]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_aops.c
xfs: move two more RT specific functions into CONFIG_XFS_RT
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 /*
41 * structure owned by writepages passed to individual writepage calls
42 */
43 struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49 };
50
51 void
52 xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56 {
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68 }
69
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 struct inode *inode)
73 {
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81 }
82
83 /*
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
87 *
88 * Note that we open code the action in end_buffer_async_write here so that we
89 * only have to iterate over the buffers attached to the page once. This is not
90 * only more efficient, but also ensures that we only calls end_page_writeback
91 * at the end of the iteration, and thus avoids the pitfall of having the page
92 * and buffers potentially freed after every call to end_buffer_async_write.
93 */
94 static void
95 xfs_finish_page_writeback(
96 struct inode *inode,
97 struct bio_vec *bvec,
98 int error)
99 {
100 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
101 bool busy = false;
102 unsigned int off = 0;
103 unsigned long flags;
104
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
107 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
109
110 local_irq_save(flags);
111 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
112 do {
113 if (off >= bvec->bv_offset &&
114 off < bvec->bv_offset + bvec->bv_len) {
115 ASSERT(buffer_async_write(bh));
116 ASSERT(bh->b_end_io == NULL);
117
118 if (error) {
119 mark_buffer_write_io_error(bh);
120 clear_buffer_uptodate(bh);
121 SetPageError(bvec->bv_page);
122 } else {
123 set_buffer_uptodate(bh);
124 }
125 clear_buffer_async_write(bh);
126 unlock_buffer(bh);
127 } else if (buffer_async_write(bh)) {
128 ASSERT(buffer_locked(bh));
129 busy = true;
130 }
131 off += bh->b_size;
132 } while ((bh = bh->b_this_page) != head);
133 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
134 local_irq_restore(flags);
135
136 if (!busy)
137 end_page_writeback(bvec->bv_page);
138 }
139
140 /*
141 * We're now finished for good with this ioend structure. Update the page
142 * state, release holds on bios, and finally free up memory. Do not use the
143 * ioend after this.
144 */
145 STATIC void
146 xfs_destroy_ioend(
147 struct xfs_ioend *ioend,
148 int error)
149 {
150 struct inode *inode = ioend->io_inode;
151 struct bio *bio = &ioend->io_inline_bio;
152 struct bio *last = ioend->io_bio, *next;
153 u64 start = bio->bi_iter.bi_sector;
154 bool quiet = bio_flagged(bio, BIO_QUIET);
155
156 for (bio = &ioend->io_inline_bio; bio; bio = next) {
157 struct bio_vec *bvec;
158 int i;
159
160 /*
161 * For the last bio, bi_private points to the ioend, so we
162 * need to explicitly end the iteration here.
163 */
164 if (bio == last)
165 next = NULL;
166 else
167 next = bio->bi_private;
168
169 /* walk each page on bio, ending page IO on them */
170 bio_for_each_segment_all(bvec, bio, i)
171 xfs_finish_page_writeback(inode, bvec, error);
172
173 bio_put(bio);
174 }
175
176 if (unlikely(error && !quiet)) {
177 xfs_err_ratelimited(XFS_I(inode)->i_mount,
178 "writeback error on sector %llu", start);
179 }
180 }
181
182 /*
183 * Fast and loose check if this write could update the on-disk inode size.
184 */
185 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
186 {
187 return ioend->io_offset + ioend->io_size >
188 XFS_I(ioend->io_inode)->i_d.di_size;
189 }
190
191 STATIC int
192 xfs_setfilesize_trans_alloc(
193 struct xfs_ioend *ioend)
194 {
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196 struct xfs_trans *tp;
197 int error;
198
199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
200 if (error)
201 return error;
202
203 ioend->io_append_trans = tp;
204
205 /*
206 * We may pass freeze protection with a transaction. So tell lockdep
207 * we released it.
208 */
209 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
210 /*
211 * We hand off the transaction to the completion thread now, so
212 * clear the flag here.
213 */
214 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
215 return 0;
216 }
217
218 /*
219 * Update on-disk file size now that data has been written to disk.
220 */
221 STATIC int
222 __xfs_setfilesize(
223 struct xfs_inode *ip,
224 struct xfs_trans *tp,
225 xfs_off_t offset,
226 size_t size)
227 {
228 xfs_fsize_t isize;
229
230 xfs_ilock(ip, XFS_ILOCK_EXCL);
231 isize = xfs_new_eof(ip, offset + size);
232 if (!isize) {
233 xfs_iunlock(ip, XFS_ILOCK_EXCL);
234 xfs_trans_cancel(tp);
235 return 0;
236 }
237
238 trace_xfs_setfilesize(ip, offset, size);
239
240 ip->i_d.di_size = isize;
241 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
242 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
243
244 return xfs_trans_commit(tp);
245 }
246
247 int
248 xfs_setfilesize(
249 struct xfs_inode *ip,
250 xfs_off_t offset,
251 size_t size)
252 {
253 struct xfs_mount *mp = ip->i_mount;
254 struct xfs_trans *tp;
255 int error;
256
257 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
258 if (error)
259 return error;
260
261 return __xfs_setfilesize(ip, tp, offset, size);
262 }
263
264 STATIC int
265 xfs_setfilesize_ioend(
266 struct xfs_ioend *ioend,
267 int error)
268 {
269 struct xfs_inode *ip = XFS_I(ioend->io_inode);
270 struct xfs_trans *tp = ioend->io_append_trans;
271
272 /*
273 * The transaction may have been allocated in the I/O submission thread,
274 * thus we need to mark ourselves as being in a transaction manually.
275 * Similarly for freeze protection.
276 */
277 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
278 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
279
280 /* we abort the update if there was an IO error */
281 if (error) {
282 xfs_trans_cancel(tp);
283 return error;
284 }
285
286 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
287 }
288
289 /*
290 * IO write completion.
291 */
292 STATIC void
293 xfs_end_io(
294 struct work_struct *work)
295 {
296 struct xfs_ioend *ioend =
297 container_of(work, struct xfs_ioend, io_work);
298 struct xfs_inode *ip = XFS_I(ioend->io_inode);
299 xfs_off_t offset = ioend->io_offset;
300 size_t size = ioend->io_size;
301 int error;
302
303 /*
304 * Just clean up the in-memory strutures if the fs has been shut down.
305 */
306 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
307 error = -EIO;
308 goto done;
309 }
310
311 /*
312 * Clean up any COW blocks on an I/O error.
313 */
314 error = blk_status_to_errno(ioend->io_bio->bi_status);
315 if (unlikely(error)) {
316 switch (ioend->io_type) {
317 case XFS_IO_COW:
318 xfs_reflink_cancel_cow_range(ip, offset, size, true);
319 break;
320 }
321
322 goto done;
323 }
324
325 /*
326 * Success: commit the COW or unwritten blocks if needed.
327 */
328 switch (ioend->io_type) {
329 case XFS_IO_COW:
330 error = xfs_reflink_end_cow(ip, offset, size);
331 break;
332 case XFS_IO_UNWRITTEN:
333 /* writeback should never update isize */
334 error = xfs_iomap_write_unwritten(ip, offset, size, false);
335 break;
336 default:
337 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
338 break;
339 }
340
341 done:
342 if (ioend->io_append_trans)
343 error = xfs_setfilesize_ioend(ioend, error);
344 xfs_destroy_ioend(ioend, error);
345 }
346
347 STATIC void
348 xfs_end_bio(
349 struct bio *bio)
350 {
351 struct xfs_ioend *ioend = bio->bi_private;
352 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
353
354 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
355 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
356 else if (ioend->io_append_trans)
357 queue_work(mp->m_data_workqueue, &ioend->io_work);
358 else
359 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
360 }
361
362 STATIC int
363 xfs_map_blocks(
364 struct inode *inode,
365 loff_t offset,
366 struct xfs_bmbt_irec *imap,
367 int type)
368 {
369 struct xfs_inode *ip = XFS_I(inode);
370 struct xfs_mount *mp = ip->i_mount;
371 ssize_t count = i_blocksize(inode);
372 xfs_fileoff_t offset_fsb, end_fsb;
373 int error = 0;
374 int bmapi_flags = XFS_BMAPI_ENTIRE;
375 int nimaps = 1;
376
377 if (XFS_FORCED_SHUTDOWN(mp))
378 return -EIO;
379
380 ASSERT(type != XFS_IO_COW);
381 if (type == XFS_IO_UNWRITTEN)
382 bmapi_flags |= XFS_BMAPI_IGSTATE;
383
384 xfs_ilock(ip, XFS_ILOCK_SHARED);
385 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
386 (ip->i_df.if_flags & XFS_IFEXTENTS));
387 ASSERT(offset <= mp->m_super->s_maxbytes);
388
389 if (offset + count > mp->m_super->s_maxbytes)
390 count = mp->m_super->s_maxbytes - offset;
391 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
392 offset_fsb = XFS_B_TO_FSBT(mp, offset);
393 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
394 imap, &nimaps, bmapi_flags);
395 /*
396 * Truncate an overwrite extent if there's a pending CoW
397 * reservation before the end of this extent. This forces us
398 * to come back to writepage to take care of the CoW.
399 */
400 if (nimaps && type == XFS_IO_OVERWRITE)
401 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
402 xfs_iunlock(ip, XFS_ILOCK_SHARED);
403
404 if (error)
405 return error;
406
407 if (type == XFS_IO_DELALLOC &&
408 (!nimaps || isnullstartblock(imap->br_startblock))) {
409 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
410 imap);
411 if (!error)
412 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
413 return error;
414 }
415
416 #ifdef DEBUG
417 if (type == XFS_IO_UNWRITTEN) {
418 ASSERT(nimaps);
419 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
420 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
421 }
422 #endif
423 if (nimaps)
424 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
425 return 0;
426 }
427
428 STATIC bool
429 xfs_imap_valid(
430 struct inode *inode,
431 struct xfs_bmbt_irec *imap,
432 xfs_off_t offset)
433 {
434 offset >>= inode->i_blkbits;
435
436 /*
437 * We have to make sure the cached mapping is within EOF to protect
438 * against eofblocks trimming on file release leaving us with a stale
439 * mapping. Otherwise, a page for a subsequent file extending buffered
440 * write could get picked up by this writeback cycle and written to the
441 * wrong blocks.
442 *
443 * Note that what we really want here is a generic mapping invalidation
444 * mechanism to protect us from arbitrary extent modifying contexts, not
445 * just eofblocks.
446 */
447 xfs_trim_extent_eof(imap, XFS_I(inode));
448
449 return offset >= imap->br_startoff &&
450 offset < imap->br_startoff + imap->br_blockcount;
451 }
452
453 STATIC void
454 xfs_start_buffer_writeback(
455 struct buffer_head *bh)
456 {
457 ASSERT(buffer_mapped(bh));
458 ASSERT(buffer_locked(bh));
459 ASSERT(!buffer_delay(bh));
460 ASSERT(!buffer_unwritten(bh));
461
462 bh->b_end_io = NULL;
463 set_buffer_async_write(bh);
464 set_buffer_uptodate(bh);
465 clear_buffer_dirty(bh);
466 }
467
468 STATIC void
469 xfs_start_page_writeback(
470 struct page *page,
471 int clear_dirty)
472 {
473 ASSERT(PageLocked(page));
474 ASSERT(!PageWriteback(page));
475
476 /*
477 * if the page was not fully cleaned, we need to ensure that the higher
478 * layers come back to it correctly. That means we need to keep the page
479 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
480 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
481 * write this page in this writeback sweep will be made.
482 */
483 if (clear_dirty) {
484 clear_page_dirty_for_io(page);
485 set_page_writeback(page);
486 } else
487 set_page_writeback_keepwrite(page);
488
489 unlock_page(page);
490 }
491
492 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
493 {
494 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
495 }
496
497 /*
498 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
499 * it, and we submit that bio. The ioend may be used for multiple bio
500 * submissions, so we only want to allocate an append transaction for the ioend
501 * once. In the case of multiple bio submission, each bio will take an IO
502 * reference to the ioend to ensure that the ioend completion is only done once
503 * all bios have been submitted and the ioend is really done.
504 *
505 * If @fail is non-zero, it means that we have a situation where some part of
506 * the submission process has failed after we have marked paged for writeback
507 * and unlocked them. In this situation, we need to fail the bio and ioend
508 * rather than submit it to IO. This typically only happens on a filesystem
509 * shutdown.
510 */
511 STATIC int
512 xfs_submit_ioend(
513 struct writeback_control *wbc,
514 struct xfs_ioend *ioend,
515 int status)
516 {
517 /* Convert CoW extents to regular */
518 if (!status && ioend->io_type == XFS_IO_COW) {
519 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
520 ioend->io_offset, ioend->io_size);
521 }
522
523 /* Reserve log space if we might write beyond the on-disk inode size. */
524 if (!status &&
525 ioend->io_type != XFS_IO_UNWRITTEN &&
526 xfs_ioend_is_append(ioend) &&
527 !ioend->io_append_trans)
528 status = xfs_setfilesize_trans_alloc(ioend);
529
530 ioend->io_bio->bi_private = ioend;
531 ioend->io_bio->bi_end_io = xfs_end_bio;
532 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
533
534 /*
535 * If we are failing the IO now, just mark the ioend with an
536 * error and finish it. This will run IO completion immediately
537 * as there is only one reference to the ioend at this point in
538 * time.
539 */
540 if (status) {
541 ioend->io_bio->bi_status = errno_to_blk_status(status);
542 bio_endio(ioend->io_bio);
543 return status;
544 }
545
546 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
547 submit_bio(ioend->io_bio);
548 return 0;
549 }
550
551 static void
552 xfs_init_bio_from_bh(
553 struct bio *bio,
554 struct buffer_head *bh)
555 {
556 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
557 bio->bi_bdev = bh->b_bdev;
558 }
559
560 static struct xfs_ioend *
561 xfs_alloc_ioend(
562 struct inode *inode,
563 unsigned int type,
564 xfs_off_t offset,
565 struct buffer_head *bh)
566 {
567 struct xfs_ioend *ioend;
568 struct bio *bio;
569
570 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
571 xfs_init_bio_from_bh(bio, bh);
572
573 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
574 INIT_LIST_HEAD(&ioend->io_list);
575 ioend->io_type = type;
576 ioend->io_inode = inode;
577 ioend->io_size = 0;
578 ioend->io_offset = offset;
579 INIT_WORK(&ioend->io_work, xfs_end_io);
580 ioend->io_append_trans = NULL;
581 ioend->io_bio = bio;
582 return ioend;
583 }
584
585 /*
586 * Allocate a new bio, and chain the old bio to the new one.
587 *
588 * Note that we have to do perform the chaining in this unintuitive order
589 * so that the bi_private linkage is set up in the right direction for the
590 * traversal in xfs_destroy_ioend().
591 */
592 static void
593 xfs_chain_bio(
594 struct xfs_ioend *ioend,
595 struct writeback_control *wbc,
596 struct buffer_head *bh)
597 {
598 struct bio *new;
599
600 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
601 xfs_init_bio_from_bh(new, bh);
602
603 bio_chain(ioend->io_bio, new);
604 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
605 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
606 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
607 submit_bio(ioend->io_bio);
608 ioend->io_bio = new;
609 }
610
611 /*
612 * Test to see if we've been building up a completion structure for
613 * earlier buffers -- if so, we try to append to this ioend if we
614 * can, otherwise we finish off any current ioend and start another.
615 * Return the ioend we finished off so that the caller can submit it
616 * once it has finished processing the dirty page.
617 */
618 STATIC void
619 xfs_add_to_ioend(
620 struct inode *inode,
621 struct buffer_head *bh,
622 xfs_off_t offset,
623 struct xfs_writepage_ctx *wpc,
624 struct writeback_control *wbc,
625 struct list_head *iolist)
626 {
627 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
628 bh->b_blocknr != wpc->last_block + 1 ||
629 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
630 if (wpc->ioend)
631 list_add(&wpc->ioend->io_list, iolist);
632 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
633 }
634
635 /*
636 * If the buffer doesn't fit into the bio we need to allocate a new
637 * one. This shouldn't happen more than once for a given buffer.
638 */
639 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
640 xfs_chain_bio(wpc->ioend, wbc, bh);
641
642 wpc->ioend->io_size += bh->b_size;
643 wpc->last_block = bh->b_blocknr;
644 xfs_start_buffer_writeback(bh);
645 }
646
647 STATIC void
648 xfs_map_buffer(
649 struct inode *inode,
650 struct buffer_head *bh,
651 struct xfs_bmbt_irec *imap,
652 xfs_off_t offset)
653 {
654 sector_t bn;
655 struct xfs_mount *m = XFS_I(inode)->i_mount;
656 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
657 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
658
659 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
660 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
661
662 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
663 ((offset - iomap_offset) >> inode->i_blkbits);
664
665 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
666
667 bh->b_blocknr = bn;
668 set_buffer_mapped(bh);
669 }
670
671 STATIC void
672 xfs_map_at_offset(
673 struct inode *inode,
674 struct buffer_head *bh,
675 struct xfs_bmbt_irec *imap,
676 xfs_off_t offset)
677 {
678 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
679 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
680
681 xfs_map_buffer(inode, bh, imap, offset);
682 set_buffer_mapped(bh);
683 clear_buffer_delay(bh);
684 clear_buffer_unwritten(bh);
685 }
686
687 /*
688 * Test if a given page contains at least one buffer of a given @type.
689 * If @check_all_buffers is true, then we walk all the buffers in the page to
690 * try to find one of the type passed in. If it is not set, then the caller only
691 * needs to check the first buffer on the page for a match.
692 */
693 STATIC bool
694 xfs_check_page_type(
695 struct page *page,
696 unsigned int type,
697 bool check_all_buffers)
698 {
699 struct buffer_head *bh;
700 struct buffer_head *head;
701
702 if (PageWriteback(page))
703 return false;
704 if (!page->mapping)
705 return false;
706 if (!page_has_buffers(page))
707 return false;
708
709 bh = head = page_buffers(page);
710 do {
711 if (buffer_unwritten(bh)) {
712 if (type == XFS_IO_UNWRITTEN)
713 return true;
714 } else if (buffer_delay(bh)) {
715 if (type == XFS_IO_DELALLOC)
716 return true;
717 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
718 if (type == XFS_IO_OVERWRITE)
719 return true;
720 }
721
722 /* If we are only checking the first buffer, we are done now. */
723 if (!check_all_buffers)
724 break;
725 } while ((bh = bh->b_this_page) != head);
726
727 return false;
728 }
729
730 STATIC void
731 xfs_vm_invalidatepage(
732 struct page *page,
733 unsigned int offset,
734 unsigned int length)
735 {
736 trace_xfs_invalidatepage(page->mapping->host, page, offset,
737 length);
738
739 /*
740 * If we are invalidating the entire page, clear the dirty state from it
741 * so that we can check for attempts to release dirty cached pages in
742 * xfs_vm_releasepage().
743 */
744 if (offset == 0 && length >= PAGE_SIZE)
745 cancel_dirty_page(page);
746 block_invalidatepage(page, offset, length);
747 }
748
749 /*
750 * If the page has delalloc buffers on it, we need to punch them out before we
751 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
752 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
753 * is done on that same region - the delalloc extent is returned when none is
754 * supposed to be there.
755 *
756 * We prevent this by truncating away the delalloc regions on the page before
757 * invalidating it. Because they are delalloc, we can do this without needing a
758 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
759 * truncation without a transaction as there is no space left for block
760 * reservation (typically why we see a ENOSPC in writeback).
761 *
762 * This is not a performance critical path, so for now just do the punching a
763 * buffer head at a time.
764 */
765 STATIC void
766 xfs_aops_discard_page(
767 struct page *page)
768 {
769 struct inode *inode = page->mapping->host;
770 struct xfs_inode *ip = XFS_I(inode);
771 struct buffer_head *bh, *head;
772 loff_t offset = page_offset(page);
773
774 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
775 goto out_invalidate;
776
777 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
778 goto out_invalidate;
779
780 xfs_alert(ip->i_mount,
781 "page discard on page %p, inode 0x%llx, offset %llu.",
782 page, ip->i_ino, offset);
783
784 xfs_ilock(ip, XFS_ILOCK_EXCL);
785 bh = head = page_buffers(page);
786 do {
787 int error;
788 xfs_fileoff_t start_fsb;
789
790 if (!buffer_delay(bh))
791 goto next_buffer;
792
793 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
794 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
795 if (error) {
796 /* something screwed, just bail */
797 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
798 xfs_alert(ip->i_mount,
799 "page discard unable to remove delalloc mapping.");
800 }
801 break;
802 }
803 next_buffer:
804 offset += i_blocksize(inode);
805
806 } while ((bh = bh->b_this_page) != head);
807
808 xfs_iunlock(ip, XFS_ILOCK_EXCL);
809 out_invalidate:
810 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
811 return;
812 }
813
814 static int
815 xfs_map_cow(
816 struct xfs_writepage_ctx *wpc,
817 struct inode *inode,
818 loff_t offset,
819 unsigned int *new_type)
820 {
821 struct xfs_inode *ip = XFS_I(inode);
822 struct xfs_bmbt_irec imap;
823 bool is_cow = false;
824 int error;
825
826 /*
827 * If we already have a valid COW mapping keep using it.
828 */
829 if (wpc->io_type == XFS_IO_COW) {
830 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
831 if (wpc->imap_valid) {
832 *new_type = XFS_IO_COW;
833 return 0;
834 }
835 }
836
837 /*
838 * Else we need to check if there is a COW mapping at this offset.
839 */
840 xfs_ilock(ip, XFS_ILOCK_SHARED);
841 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
842 xfs_iunlock(ip, XFS_ILOCK_SHARED);
843
844 if (!is_cow)
845 return 0;
846
847 /*
848 * And if the COW mapping has a delayed extent here we need to
849 * allocate real space for it now.
850 */
851 if (isnullstartblock(imap.br_startblock)) {
852 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
853 &imap);
854 if (error)
855 return error;
856 }
857
858 wpc->io_type = *new_type = XFS_IO_COW;
859 wpc->imap_valid = true;
860 wpc->imap = imap;
861 return 0;
862 }
863
864 /*
865 * We implement an immediate ioend submission policy here to avoid needing to
866 * chain multiple ioends and hence nest mempool allocations which can violate
867 * forward progress guarantees we need to provide. The current ioend we are
868 * adding buffers to is cached on the writepage context, and if the new buffer
869 * does not append to the cached ioend it will create a new ioend and cache that
870 * instead.
871 *
872 * If a new ioend is created and cached, the old ioend is returned and queued
873 * locally for submission once the entire page is processed or an error has been
874 * detected. While ioends are submitted immediately after they are completed,
875 * batching optimisations are provided by higher level block plugging.
876 *
877 * At the end of a writeback pass, there will be a cached ioend remaining on the
878 * writepage context that the caller will need to submit.
879 */
880 static int
881 xfs_writepage_map(
882 struct xfs_writepage_ctx *wpc,
883 struct writeback_control *wbc,
884 struct inode *inode,
885 struct page *page,
886 loff_t offset,
887 uint64_t end_offset)
888 {
889 LIST_HEAD(submit_list);
890 struct xfs_ioend *ioend, *next;
891 struct buffer_head *bh, *head;
892 ssize_t len = i_blocksize(inode);
893 int error = 0;
894 int count = 0;
895 int uptodate = 1;
896 unsigned int new_type;
897
898 bh = head = page_buffers(page);
899 offset = page_offset(page);
900 do {
901 if (offset >= end_offset)
902 break;
903 if (!buffer_uptodate(bh))
904 uptodate = 0;
905
906 /*
907 * set_page_dirty dirties all buffers in a page, independent
908 * of their state. The dirty state however is entirely
909 * meaningless for holes (!mapped && uptodate), so skip
910 * buffers covering holes here.
911 */
912 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
913 wpc->imap_valid = false;
914 continue;
915 }
916
917 if (buffer_unwritten(bh))
918 new_type = XFS_IO_UNWRITTEN;
919 else if (buffer_delay(bh))
920 new_type = XFS_IO_DELALLOC;
921 else if (buffer_uptodate(bh))
922 new_type = XFS_IO_OVERWRITE;
923 else {
924 if (PageUptodate(page))
925 ASSERT(buffer_mapped(bh));
926 /*
927 * This buffer is not uptodate and will not be
928 * written to disk. Ensure that we will put any
929 * subsequent writeable buffers into a new
930 * ioend.
931 */
932 wpc->imap_valid = false;
933 continue;
934 }
935
936 if (xfs_is_reflink_inode(XFS_I(inode))) {
937 error = xfs_map_cow(wpc, inode, offset, &new_type);
938 if (error)
939 goto out;
940 }
941
942 if (wpc->io_type != new_type) {
943 wpc->io_type = new_type;
944 wpc->imap_valid = false;
945 }
946
947 if (wpc->imap_valid)
948 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
949 offset);
950 if (!wpc->imap_valid) {
951 error = xfs_map_blocks(inode, offset, &wpc->imap,
952 wpc->io_type);
953 if (error)
954 goto out;
955 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
956 offset);
957 }
958 if (wpc->imap_valid) {
959 lock_buffer(bh);
960 if (wpc->io_type != XFS_IO_OVERWRITE)
961 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
962 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
963 count++;
964 }
965
966 } while (offset += len, ((bh = bh->b_this_page) != head));
967
968 if (uptodate && bh == head)
969 SetPageUptodate(page);
970
971 ASSERT(wpc->ioend || list_empty(&submit_list));
972
973 out:
974 /*
975 * On error, we have to fail the ioend here because we have locked
976 * buffers in the ioend. If we don't do this, we'll deadlock
977 * invalidating the page as that tries to lock the buffers on the page.
978 * Also, because we may have set pages under writeback, we have to make
979 * sure we run IO completion to mark the error state of the IO
980 * appropriately, so we can't cancel the ioend directly here. That means
981 * we have to mark this page as under writeback if we included any
982 * buffers from it in the ioend chain so that completion treats it
983 * correctly.
984 *
985 * If we didn't include the page in the ioend, the on error we can
986 * simply discard and unlock it as there are no other users of the page
987 * or it's buffers right now. The caller will still need to trigger
988 * submission of outstanding ioends on the writepage context so they are
989 * treated correctly on error.
990 */
991 if (count) {
992 xfs_start_page_writeback(page, !error);
993
994 /*
995 * Preserve the original error if there was one, otherwise catch
996 * submission errors here and propagate into subsequent ioend
997 * submissions.
998 */
999 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1000 int error2;
1001
1002 list_del_init(&ioend->io_list);
1003 error2 = xfs_submit_ioend(wbc, ioend, error);
1004 if (error2 && !error)
1005 error = error2;
1006 }
1007 } else if (error) {
1008 xfs_aops_discard_page(page);
1009 ClearPageUptodate(page);
1010 unlock_page(page);
1011 } else {
1012 /*
1013 * We can end up here with no error and nothing to write if we
1014 * race with a partial page truncate on a sub-page block sized
1015 * filesystem. In that case we need to mark the page clean.
1016 */
1017 xfs_start_page_writeback(page, 1);
1018 end_page_writeback(page);
1019 }
1020
1021 mapping_set_error(page->mapping, error);
1022 return error;
1023 }
1024
1025 /*
1026 * Write out a dirty page.
1027 *
1028 * For delalloc space on the page we need to allocate space and flush it.
1029 * For unwritten space on the page we need to start the conversion to
1030 * regular allocated space.
1031 * For any other dirty buffer heads on the page we should flush them.
1032 */
1033 STATIC int
1034 xfs_do_writepage(
1035 struct page *page,
1036 struct writeback_control *wbc,
1037 void *data)
1038 {
1039 struct xfs_writepage_ctx *wpc = data;
1040 struct inode *inode = page->mapping->host;
1041 loff_t offset;
1042 uint64_t end_offset;
1043 pgoff_t end_index;
1044
1045 trace_xfs_writepage(inode, page, 0, 0);
1046
1047 ASSERT(page_has_buffers(page));
1048
1049 /*
1050 * Refuse to write the page out if we are called from reclaim context.
1051 *
1052 * This avoids stack overflows when called from deeply used stacks in
1053 * random callers for direct reclaim or memcg reclaim. We explicitly
1054 * allow reclaim from kswapd as the stack usage there is relatively low.
1055 *
1056 * This should never happen except in the case of a VM regression so
1057 * warn about it.
1058 */
1059 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1060 PF_MEMALLOC))
1061 goto redirty;
1062
1063 /*
1064 * Given that we do not allow direct reclaim to call us, we should
1065 * never be called while in a filesystem transaction.
1066 */
1067 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1068 goto redirty;
1069
1070 /*
1071 * Is this page beyond the end of the file?
1072 *
1073 * The page index is less than the end_index, adjust the end_offset
1074 * to the highest offset that this page should represent.
1075 * -----------------------------------------------------
1076 * | file mapping | <EOF> |
1077 * -----------------------------------------------------
1078 * | Page ... | Page N-2 | Page N-1 | Page N | |
1079 * ^--------------------------------^----------|--------
1080 * | desired writeback range | see else |
1081 * ---------------------------------^------------------|
1082 */
1083 offset = i_size_read(inode);
1084 end_index = offset >> PAGE_SHIFT;
1085 if (page->index < end_index)
1086 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1087 else {
1088 /*
1089 * Check whether the page to write out is beyond or straddles
1090 * i_size or not.
1091 * -------------------------------------------------------
1092 * | file mapping | <EOF> |
1093 * -------------------------------------------------------
1094 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1095 * ^--------------------------------^-----------|---------
1096 * | | Straddles |
1097 * ---------------------------------^-----------|--------|
1098 */
1099 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1100
1101 /*
1102 * Skip the page if it is fully outside i_size, e.g. due to a
1103 * truncate operation that is in progress. We must redirty the
1104 * page so that reclaim stops reclaiming it. Otherwise
1105 * xfs_vm_releasepage() is called on it and gets confused.
1106 *
1107 * Note that the end_index is unsigned long, it would overflow
1108 * if the given offset is greater than 16TB on 32-bit system
1109 * and if we do check the page is fully outside i_size or not
1110 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1111 * will be evaluated to 0. Hence this page will be redirtied
1112 * and be written out repeatedly which would result in an
1113 * infinite loop, the user program that perform this operation
1114 * will hang. Instead, we can verify this situation by checking
1115 * if the page to write is totally beyond the i_size or if it's
1116 * offset is just equal to the EOF.
1117 */
1118 if (page->index > end_index ||
1119 (page->index == end_index && offset_into_page == 0))
1120 goto redirty;
1121
1122 /*
1123 * The page straddles i_size. It must be zeroed out on each
1124 * and every writepage invocation because it may be mmapped.
1125 * "A file is mapped in multiples of the page size. For a file
1126 * that is not a multiple of the page size, the remaining
1127 * memory is zeroed when mapped, and writes to that region are
1128 * not written out to the file."
1129 */
1130 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1131
1132 /* Adjust the end_offset to the end of file */
1133 end_offset = offset;
1134 }
1135
1136 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1137
1138 redirty:
1139 redirty_page_for_writepage(wbc, page);
1140 unlock_page(page);
1141 return 0;
1142 }
1143
1144 STATIC int
1145 xfs_vm_writepage(
1146 struct page *page,
1147 struct writeback_control *wbc)
1148 {
1149 struct xfs_writepage_ctx wpc = {
1150 .io_type = XFS_IO_INVALID,
1151 };
1152 int ret;
1153
1154 ret = xfs_do_writepage(page, wbc, &wpc);
1155 if (wpc.ioend)
1156 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1157 return ret;
1158 }
1159
1160 STATIC int
1161 xfs_vm_writepages(
1162 struct address_space *mapping,
1163 struct writeback_control *wbc)
1164 {
1165 struct xfs_writepage_ctx wpc = {
1166 .io_type = XFS_IO_INVALID,
1167 };
1168 int ret;
1169
1170 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1171 if (dax_mapping(mapping))
1172 return dax_writeback_mapping_range(mapping,
1173 xfs_find_bdev_for_inode(mapping->host), wbc);
1174
1175 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1176 if (wpc.ioend)
1177 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1178 return ret;
1179 }
1180
1181 /*
1182 * Called to move a page into cleanable state - and from there
1183 * to be released. The page should already be clean. We always
1184 * have buffer heads in this call.
1185 *
1186 * Returns 1 if the page is ok to release, 0 otherwise.
1187 */
1188 STATIC int
1189 xfs_vm_releasepage(
1190 struct page *page,
1191 gfp_t gfp_mask)
1192 {
1193 int delalloc, unwritten;
1194
1195 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1196
1197 /*
1198 * mm accommodates an old ext3 case where clean pages might not have had
1199 * the dirty bit cleared. Thus, it can send actual dirty pages to
1200 * ->releasepage() via shrink_active_list(). Conversely,
1201 * block_invalidatepage() can send pages that are still marked dirty but
1202 * otherwise have invalidated buffers.
1203 *
1204 * We want to release the latter to avoid unnecessary buildup of the
1205 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1206 * that are entirely invalidated and need to be released. Hence the
1207 * only time we should get dirty pages here is through
1208 * shrink_active_list() and so we can simply skip those now.
1209 *
1210 * warn if we've left any lingering delalloc/unwritten buffers on clean
1211 * or invalidated pages we are about to release.
1212 */
1213 if (PageDirty(page))
1214 return 0;
1215
1216 xfs_count_page_state(page, &delalloc, &unwritten);
1217
1218 if (WARN_ON_ONCE(delalloc))
1219 return 0;
1220 if (WARN_ON_ONCE(unwritten))
1221 return 0;
1222
1223 return try_to_free_buffers(page);
1224 }
1225
1226 /*
1227 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1228 * is, so that we can avoid repeated get_blocks calls.
1229 *
1230 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1231 * for blocks beyond EOF must be marked new so that sub block regions can be
1232 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1233 * was just allocated or is unwritten, otherwise the callers would overwrite
1234 * existing data with zeros. Hence we have to split the mapping into a range up
1235 * to and including EOF, and a second mapping for beyond EOF.
1236 */
1237 static void
1238 xfs_map_trim_size(
1239 struct inode *inode,
1240 sector_t iblock,
1241 struct buffer_head *bh_result,
1242 struct xfs_bmbt_irec *imap,
1243 xfs_off_t offset,
1244 ssize_t size)
1245 {
1246 xfs_off_t mapping_size;
1247
1248 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1249 mapping_size <<= inode->i_blkbits;
1250
1251 ASSERT(mapping_size > 0);
1252 if (mapping_size > size)
1253 mapping_size = size;
1254 if (offset < i_size_read(inode) &&
1255 offset + mapping_size >= i_size_read(inode)) {
1256 /* limit mapping to block that spans EOF */
1257 mapping_size = roundup_64(i_size_read(inode) - offset,
1258 i_blocksize(inode));
1259 }
1260 if (mapping_size > LONG_MAX)
1261 mapping_size = LONG_MAX;
1262
1263 bh_result->b_size = mapping_size;
1264 }
1265
1266 static int
1267 xfs_get_blocks(
1268 struct inode *inode,
1269 sector_t iblock,
1270 struct buffer_head *bh_result,
1271 int create)
1272 {
1273 struct xfs_inode *ip = XFS_I(inode);
1274 struct xfs_mount *mp = ip->i_mount;
1275 xfs_fileoff_t offset_fsb, end_fsb;
1276 int error = 0;
1277 int lockmode = 0;
1278 struct xfs_bmbt_irec imap;
1279 int nimaps = 1;
1280 xfs_off_t offset;
1281 ssize_t size;
1282
1283 BUG_ON(create);
1284
1285 if (XFS_FORCED_SHUTDOWN(mp))
1286 return -EIO;
1287
1288 offset = (xfs_off_t)iblock << inode->i_blkbits;
1289 ASSERT(bh_result->b_size >= i_blocksize(inode));
1290 size = bh_result->b_size;
1291
1292 if (offset >= i_size_read(inode))
1293 return 0;
1294
1295 /*
1296 * Direct I/O is usually done on preallocated files, so try getting
1297 * a block mapping without an exclusive lock first.
1298 */
1299 lockmode = xfs_ilock_data_map_shared(ip);
1300
1301 ASSERT(offset <= mp->m_super->s_maxbytes);
1302 if (offset + size > mp->m_super->s_maxbytes)
1303 size = mp->m_super->s_maxbytes - offset;
1304 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1305 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1306
1307 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1308 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1309 if (error)
1310 goto out_unlock;
1311
1312 if (nimaps) {
1313 trace_xfs_get_blocks_found(ip, offset, size,
1314 imap.br_state == XFS_EXT_UNWRITTEN ?
1315 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1316 xfs_iunlock(ip, lockmode);
1317 } else {
1318 trace_xfs_get_blocks_notfound(ip, offset, size);
1319 goto out_unlock;
1320 }
1321
1322 /* trim mapping down to size requested */
1323 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1324
1325 /*
1326 * For unwritten extents do not report a disk address in the buffered
1327 * read case (treat as if we're reading into a hole).
1328 */
1329 if (xfs_bmap_is_real_extent(&imap))
1330 xfs_map_buffer(inode, bh_result, &imap, offset);
1331
1332 /*
1333 * If this is a realtime file, data may be on a different device.
1334 * to that pointed to from the buffer_head b_bdev currently.
1335 */
1336 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1337 return 0;
1338
1339 out_unlock:
1340 xfs_iunlock(ip, lockmode);
1341 return error;
1342 }
1343
1344 STATIC ssize_t
1345 xfs_vm_direct_IO(
1346 struct kiocb *iocb,
1347 struct iov_iter *iter)
1348 {
1349 /*
1350 * We just need the method present so that open/fcntl allow direct I/O.
1351 */
1352 return -EINVAL;
1353 }
1354
1355 STATIC sector_t
1356 xfs_vm_bmap(
1357 struct address_space *mapping,
1358 sector_t block)
1359 {
1360 struct inode *inode = (struct inode *)mapping->host;
1361 struct xfs_inode *ip = XFS_I(inode);
1362
1363 trace_xfs_vm_bmap(XFS_I(inode));
1364
1365 /*
1366 * The swap code (ab-)uses ->bmap to get a block mapping and then
1367 * bypasseѕ the file system for actual I/O. We really can't allow
1368 * that on reflinks inodes, so we have to skip out here. And yes,
1369 * 0 is the magic code for a bmap error.
1370 *
1371 * Since we don't pass back blockdev info, we can't return bmap
1372 * information for rt files either.
1373 */
1374 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1375 return 0;
1376
1377 filemap_write_and_wait(mapping);
1378 return generic_block_bmap(mapping, block, xfs_get_blocks);
1379 }
1380
1381 STATIC int
1382 xfs_vm_readpage(
1383 struct file *unused,
1384 struct page *page)
1385 {
1386 trace_xfs_vm_readpage(page->mapping->host, 1);
1387 return mpage_readpage(page, xfs_get_blocks);
1388 }
1389
1390 STATIC int
1391 xfs_vm_readpages(
1392 struct file *unused,
1393 struct address_space *mapping,
1394 struct list_head *pages,
1395 unsigned nr_pages)
1396 {
1397 trace_xfs_vm_readpages(mapping->host, nr_pages);
1398 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1399 }
1400
1401 /*
1402 * This is basically a copy of __set_page_dirty_buffers() with one
1403 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1404 * dirty, we'll never be able to clean them because we don't write buffers
1405 * beyond EOF, and that means we can't invalidate pages that span EOF
1406 * that have been marked dirty. Further, the dirty state can leak into
1407 * the file interior if the file is extended, resulting in all sorts of
1408 * bad things happening as the state does not match the underlying data.
1409 *
1410 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1411 * this only exist because of bufferheads and how the generic code manages them.
1412 */
1413 STATIC int
1414 xfs_vm_set_page_dirty(
1415 struct page *page)
1416 {
1417 struct address_space *mapping = page->mapping;
1418 struct inode *inode = mapping->host;
1419 loff_t end_offset;
1420 loff_t offset;
1421 int newly_dirty;
1422
1423 if (unlikely(!mapping))
1424 return !TestSetPageDirty(page);
1425
1426 end_offset = i_size_read(inode);
1427 offset = page_offset(page);
1428
1429 spin_lock(&mapping->private_lock);
1430 if (page_has_buffers(page)) {
1431 struct buffer_head *head = page_buffers(page);
1432 struct buffer_head *bh = head;
1433
1434 do {
1435 if (offset < end_offset)
1436 set_buffer_dirty(bh);
1437 bh = bh->b_this_page;
1438 offset += i_blocksize(inode);
1439 } while (bh != head);
1440 }
1441 /*
1442 * Lock out page->mem_cgroup migration to keep PageDirty
1443 * synchronized with per-memcg dirty page counters.
1444 */
1445 lock_page_memcg(page);
1446 newly_dirty = !TestSetPageDirty(page);
1447 spin_unlock(&mapping->private_lock);
1448
1449 if (newly_dirty) {
1450 /* sigh - __set_page_dirty() is static, so copy it here, too */
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&mapping->tree_lock, flags);
1454 if (page->mapping) { /* Race with truncate? */
1455 WARN_ON_ONCE(!PageUptodate(page));
1456 account_page_dirtied(page, mapping);
1457 radix_tree_tag_set(&mapping->page_tree,
1458 page_index(page), PAGECACHE_TAG_DIRTY);
1459 }
1460 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1461 }
1462 unlock_page_memcg(page);
1463 if (newly_dirty)
1464 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1465 return newly_dirty;
1466 }
1467
1468 const struct address_space_operations xfs_address_space_operations = {
1469 .readpage = xfs_vm_readpage,
1470 .readpages = xfs_vm_readpages,
1471 .writepage = xfs_vm_writepage,
1472 .writepages = xfs_vm_writepages,
1473 .set_page_dirty = xfs_vm_set_page_dirty,
1474 .releasepage = xfs_vm_releasepage,
1475 .invalidatepage = xfs_vm_invalidatepage,
1476 .bmap = xfs_vm_bmap,
1477 .direct_IO = xfs_vm_direct_IO,
1478 .migratepage = buffer_migrate_page,
1479 .is_partially_uptodate = block_is_partially_uptodate,
1480 .error_remove_page = generic_error_remove_page,
1481 };