, XFS_ILOCK_EXCL);
1484 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1485 end_fsb - start_fsb);
1486 if (error) {
1487 /* something screwed, just bail */
1488 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1489 xfs_alert(ip->i_mount,
1490 "xfs_vm_write_failed: unable to clean up ino %lld",
1491 ip->i_ino);
1492 }
1493 }
1494 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1495 }
1496
1497 STATIC void
1498 xfs_vm_write_failed(
1499 struct inode *inode,
1500 struct page *page,
1501 loff_t pos,
1502 unsigned len)
1503 {
1504 loff_t block_offset;
1505 loff_t block_start;
1506 loff_t block_end;
1507 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1508 loff_t to = from + len;
1509 struct buffer_head *bh, *head;
1510
1511 /*
1512 * The request pos offset might be 32 or 64 bit, this is all fine
1513 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1514 * platform, the high 32-bit will be masked off if we evaluate the
1515 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1516 * 0xfffff000 as an unsigned long, hence the result is incorrect
1517 * which could cause the following ASSERT failed in most cases.
1518 * In order to avoid this, we can evaluate the block_offset of the
1519 * start of the page by using shifts rather than masks the mismatch
1520 * problem.
1521 */
1522 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1523
1524 ASSERT(block_offset + from == pos);
1525
1526 head = page_buffers(page);
1527 block_start = 0;
1528 for (bh = head; bh != head || !block_start;
1529 bh = bh->b_this_page, block_start = block_end,
1530 block_offset += bh->b_size) {
1531 block_end = block_start + bh->b_size;
1532
1533 /* skip buffers before the write */
1534 if (block_end <= from)
1535 continue;
1536
1537 /* if the buffer is after the write, we're done */
1538 if (block_start >= to)
1539 break;
1540
1541 if (!buffer_delay(bh))
1542 continue;
1543
1544 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1545 continue;
1546
1547 xfs_vm_kill_delalloc_range(inode, block_offset,
1548 block_offset + bh->b_size);
1549 }
1550
1551 }
1552
1553 /*
1554 * This used to call block_write_begin(), but it unlocks and releases the page
1555 * on error, and we need that page to be able to punch stale delalloc blocks out
1556 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1557 * the appropriate point.
1558 */
1559 STATIC int
1560 xfs_vm_write_begin(
1561 struct file *file,
1562 struct address_space *mapping,
1563 loff_t pos,
1564 unsigned len,
1565 unsigned flags,
1566 struct page **pagep,
1567 void **fsdata)
1568 {
1569 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1570 struct page *page;
1571 int status;
1572
1573 ASSERT(len <= PAGE_CACHE_SIZE);
1574
1575 page = grab_cache_page_write_begin(mapping, index, flags);
1576 if (!page)
1577 return -ENOMEM;
1578
1579 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1580 if (unlikely(status)) {
1581 struct inode *inode = mapping->host;
1582
1583 xfs_vm_write_failed(inode, page, pos, len);
1584 unlock_page(page);
1585
1586 if (pos + len > i_size_read(inode))
1587 truncate_pagecache(inode, i_size_read(inode));
1588
1589 page_cache_release(page);
1590 page = NULL;
1591 }
1592
1593 *pagep = page;
1594 return status;
1595 }
1596
1597 /*
1598 * On failure, we only need to kill delalloc blocks beyond EOF because they
1599 * will never be written. For blocks within EOF, generic_write_end() zeros them
1600 * so they are safe to leave alone and be written with all the other valid data.
1601 */
1602 STATIC int
1603 xfs_vm_write_end(
1604 struct file *file,
1605 struct address_space *mapping,
1606 loff_t pos,
1607 unsigned len,
1608 unsigned copied,
1609 struct page *page,
1610 void *fsdata)
1611 {
1612 int ret;
1613
1614 ASSERT(len <= PAGE_CACHE_SIZE);
1615
1616 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1617 if (unlikely(ret < len)) {
1618 struct inode *inode = mapping->host;
1619 size_t isize = i_size_read(inode);
1620 loff_t to = pos + len;
1621
1622 if (to > isize) {
1623 truncate_pagecache(inode, isize);
1624 xfs_vm_kill_delalloc_range(inode, isize, to);
1625 }
1626 }
1627 return ret;
1628 }
1629
1630 STATIC sector_t
1631 xfs_vm_bmap(
1632 struct address_space *mapping,
1633 sector_t block)
1634 {
1635 struct inode *inode = (struct inode *)mapping->host;
1636 struct xfs_inode *ip = XFS_I(inode);
1637
1638 trace_xfs_vm_bmap(XFS_I(inode));
1639 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1640 filemap_write_and_wait(mapping);
1641 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1642 return generic_block_bmap(mapping, block, xfs_get_blocks);
1643 }
1644
1645 STATIC int
1646 xfs_vm_readpage(
1647 struct file *unused,
1648 struct page *page)
1649 {
1650 return mpage_readpage(page, xfs_get_blocks);
1651 }
1652
1653 STATIC int
1654 xfs_vm_readpages(
1655 struct file *unused,
1656 struct address_space *mapping,
1657 struct list_head *pages,
1658 unsigned nr_pages)
1659 {
1660 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1661 }
1662
1663 const struct address_space_operations xfs_address_space_operations = {
1664 .readpage = xfs_vm_readpage,
1665 .readpages = xfs_vm_readpages,
1666 .writepage = xfs_vm_writepage,
1667 .writepages = xfs_vm_writepages,
1668 .releasepage = xfs_vm_releasepage,
1669 .invalidatepage = xfs_vm_invalidatepage,
1670 .write_begin = xfs_vm_write_begin,
1671 .write_end = xfs_vm_write_end,
1672 .bmap = xfs_vm_bmap,
1673 .direct_IO = xfs_vm_direct_IO,
1674 .migratepage = buffer_migrate_page,
1675 .is_partially_uptodate = block_is_partially_uptodate,
1676 .error_remove_page = generic_error_remove_page,
1677 };