]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_aops.c
Merge tag 'for-5.15-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_aops.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20
21 struct xfs_writepage_ctx {
22 struct iomap_writepage_ctx ctx;
23 unsigned int data_seq;
24 unsigned int cow_seq;
25 };
26
27 static inline struct xfs_writepage_ctx *
28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32
33 /*
34 * Fast and loose check if this write could update the on-disk inode size.
35 */
36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
37 {
38 return ioend->io_offset + ioend->io_size >
39 XFS_I(ioend->io_inode)->i_disk_size;
40 }
41
42 /*
43 * Update on-disk file size now that data has been written to disk.
44 */
45 int
46 xfs_setfilesize(
47 struct xfs_inode *ip,
48 xfs_off_t offset,
49 size_t size)
50 {
51 struct xfs_mount *mp = ip->i_mount;
52 struct xfs_trans *tp;
53 xfs_fsize_t isize;
54 int error;
55
56 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
57 if (error)
58 return error;
59
60 xfs_ilock(ip, XFS_ILOCK_EXCL);
61 isize = xfs_new_eof(ip, offset + size);
62 if (!isize) {
63 xfs_iunlock(ip, XFS_ILOCK_EXCL);
64 xfs_trans_cancel(tp);
65 return 0;
66 }
67
68 trace_xfs_setfilesize(ip, offset, size);
69
70 ip->i_disk_size = isize;
71 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
72 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
73
74 return xfs_trans_commit(tp);
75 }
76
77 /*
78 * IO write completion.
79 */
80 STATIC void
81 xfs_end_ioend(
82 struct iomap_ioend *ioend)
83 {
84 struct xfs_inode *ip = XFS_I(ioend->io_inode);
85 xfs_off_t offset = ioend->io_offset;
86 size_t size = ioend->io_size;
87 unsigned int nofs_flag;
88 int error;
89
90 /*
91 * We can allocate memory here while doing writeback on behalf of
92 * memory reclaim. To avoid memory allocation deadlocks set the
93 * task-wide nofs context for the following operations.
94 */
95 nofs_flag = memalloc_nofs_save();
96
97 /*
98 * Just clean up the in-memory structures if the fs has been shut down.
99 */
100 if (xfs_is_shutdown(ip->i_mount)) {
101 error = -EIO;
102 goto done;
103 }
104
105 /*
106 * Clean up any COW blocks on an I/O error.
107 */
108 error = blk_status_to_errno(ioend->io_bio->bi_status);
109 if (unlikely(error)) {
110 if (ioend->io_flags & IOMAP_F_SHARED)
111 xfs_reflink_cancel_cow_range(ip, offset, size, true);
112 goto done;
113 }
114
115 /*
116 * Success: commit the COW or unwritten blocks if needed.
117 */
118 if (ioend->io_flags & IOMAP_F_SHARED)
119 error = xfs_reflink_end_cow(ip, offset, size);
120 else if (ioend->io_type == IOMAP_UNWRITTEN)
121 error = xfs_iomap_write_unwritten(ip, offset, size, false);
122
123 if (!error && xfs_ioend_is_append(ioend))
124 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
125 done:
126 iomap_finish_ioends(ioend, error);
127 memalloc_nofs_restore(nofs_flag);
128 }
129
130 /* Finish all pending io completions. */
131 void
132 xfs_end_io(
133 struct work_struct *work)
134 {
135 struct xfs_inode *ip =
136 container_of(work, struct xfs_inode, i_ioend_work);
137 struct iomap_ioend *ioend;
138 struct list_head tmp;
139 unsigned long flags;
140
141 spin_lock_irqsave(&ip->i_ioend_lock, flags);
142 list_replace_init(&ip->i_ioend_list, &tmp);
143 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
144
145 iomap_sort_ioends(&tmp);
146 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
147 io_list))) {
148 list_del_init(&ioend->io_list);
149 iomap_ioend_try_merge(ioend, &tmp);
150 xfs_end_ioend(ioend);
151 }
152 }
153
154 STATIC void
155 xfs_end_bio(
156 struct bio *bio)
157 {
158 struct iomap_ioend *ioend = bio->bi_private;
159 struct xfs_inode *ip = XFS_I(ioend->io_inode);
160 unsigned long flags;
161
162 spin_lock_irqsave(&ip->i_ioend_lock, flags);
163 if (list_empty(&ip->i_ioend_list))
164 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
165 &ip->i_ioend_work));
166 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
167 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
168 }
169
170 /*
171 * Fast revalidation of the cached writeback mapping. Return true if the current
172 * mapping is valid, false otherwise.
173 */
174 static bool
175 xfs_imap_valid(
176 struct iomap_writepage_ctx *wpc,
177 struct xfs_inode *ip,
178 loff_t offset)
179 {
180 if (offset < wpc->iomap.offset ||
181 offset >= wpc->iomap.offset + wpc->iomap.length)
182 return false;
183 /*
184 * If this is a COW mapping, it is sufficient to check that the mapping
185 * covers the offset. Be careful to check this first because the caller
186 * can revalidate a COW mapping without updating the data seqno.
187 */
188 if (wpc->iomap.flags & IOMAP_F_SHARED)
189 return true;
190
191 /*
192 * This is not a COW mapping. Check the sequence number of the data fork
193 * because concurrent changes could have invalidated the extent. Check
194 * the COW fork because concurrent changes since the last time we
195 * checked (and found nothing at this offset) could have added
196 * overlapping blocks.
197 */
198 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
199 return false;
200 if (xfs_inode_has_cow_data(ip) &&
201 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
202 return false;
203 return true;
204 }
205
206 /*
207 * Pass in a dellalloc extent and convert it to real extents, return the real
208 * extent that maps offset_fsb in wpc->iomap.
209 *
210 * The current page is held locked so nothing could have removed the block
211 * backing offset_fsb, although it could have moved from the COW to the data
212 * fork by another thread.
213 */
214 static int
215 xfs_convert_blocks(
216 struct iomap_writepage_ctx *wpc,
217 struct xfs_inode *ip,
218 int whichfork,
219 loff_t offset)
220 {
221 int error;
222 unsigned *seq;
223
224 if (whichfork == XFS_COW_FORK)
225 seq = &XFS_WPC(wpc)->cow_seq;
226 else
227 seq = &XFS_WPC(wpc)->data_seq;
228
229 /*
230 * Attempt to allocate whatever delalloc extent currently backs offset
231 * and put the result into wpc->iomap. Allocate in a loop because it
232 * may take several attempts to allocate real blocks for a contiguous
233 * delalloc extent if free space is sufficiently fragmented.
234 */
235 do {
236 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
237 &wpc->iomap, seq);
238 if (error)
239 return error;
240 } while (wpc->iomap.offset + wpc->iomap.length <= offset);
241
242 return 0;
243 }
244
245 static int
246 xfs_map_blocks(
247 struct iomap_writepage_ctx *wpc,
248 struct inode *inode,
249 loff_t offset)
250 {
251 struct xfs_inode *ip = XFS_I(inode);
252 struct xfs_mount *mp = ip->i_mount;
253 ssize_t count = i_blocksize(inode);
254 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
255 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
256 xfs_fileoff_t cow_fsb;
257 int whichfork;
258 struct xfs_bmbt_irec imap;
259 struct xfs_iext_cursor icur;
260 int retries = 0;
261 int error = 0;
262
263 if (xfs_is_shutdown(mp))
264 return -EIO;
265
266 /*
267 * COW fork blocks can overlap data fork blocks even if the blocks
268 * aren't shared. COW I/O always takes precedent, so we must always
269 * check for overlap on reflink inodes unless the mapping is already a
270 * COW one, or the COW fork hasn't changed from the last time we looked
271 * at it.
272 *
273 * It's safe to check the COW fork if_seq here without the ILOCK because
274 * we've indirectly protected against concurrent updates: writeback has
275 * the page locked, which prevents concurrent invalidations by reflink
276 * and directio and prevents concurrent buffered writes to the same
277 * page. Changes to if_seq always happen under i_lock, which protects
278 * against concurrent updates and provides a memory barrier on the way
279 * out that ensures that we always see the current value.
280 */
281 if (xfs_imap_valid(wpc, ip, offset))
282 return 0;
283
284 /*
285 * If we don't have a valid map, now it's time to get a new one for this
286 * offset. This will convert delayed allocations (including COW ones)
287 * into real extents. If we return without a valid map, it means we
288 * landed in a hole and we skip the block.
289 */
290 retry:
291 cow_fsb = NULLFILEOFF;
292 whichfork = XFS_DATA_FORK;
293 xfs_ilock(ip, XFS_ILOCK_SHARED);
294 ASSERT(!xfs_need_iread_extents(&ip->i_df));
295
296 /*
297 * Check if this is offset is covered by a COW extents, and if yes use
298 * it directly instead of looking up anything in the data fork.
299 */
300 if (xfs_inode_has_cow_data(ip) &&
301 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
302 cow_fsb = imap.br_startoff;
303 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
304 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
305 xfs_iunlock(ip, XFS_ILOCK_SHARED);
306
307 whichfork = XFS_COW_FORK;
308 goto allocate_blocks;
309 }
310
311 /*
312 * No COW extent overlap. Revalidate now that we may have updated
313 * ->cow_seq. If the data mapping is still valid, we're done.
314 */
315 if (xfs_imap_valid(wpc, ip, offset)) {
316 xfs_iunlock(ip, XFS_ILOCK_SHARED);
317 return 0;
318 }
319
320 /*
321 * If we don't have a valid map, now it's time to get a new one for this
322 * offset. This will convert delayed allocations (including COW ones)
323 * into real extents.
324 */
325 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
326 imap.br_startoff = end_fsb; /* fake a hole past EOF */
327 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
328 xfs_iunlock(ip, XFS_ILOCK_SHARED);
329
330 /* landed in a hole or beyond EOF? */
331 if (imap.br_startoff > offset_fsb) {
332 imap.br_blockcount = imap.br_startoff - offset_fsb;
333 imap.br_startoff = offset_fsb;
334 imap.br_startblock = HOLESTARTBLOCK;
335 imap.br_state = XFS_EXT_NORM;
336 }
337
338 /*
339 * Truncate to the next COW extent if there is one. This is the only
340 * opportunity to do this because we can skip COW fork lookups for the
341 * subsequent blocks in the mapping; however, the requirement to treat
342 * the COW range separately remains.
343 */
344 if (cow_fsb != NULLFILEOFF &&
345 cow_fsb < imap.br_startoff + imap.br_blockcount)
346 imap.br_blockcount = cow_fsb - imap.br_startoff;
347
348 /* got a delalloc extent? */
349 if (imap.br_startblock != HOLESTARTBLOCK &&
350 isnullstartblock(imap.br_startblock))
351 goto allocate_blocks;
352
353 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
354 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
355 return 0;
356 allocate_blocks:
357 error = xfs_convert_blocks(wpc, ip, whichfork, offset);
358 if (error) {
359 /*
360 * If we failed to find the extent in the COW fork we might have
361 * raced with a COW to data fork conversion or truncate.
362 * Restart the lookup to catch the extent in the data fork for
363 * the former case, but prevent additional retries to avoid
364 * looping forever for the latter case.
365 */
366 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
367 goto retry;
368 ASSERT(error != -EAGAIN);
369 return error;
370 }
371
372 /*
373 * Due to merging the return real extent might be larger than the
374 * original delalloc one. Trim the return extent to the next COW
375 * boundary again to force a re-lookup.
376 */
377 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
378 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
379
380 if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
381 wpc->iomap.length = cow_offset - wpc->iomap.offset;
382 }
383
384 ASSERT(wpc->iomap.offset <= offset);
385 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
386 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
387 return 0;
388 }
389
390 static int
391 xfs_prepare_ioend(
392 struct iomap_ioend *ioend,
393 int status)
394 {
395 unsigned int nofs_flag;
396
397 /*
398 * We can allocate memory here while doing writeback on behalf of
399 * memory reclaim. To avoid memory allocation deadlocks set the
400 * task-wide nofs context for the following operations.
401 */
402 nofs_flag = memalloc_nofs_save();
403
404 /* Convert CoW extents to regular */
405 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
406 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
407 ioend->io_offset, ioend->io_size);
408 }
409
410 memalloc_nofs_restore(nofs_flag);
411
412 /* send ioends that might require a transaction to the completion wq */
413 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
414 (ioend->io_flags & IOMAP_F_SHARED))
415 ioend->io_bio->bi_end_io = xfs_end_bio;
416 return status;
417 }
418
419 /*
420 * If the page has delalloc blocks on it, we need to punch them out before we
421 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
422 * inode that can trip up a later direct I/O read operation on the same region.
423 *
424 * We prevent this by truncating away the delalloc regions on the page. Because
425 * they are delalloc, we can do this without needing a transaction. Indeed - if
426 * we get ENOSPC errors, we have to be able to do this truncation without a
427 * transaction as there is no space left for block reservation (typically why we
428 * see a ENOSPC in writeback).
429 */
430 static void
431 xfs_discard_page(
432 struct page *page,
433 loff_t fileoff)
434 {
435 struct inode *inode = page->mapping->host;
436 struct xfs_inode *ip = XFS_I(inode);
437 struct xfs_mount *mp = ip->i_mount;
438 unsigned int pageoff = offset_in_page(fileoff);
439 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff);
440 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff);
441 int error;
442
443 if (xfs_is_shutdown(mp))
444 goto out_invalidate;
445
446 xfs_alert_ratelimited(mp,
447 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
448 page, ip->i_ino, fileoff);
449
450 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
451 i_blocks_per_page(inode, page) - pageoff_fsb);
452 if (error && !xfs_is_shutdown(mp))
453 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
454 out_invalidate:
455 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff);
456 }
457
458 static const struct iomap_writeback_ops xfs_writeback_ops = {
459 .map_blocks = xfs_map_blocks,
460 .prepare_ioend = xfs_prepare_ioend,
461 .discard_page = xfs_discard_page,
462 };
463
464 STATIC int
465 xfs_vm_writepages(
466 struct address_space *mapping,
467 struct writeback_control *wbc)
468 {
469 struct xfs_writepage_ctx wpc = { };
470
471 /*
472 * Writing back data in a transaction context can result in recursive
473 * transactions. This is bad, so issue a warning and get out of here.
474 */
475 if (WARN_ON_ONCE(current->journal_info))
476 return 0;
477
478 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
479 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
480 }
481
482 STATIC int
483 xfs_dax_writepages(
484 struct address_space *mapping,
485 struct writeback_control *wbc)
486 {
487 struct xfs_inode *ip = XFS_I(mapping->host);
488
489 xfs_iflags_clear(ip, XFS_ITRUNCATED);
490 return dax_writeback_mapping_range(mapping,
491 xfs_inode_buftarg(ip)->bt_daxdev, wbc);
492 }
493
494 STATIC sector_t
495 xfs_vm_bmap(
496 struct address_space *mapping,
497 sector_t block)
498 {
499 struct xfs_inode *ip = XFS_I(mapping->host);
500
501 trace_xfs_vm_bmap(ip);
502
503 /*
504 * The swap code (ab-)uses ->bmap to get a block mapping and then
505 * bypasses the file system for actual I/O. We really can't allow
506 * that on reflinks inodes, so we have to skip out here. And yes,
507 * 0 is the magic code for a bmap error.
508 *
509 * Since we don't pass back blockdev info, we can't return bmap
510 * information for rt files either.
511 */
512 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
513 return 0;
514 return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
515 }
516
517 STATIC int
518 xfs_vm_readpage(
519 struct file *unused,
520 struct page *page)
521 {
522 return iomap_readpage(page, &xfs_read_iomap_ops);
523 }
524
525 STATIC void
526 xfs_vm_readahead(
527 struct readahead_control *rac)
528 {
529 iomap_readahead(rac, &xfs_read_iomap_ops);
530 }
531
532 static int
533 xfs_iomap_swapfile_activate(
534 struct swap_info_struct *sis,
535 struct file *swap_file,
536 sector_t *span)
537 {
538 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
539 return iomap_swapfile_activate(sis, swap_file, span,
540 &xfs_read_iomap_ops);
541 }
542
543 const struct address_space_operations xfs_address_space_operations = {
544 .readpage = xfs_vm_readpage,
545 .readahead = xfs_vm_readahead,
546 .writepages = xfs_vm_writepages,
547 .set_page_dirty = __set_page_dirty_nobuffers,
548 .releasepage = iomap_releasepage,
549 .invalidatepage = iomap_invalidatepage,
550 .bmap = xfs_vm_bmap,
551 .direct_IO = noop_direct_IO,
552 .migratepage = iomap_migrate_page,
553 .is_partially_uptodate = iomap_is_partially_uptodate,
554 .error_remove_page = generic_error_remove_page,
555 .swap_activate = xfs_iomap_swapfile_activate,
556 };
557
558 const struct address_space_operations xfs_dax_aops = {
559 .writepages = xfs_dax_writepages,
560 .direct_IO = noop_direct_IO,
561 .set_page_dirty = __set_page_dirty_no_writeback,
562 .invalidatepage = noop_invalidatepage,
563 .swap_activate = xfs_iomap_swapfile_activate,
564 };