]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_aops.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 void
40 xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
43 int *unwritten)
44 {
45 struct buffer_head *bh, *head;
46
47 *delalloc = *unwritten = 0;
48
49 bh = head = page_buffers(page);
50 do {
51 if (buffer_unwritten(bh))
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56 }
57
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 struct inode *inode)
61 {
62 struct xfs_inode *ip = XFS_I(inode);
63 struct xfs_mount *mp = ip->i_mount;
64
65 if (XFS_IS_REALTIME_INODE(ip))
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69 }
70
71 /*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
77 STATIC void
78 xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80 {
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
85 bh->b_end_io(bh, !ioend->io_error);
86 }
87
88 mempool_free(ioend, xfs_ioend_pool);
89 }
90
91 /*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103 {
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 if (error) {
112 xfs_trans_cancel(tp);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
118 /*
119 * We may pass freeze protection with a transaction. So tell lockdep
120 * we released it.
121 */
122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129 }
130
131 /*
132 * Update on-disk file size now that data has been written to disk.
133 */
134 STATIC int
135 xfs_setfilesize(
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
140 {
141 xfs_fsize_t isize;
142
143 xfs_ilock(ip, XFS_ILOCK_EXCL);
144 isize = xfs_new_eof(ip, offset + size);
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_cancel(tp);
148 return 0;
149 }
150
151 trace_xfs_setfilesize(ip, offset, size);
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
157 return xfs_trans_commit(tp);
158 }
159
160 STATIC int
161 xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163 {
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
174
175 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
176 }
177
178 /*
179 * Schedule IO completion handling on the final put of an ioend.
180 *
181 * If there is no work to do we might as well call it a day and free the
182 * ioend right now.
183 */
184 STATIC void
185 xfs_finish_ioend(
186 struct xfs_ioend *ioend)
187 {
188 if (atomic_dec_and_test(&ioend->io_remaining)) {
189 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
190
191 if (ioend->io_type == XFS_IO_UNWRITTEN)
192 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
193 else if (ioend->io_append_trans)
194 queue_work(mp->m_data_workqueue, &ioend->io_work);
195 else
196 xfs_destroy_ioend(ioend);
197 }
198 }
199
200 /*
201 * IO write completion.
202 */
203 STATIC void
204 xfs_end_io(
205 struct work_struct *work)
206 {
207 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
208 struct xfs_inode *ip = XFS_I(ioend->io_inode);
209 int error = 0;
210
211 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
212 ioend->io_error = -EIO;
213 goto done;
214 }
215 if (ioend->io_error)
216 goto done;
217
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
222 if (ioend->io_type == XFS_IO_UNWRITTEN) {
223 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
224 ioend->io_size);
225 } else if (ioend->io_append_trans) {
226 error = xfs_setfilesize_ioend(ioend);
227 } else {
228 ASSERT(!xfs_ioend_is_append(ioend));
229 }
230
231 done:
232 if (error)
233 ioend->io_error = error;
234 xfs_destroy_ioend(ioend);
235 }
236
237 /*
238 * Allocate and initialise an IO completion structure.
239 * We need to track unwritten extent write completion here initially.
240 * We'll need to extend this for updating the ondisk inode size later
241 * (vs. incore size).
242 */
243 STATIC xfs_ioend_t *
244 xfs_alloc_ioend(
245 struct inode *inode,
246 unsigned int type)
247 {
248 xfs_ioend_t *ioend;
249
250 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
251
252 /*
253 * Set the count to 1 initially, which will prevent an I/O
254 * completion callback from happening before we have started
255 * all the I/O from calling the completion routine too early.
256 */
257 atomic_set(&ioend->io_remaining, 1);
258 ioend->io_error = 0;
259 ioend->io_list = NULL;
260 ioend->io_type = type;
261 ioend->io_inode = inode;
262 ioend->io_buffer_head = NULL;
263 ioend->io_buffer_tail = NULL;
264 ioend->io_offset = 0;
265 ioend->io_size = 0;
266 ioend->io_append_trans = NULL;
267
268 INIT_WORK(&ioend->io_work, xfs_end_io);
269 return ioend;
270 }
271
272 STATIC int
273 xfs_map_blocks(
274 struct inode *inode,
275 loff_t offset,
276 struct xfs_bmbt_irec *imap,
277 int type,
278 int nonblocking)
279 {
280 struct xfs_inode *ip = XFS_I(inode);
281 struct xfs_mount *mp = ip->i_mount;
282 ssize_t count = 1 << inode->i_blkbits;
283 xfs_fileoff_t offset_fsb, end_fsb;
284 int error = 0;
285 int bmapi_flags = XFS_BMAPI_ENTIRE;
286 int nimaps = 1;
287
288 if (XFS_FORCED_SHUTDOWN(mp))
289 return -EIO;
290
291 if (type == XFS_IO_UNWRITTEN)
292 bmapi_flags |= XFS_BMAPI_IGSTATE;
293
294 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
295 if (nonblocking)
296 return -EAGAIN;
297 xfs_ilock(ip, XFS_ILOCK_SHARED);
298 }
299
300 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
301 (ip->i_df.if_flags & XFS_IFEXTENTS));
302 ASSERT(offset <= mp->m_super->s_maxbytes);
303
304 if (offset + count > mp->m_super->s_maxbytes)
305 count = mp->m_super->s_maxbytes - offset;
306 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
307 offset_fsb = XFS_B_TO_FSBT(mp, offset);
308 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
309 imap, &nimaps, bmapi_flags);
310 xfs_iunlock(ip, XFS_ILOCK_SHARED);
311
312 if (error)
313 return error;
314
315 if (type == XFS_IO_DELALLOC &&
316 (!nimaps || isnullstartblock(imap->br_startblock))) {
317 error = xfs_iomap_write_allocate(ip, offset, imap);
318 if (!error)
319 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
320 return error;
321 }
322
323 #ifdef DEBUG
324 if (type == XFS_IO_UNWRITTEN) {
325 ASSERT(nimaps);
326 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
327 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
328 }
329 #endif
330 if (nimaps)
331 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
332 return 0;
333 }
334
335 STATIC int
336 xfs_imap_valid(
337 struct inode *inode,
338 struct xfs_bmbt_irec *imap,
339 xfs_off_t offset)
340 {
341 offset >>= inode->i_blkbits;
342
343 return offset >= imap->br_startoff &&
344 offset < imap->br_startoff + imap->br_blockcount;
345 }
346
347 /*
348 * BIO completion handler for buffered IO.
349 */
350 STATIC void
351 xfs_end_bio(
352 struct bio *bio)
353 {
354 xfs_ioend_t *ioend = bio->bi_private;
355
356 if (!ioend->io_error)
357 ioend->io_error = bio->bi_error;
358
359 /* Toss bio and pass work off to an xfsdatad thread */
360 bio->bi_private = NULL;
361 bio->bi_end_io = NULL;
362 bio_put(bio);
363
364 xfs_finish_ioend(ioend);
365 }
366
367 STATIC void
368 xfs_submit_ioend_bio(
369 struct writeback_control *wbc,
370 xfs_ioend_t *ioend,
371 struct bio *bio)
372 {
373 atomic_inc(&ioend->io_remaining);
374 bio->bi_private = ioend;
375 bio->bi_end_io = xfs_end_bio;
376 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
377 }
378
379 STATIC struct bio *
380 xfs_alloc_ioend_bio(
381 struct buffer_head *bh)
382 {
383 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
384
385 ASSERT(bio->bi_private == NULL);
386 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
387 bio->bi_bdev = bh->b_bdev;
388 return bio;
389 }
390
391 STATIC void
392 xfs_start_buffer_writeback(
393 struct buffer_head *bh)
394 {
395 ASSERT(buffer_mapped(bh));
396 ASSERT(buffer_locked(bh));
397 ASSERT(!buffer_delay(bh));
398 ASSERT(!buffer_unwritten(bh));
399
400 mark_buffer_async_write(bh);
401 set_buffer_uptodate(bh);
402 clear_buffer_dirty(bh);
403 }
404
405 STATIC void
406 xfs_start_page_writeback(
407 struct page *page,
408 int clear_dirty,
409 int buffers)
410 {
411 ASSERT(PageLocked(page));
412 ASSERT(!PageWriteback(page));
413
414 /*
415 * if the page was not fully cleaned, we need to ensure that the higher
416 * layers come back to it correctly. That means we need to keep the page
417 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
418 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
419 * write this page in this writeback sweep will be made.
420 */
421 if (clear_dirty) {
422 clear_page_dirty_for_io(page);
423 set_page_writeback(page);
424 } else
425 set_page_writeback_keepwrite(page);
426
427 unlock_page(page);
428
429 /* If no buffers on the page are to be written, finish it here */
430 if (!buffers)
431 end_page_writeback(page);
432 }
433
434 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
435 {
436 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
437 }
438
439 /*
440 * Submit all of the bios for all of the ioends we have saved up, covering the
441 * initial writepage page and also any probed pages.
442 *
443 * Because we may have multiple ioends spanning a page, we need to start
444 * writeback on all the buffers before we submit them for I/O. If we mark the
445 * buffers as we got, then we can end up with a page that only has buffers
446 * marked async write and I/O complete on can occur before we mark the other
447 * buffers async write.
448 *
449 * The end result of this is that we trip a bug in end_page_writeback() because
450 * we call it twice for the one page as the code in end_buffer_async_write()
451 * assumes that all buffers on the page are started at the same time.
452 *
453 * The fix is two passes across the ioend list - one to start writeback on the
454 * buffer_heads, and then submit them for I/O on the second pass.
455 *
456 * If @fail is non-zero, it means that we have a situation where some part of
457 * the submission process has failed after we have marked paged for writeback
458 * and unlocked them. In this situation, we need to fail the ioend chain rather
459 * than submit it to IO. This typically only happens on a filesystem shutdown.
460 */
461 STATIC void
462 xfs_submit_ioend(
463 struct writeback_control *wbc,
464 xfs_ioend_t *ioend,
465 int fail)
466 {
467 xfs_ioend_t *head = ioend;
468 xfs_ioend_t *next;
469 struct buffer_head *bh;
470 struct bio *bio;
471 sector_t lastblock = 0;
472
473 /* Pass 1 - start writeback */
474 do {
475 next = ioend->io_list;
476 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
477 xfs_start_buffer_writeback(bh);
478 } while ((ioend = next) != NULL);
479
480 /* Pass 2 - submit I/O */
481 ioend = head;
482 do {
483 next = ioend->io_list;
484 bio = NULL;
485
486 /*
487 * If we are failing the IO now, just mark the ioend with an
488 * error and finish it. This will run IO completion immediately
489 * as there is only one reference to the ioend at this point in
490 * time.
491 */
492 if (fail) {
493 ioend->io_error = fail;
494 xfs_finish_ioend(ioend);
495 continue;
496 }
497
498 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
499
500 if (!bio) {
501 retry:
502 bio = xfs_alloc_ioend_bio(bh);
503 } else if (bh->b_blocknr != lastblock + 1) {
504 xfs_submit_ioend_bio(wbc, ioend, bio);
505 goto retry;
506 }
507
508 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
509 xfs_submit_ioend_bio(wbc, ioend, bio);
510 goto retry;
511 }
512
513 lastblock = bh->b_blocknr;
514 }
515 if (bio)
516 xfs_submit_ioend_bio(wbc, ioend, bio);
517 xfs_finish_ioend(ioend);
518 } while ((ioend = next) != NULL);
519 }
520
521 /*
522 * Cancel submission of all buffer_heads so far in this endio.
523 * Toss the endio too. Only ever called for the initial page
524 * in a writepage request, so only ever one page.
525 */
526 STATIC void
527 xfs_cancel_ioend(
528 xfs_ioend_t *ioend)
529 {
530 xfs_ioend_t *next;
531 struct buffer_head *bh, *next_bh;
532
533 do {
534 next = ioend->io_list;
535 bh = ioend->io_buffer_head;
536 do {
537 next_bh = bh->b_private;
538 clear_buffer_async_write(bh);
539 /*
540 * The unwritten flag is cleared when added to the
541 * ioend. We're not submitting for I/O so mark the
542 * buffer unwritten again for next time around.
543 */
544 if (ioend->io_type == XFS_IO_UNWRITTEN)
545 set_buffer_unwritten(bh);
546 unlock_buffer(bh);
547 } while ((bh = next_bh) != NULL);
548
549 mempool_free(ioend, xfs_ioend_pool);
550 } while ((ioend = next) != NULL);
551 }
552
553 /*
554 * Test to see if we've been building up a completion structure for
555 * earlier buffers -- if so, we try to append to this ioend if we
556 * can, otherwise we finish off any current ioend and start another.
557 * Return true if we've finished the given ioend.
558 */
559 STATIC void
560 xfs_add_to_ioend(
561 struct inode *inode,
562 struct buffer_head *bh,
563 xfs_off_t offset,
564 unsigned int type,
565 xfs_ioend_t **result,
566 int need_ioend)
567 {
568 xfs_ioend_t *ioend = *result;
569
570 if (!ioend || need_ioend || type != ioend->io_type) {
571 xfs_ioend_t *previous = *result;
572
573 ioend = xfs_alloc_ioend(inode, type);
574 ioend->io_offset = offset;
575 ioend->io_buffer_head = bh;
576 ioend->io_buffer_tail = bh;
577 if (previous)
578 previous->io_list = ioend;
579 *result = ioend;
580 } else {
581 ioend->io_buffer_tail->b_private = bh;
582 ioend->io_buffer_tail = bh;
583 }
584
585 bh->b_private = NULL;
586 ioend->io_size += bh->b_size;
587 }
588
589 STATIC void
590 xfs_map_buffer(
591 struct inode *inode,
592 struct buffer_head *bh,
593 struct xfs_bmbt_irec *imap,
594 xfs_off_t offset)
595 {
596 sector_t bn;
597 struct xfs_mount *m = XFS_I(inode)->i_mount;
598 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
599 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
600
601 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
602 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
603
604 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
605 ((offset - iomap_offset) >> inode->i_blkbits);
606
607 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
608
609 bh->b_blocknr = bn;
610 set_buffer_mapped(bh);
611 }
612
613 STATIC void
614 xfs_map_at_offset(
615 struct inode *inode,
616 struct buffer_head *bh,
617 struct xfs_bmbt_irec *imap,
618 xfs_off_t offset)
619 {
620 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
621 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
622
623 xfs_map_buffer(inode, bh, imap, offset);
624 set_buffer_mapped(bh);
625 clear_buffer_delay(bh);
626 clear_buffer_unwritten(bh);
627 }
628
629 /*
630 * Test if a given page contains at least one buffer of a given @type.
631 * If @check_all_buffers is true, then we walk all the buffers in the page to
632 * try to find one of the type passed in. If it is not set, then the caller only
633 * needs to check the first buffer on the page for a match.
634 */
635 STATIC bool
636 xfs_check_page_type(
637 struct page *page,
638 unsigned int type,
639 bool check_all_buffers)
640 {
641 struct buffer_head *bh;
642 struct buffer_head *head;
643
644 if (PageWriteback(page))
645 return false;
646 if (!page->mapping)
647 return false;
648 if (!page_has_buffers(page))
649 return false;
650
651 bh = head = page_buffers(page);
652 do {
653 if (buffer_unwritten(bh)) {
654 if (type == XFS_IO_UNWRITTEN)
655 return true;
656 } else if (buffer_delay(bh)) {
657 if (type == XFS_IO_DELALLOC)
658 return true;
659 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
660 if (type == XFS_IO_OVERWRITE)
661 return true;
662 }
663
664 /* If we are only checking the first buffer, we are done now. */
665 if (!check_all_buffers)
666 break;
667 } while ((bh = bh->b_this_page) != head);
668
669 return false;
670 }
671
672 /*
673 * Allocate & map buffers for page given the extent map. Write it out.
674 * except for the original page of a writepage, this is called on
675 * delalloc/unwritten pages only, for the original page it is possible
676 * that the page has no mapping at all.
677 */
678 STATIC int
679 xfs_convert_page(
680 struct inode *inode,
681 struct page *page,
682 loff_t tindex,
683 struct xfs_bmbt_irec *imap,
684 xfs_ioend_t **ioendp,
685 struct writeback_control *wbc)
686 {
687 struct buffer_head *bh, *head;
688 xfs_off_t end_offset;
689 unsigned long p_offset;
690 unsigned int type;
691 int len, page_dirty;
692 int count = 0, done = 0, uptodate = 1;
693 xfs_off_t offset = page_offset(page);
694
695 if (page->index != tindex)
696 goto fail;
697 if (!trylock_page(page))
698 goto fail;
699 if (PageWriteback(page))
700 goto fail_unlock_page;
701 if (page->mapping != inode->i_mapping)
702 goto fail_unlock_page;
703 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
704 goto fail_unlock_page;
705
706 /*
707 * page_dirty is initially a count of buffers on the page before
708 * EOF and is decremented as we move each into a cleanable state.
709 *
710 * Derivation:
711 *
712 * End offset is the highest offset that this page should represent.
713 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
714 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
715 * hence give us the correct page_dirty count. On any other page,
716 * it will be zero and in that case we need page_dirty to be the
717 * count of buffers on the page.
718 */
719 end_offset = min_t(unsigned long long,
720 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
721 i_size_read(inode));
722
723 /*
724 * If the current map does not span the entire page we are about to try
725 * to write, then give up. The only way we can write a page that spans
726 * multiple mappings in a single writeback iteration is via the
727 * xfs_vm_writepage() function. Data integrity writeback requires the
728 * entire page to be written in a single attempt, otherwise the part of
729 * the page we don't write here doesn't get written as part of the data
730 * integrity sync.
731 *
732 * For normal writeback, we also don't attempt to write partial pages
733 * here as it simply means that write_cache_pages() will see it under
734 * writeback and ignore the page until some point in the future, at
735 * which time this will be the only page in the file that needs
736 * writeback. Hence for more optimal IO patterns, we should always
737 * avoid partial page writeback due to multiple mappings on a page here.
738 */
739 if (!xfs_imap_valid(inode, imap, end_offset))
740 goto fail_unlock_page;
741
742 len = 1 << inode->i_blkbits;
743 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
744 PAGE_CACHE_SIZE);
745 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
746 page_dirty = p_offset / len;
747
748 /*
749 * The moment we find a buffer that doesn't match our current type
750 * specification or can't be written, abort the loop and start
751 * writeback. As per the above xfs_imap_valid() check, only
752 * xfs_vm_writepage() can handle partial page writeback fully - we are
753 * limited here to the buffers that are contiguous with the current
754 * ioend, and hence a buffer we can't write breaks that contiguity and
755 * we have to defer the rest of the IO to xfs_vm_writepage().
756 */
757 bh = head = page_buffers(page);
758 do {
759 if (offset >= end_offset)
760 break;
761 if (!buffer_uptodate(bh))
762 uptodate = 0;
763 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
764 done = 1;
765 break;
766 }
767
768 if (buffer_unwritten(bh) || buffer_delay(bh) ||
769 buffer_mapped(bh)) {
770 if (buffer_unwritten(bh))
771 type = XFS_IO_UNWRITTEN;
772 else if (buffer_delay(bh))
773 type = XFS_IO_DELALLOC;
774 else
775 type = XFS_IO_OVERWRITE;
776
777 /*
778 * imap should always be valid because of the above
779 * partial page end_offset check on the imap.
780 */
781 ASSERT(xfs_imap_valid(inode, imap, offset));
782
783 lock_buffer(bh);
784 if (type != XFS_IO_OVERWRITE)
785 xfs_map_at_offset(inode, bh, imap, offset);
786 xfs_add_to_ioend(inode, bh, offset, type,
787 ioendp, done);
788
789 page_dirty--;
790 count++;
791 } else {
792 done = 1;
793 break;
794 }
795 } while (offset += len, (bh = bh->b_this_page) != head);
796
797 if (uptodate && bh == head)
798 SetPageUptodate(page);
799
800 if (count) {
801 if (--wbc->nr_to_write <= 0 &&
802 wbc->sync_mode == WB_SYNC_NONE)
803 done = 1;
804 }
805 xfs_start_page_writeback(page, !page_dirty, count);
806
807 return done;
808 fail_unlock_page:
809 unlock_page(page);
810 fail:
811 return 1;
812 }
813
814 /*
815 * Convert & write out a cluster of pages in the same extent as defined
816 * by mp and following the start page.
817 */
818 STATIC void
819 xfs_cluster_write(
820 struct inode *inode,
821 pgoff_t tindex,
822 struct xfs_bmbt_irec *imap,
823 xfs_ioend_t **ioendp,
824 struct writeback_control *wbc,
825 pgoff_t tlast)
826 {
827 struct pagevec pvec;
828 int done = 0, i;
829
830 pagevec_init(&pvec, 0);
831 while (!done && tindex <= tlast) {
832 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
833
834 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
835 break;
836
837 for (i = 0; i < pagevec_count(&pvec); i++) {
838 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
839 imap, ioendp, wbc);
840 if (done)
841 break;
842 }
843
844 pagevec_release(&pvec);
845 cond_resched();
846 }
847 }
848
849 STATIC void
850 xfs_vm_invalidatepage(
851 struct page *page,
852 unsigned int offset,
853 unsigned int length)
854 {
855 trace_xfs_invalidatepage(page->mapping->host, page, offset,
856 length);
857 block_invalidatepage(page, offset, length);
858 }
859
860 /*
861 * If the page has delalloc buffers on it, we need to punch them out before we
862 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
863 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
864 * is done on that same region - the delalloc extent is returned when none is
865 * supposed to be there.
866 *
867 * We prevent this by truncating away the delalloc regions on the page before
868 * invalidating it. Because they are delalloc, we can do this without needing a
869 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
870 * truncation without a transaction as there is no space left for block
871 * reservation (typically why we see a ENOSPC in writeback).
872 *
873 * This is not a performance critical path, so for now just do the punching a
874 * buffer head at a time.
875 */
876 STATIC void
877 xfs_aops_discard_page(
878 struct page *page)
879 {
880 struct inode *inode = page->mapping->host;
881 struct xfs_inode *ip = XFS_I(inode);
882 struct buffer_head *bh, *head;
883 loff_t offset = page_offset(page);
884
885 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
886 goto out_invalidate;
887
888 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
889 goto out_invalidate;
890
891 xfs_alert(ip->i_mount,
892 "page discard on page %p, inode 0x%llx, offset %llu.",
893 page, ip->i_ino, offset);
894
895 xfs_ilock(ip, XFS_ILOCK_EXCL);
896 bh = head = page_buffers(page);
897 do {
898 int error;
899 xfs_fileoff_t start_fsb;
900
901 if (!buffer_delay(bh))
902 goto next_buffer;
903
904 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
905 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
906 if (error) {
907 /* something screwed, just bail */
908 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
909 xfs_alert(ip->i_mount,
910 "page discard unable to remove delalloc mapping.");
911 }
912 break;
913 }
914 next_buffer:
915 offset += 1 << inode->i_blkbits;
916
917 } while ((bh = bh->b_this_page) != head);
918
919 xfs_iunlock(ip, XFS_ILOCK_EXCL);
920 out_invalidate:
921 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
922 return;
923 }
924
925 /*
926 * Write out a dirty page.
927 *
928 * For delalloc space on the page we need to allocate space and flush it.
929 * For unwritten space on the page we need to start the conversion to
930 * regular allocated space.
931 * For any other dirty buffer heads on the page we should flush them.
932 */
933 STATIC int
934 xfs_vm_writepage(
935 struct page *page,
936 struct writeback_control *wbc)
937 {
938 struct inode *inode = page->mapping->host;
939 struct buffer_head *bh, *head;
940 struct xfs_bmbt_irec imap;
941 xfs_ioend_t *ioend = NULL, *iohead = NULL;
942 loff_t offset;
943 unsigned int type;
944 __uint64_t end_offset;
945 pgoff_t end_index, last_index;
946 ssize_t len;
947 int err, imap_valid = 0, uptodate = 1;
948 int count = 0;
949 int nonblocking = 0;
950
951 trace_xfs_writepage(inode, page, 0, 0);
952
953 ASSERT(page_has_buffers(page));
954
955 /*
956 * Refuse to write the page out if we are called from reclaim context.
957 *
958 * This avoids stack overflows when called from deeply used stacks in
959 * random callers for direct reclaim or memcg reclaim. We explicitly
960 * allow reclaim from kswapd as the stack usage there is relatively low.
961 *
962 * This should never happen except in the case of a VM regression so
963 * warn about it.
964 */
965 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
966 PF_MEMALLOC))
967 goto redirty;
968
969 /*
970 * Given that we do not allow direct reclaim to call us, we should
971 * never be called while in a filesystem transaction.
972 */
973 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
974 goto redirty;
975
976 /* Is this page beyond the end of the file? */
977 offset = i_size_read(inode);
978 end_index = offset >> PAGE_CACHE_SHIFT;
979 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
980
981 /*
982 * The page index is less than the end_index, adjust the end_offset
983 * to the highest offset that this page should represent.
984 * -----------------------------------------------------
985 * | file mapping | <EOF> |
986 * -----------------------------------------------------
987 * | Page ... | Page N-2 | Page N-1 | Page N | |
988 * ^--------------------------------^----------|--------
989 * | desired writeback range | see else |
990 * ---------------------------------^------------------|
991 */
992 if (page->index < end_index)
993 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
994 else {
995 /*
996 * Check whether the page to write out is beyond or straddles
997 * i_size or not.
998 * -------------------------------------------------------
999 * | file mapping | <EOF> |
1000 * -------------------------------------------------------
1001 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1002 * ^--------------------------------^-----------|---------
1003 * | | Straddles |
1004 * ---------------------------------^-----------|--------|
1005 */
1006 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1007
1008 /*
1009 * Skip the page if it is fully outside i_size, e.g. due to a
1010 * truncate operation that is in progress. We must redirty the
1011 * page so that reclaim stops reclaiming it. Otherwise
1012 * xfs_vm_releasepage() is called on it and gets confused.
1013 *
1014 * Note that the end_index is unsigned long, it would overflow
1015 * if the given offset is greater than 16TB on 32-bit system
1016 * and if we do check the page is fully outside i_size or not
1017 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1018 * will be evaluated to 0. Hence this page will be redirtied
1019 * and be written out repeatedly which would result in an
1020 * infinite loop, the user program that perform this operation
1021 * will hang. Instead, we can verify this situation by checking
1022 * if the page to write is totally beyond the i_size or if it's
1023 * offset is just equal to the EOF.
1024 */
1025 if (page->index > end_index ||
1026 (page->index == end_index && offset_into_page == 0))
1027 goto redirty;
1028
1029 /*
1030 * The page straddles i_size. It must be zeroed out on each
1031 * and every writepage invocation because it may be mmapped.
1032 * "A file is mapped in multiples of the page size. For a file
1033 * that is not a multiple of the page size, the remaining
1034 * memory is zeroed when mapped, and writes to that region are
1035 * not written out to the file."
1036 */
1037 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1038
1039 /* Adjust the end_offset to the end of file */
1040 end_offset = offset;
1041 }
1042
1043 len = 1 << inode->i_blkbits;
1044
1045 bh = head = page_buffers(page);
1046 offset = page_offset(page);
1047 type = XFS_IO_OVERWRITE;
1048
1049 if (wbc->sync_mode == WB_SYNC_NONE)
1050 nonblocking = 1;
1051
1052 do {
1053 int new_ioend = 0;
1054
1055 if (offset >= end_offset)
1056 break;
1057 if (!buffer_uptodate(bh))
1058 uptodate = 0;
1059
1060 /*
1061 * set_page_dirty dirties all buffers in a page, independent
1062 * of their state. The dirty state however is entirely
1063 * meaningless for holes (!mapped && uptodate), so skip
1064 * buffers covering holes here.
1065 */
1066 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1067 imap_valid = 0;
1068 continue;
1069 }
1070
1071 if (buffer_unwritten(bh)) {
1072 if (type != XFS_IO_UNWRITTEN) {
1073 type = XFS_IO_UNWRITTEN;
1074 imap_valid = 0;
1075 }
1076 } else if (buffer_delay(bh)) {
1077 if (type != XFS_IO_DELALLOC) {
1078 type = XFS_IO_DELALLOC;
1079 imap_valid = 0;
1080 }
1081 } else if (buffer_uptodate(bh)) {
1082 if (type != XFS_IO_OVERWRITE) {
1083 type = XFS_IO_OVERWRITE;
1084 imap_valid = 0;
1085 }
1086 } else {
1087 if (PageUptodate(page))
1088 ASSERT(buffer_mapped(bh));
1089 /*
1090 * This buffer is not uptodate and will not be
1091 * written to disk. Ensure that we will put any
1092 * subsequent writeable buffers into a new
1093 * ioend.
1094 */
1095 imap_valid = 0;
1096 continue;
1097 }
1098
1099 if (imap_valid)
1100 imap_valid = xfs_imap_valid(inode, &imap, offset);
1101 if (!imap_valid) {
1102 /*
1103 * If we didn't have a valid mapping then we need to
1104 * put the new mapping into a separate ioend structure.
1105 * This ensures non-contiguous extents always have
1106 * separate ioends, which is particularly important
1107 * for unwritten extent conversion at I/O completion
1108 * time.
1109 */
1110 new_ioend = 1;
1111 err = xfs_map_blocks(inode, offset, &imap, type,
1112 nonblocking);
1113 if (err)
1114 goto error;
1115 imap_valid = xfs_imap_valid(inode, &imap, offset);
1116 }
1117 if (imap_valid) {
1118 lock_buffer(bh);
1119 if (type != XFS_IO_OVERWRITE)
1120 xfs_map_at_offset(inode, bh, &imap, offset);
1121 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1122 new_ioend);
1123 count++;
1124 }
1125
1126 if (!iohead)
1127 iohead = ioend;
1128
1129 } while (offset += len, ((bh = bh->b_this_page) != head));
1130
1131 if (uptodate && bh == head)
1132 SetPageUptodate(page);
1133
1134 xfs_start_page_writeback(page, 1, count);
1135
1136 /* if there is no IO to be submitted for this page, we are done */
1137 if (!ioend)
1138 return 0;
1139
1140 ASSERT(iohead);
1141
1142 /*
1143 * Any errors from this point onwards need tobe reported through the IO
1144 * completion path as we have marked the initial page as under writeback
1145 * and unlocked it.
1146 */
1147 if (imap_valid) {
1148 xfs_off_t end_index;
1149
1150 end_index = imap.br_startoff + imap.br_blockcount;
1151
1152 /* to bytes */
1153 end_index <<= inode->i_blkbits;
1154
1155 /* to pages */
1156 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1157
1158 /* check against file size */
1159 if (end_index > last_index)
1160 end_index = last_index;
1161
1162 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1163 wbc, end_index);
1164 }
1165
1166
1167 /*
1168 * Reserve log space if we might write beyond the on-disk inode size.
1169 */
1170 err = 0;
1171 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1172 err = xfs_setfilesize_trans_alloc(ioend);
1173
1174 xfs_submit_ioend(wbc, iohead, err);
1175
1176 return 0;
1177
1178 error:
1179 if (iohead)
1180 xfs_cancel_ioend(iohead);
1181
1182 if (err == -EAGAIN)
1183 goto redirty;
1184
1185 xfs_aops_discard_page(page);
1186 ClearPageUptodate(page);
1187 unlock_page(page);
1188 return err;
1189
1190 redirty:
1191 redirty_page_for_writepage(wbc, page);
1192 unlock_page(page);
1193 return 0;
1194 }
1195
1196 STATIC int
1197 xfs_vm_writepages(
1198 struct address_space *mapping,
1199 struct writeback_control *wbc)
1200 {
1201 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1202 return generic_writepages(mapping, wbc);
1203 }
1204
1205 /*
1206 * Called to move a page into cleanable state - and from there
1207 * to be released. The page should already be clean. We always
1208 * have buffer heads in this call.
1209 *
1210 * Returns 1 if the page is ok to release, 0 otherwise.
1211 */
1212 STATIC int
1213 xfs_vm_releasepage(
1214 struct page *page,
1215 gfp_t gfp_mask)
1216 {
1217 int delalloc, unwritten;
1218
1219 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1220
1221 xfs_count_page_state(page, &delalloc, &unwritten);
1222
1223 if (WARN_ON_ONCE(delalloc))
1224 return 0;
1225 if (WARN_ON_ONCE(unwritten))
1226 return 0;
1227
1228 return try_to_free_buffers(page);
1229 }
1230
1231 /*
1232 * When we map a DIO buffer, we may need to attach an ioend that describes the
1233 * type of write IO we are doing. This passes to the completion function the
1234 * operations it needs to perform. If the mapping is for an overwrite wholly
1235 * within the EOF then we don't need an ioend and so we don't allocate one.
1236 * This avoids the unnecessary overhead of allocating and freeing ioends for
1237 * workloads that don't require transactions on IO completion.
1238 *
1239 * If we get multiple mappings in a single IO, we might be mapping different
1240 * types. But because the direct IO can only have a single private pointer, we
1241 * need to ensure that:
1242 *
1243 * a) i) the ioend spans the entire region of unwritten mappings; or
1244 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
1245 * b) if it contains unwritten extents, it is *permanently* marked as such
1246 *
1247 * We could do this by chaining ioends like buffered IO does, but we only
1248 * actually get one IO completion callback from the direct IO, and that spans
1249 * the entire IO regardless of how many mappings and IOs are needed to complete
1250 * the DIO. There is only going to be one reference to the ioend and its life
1251 * cycle is constrained by the DIO completion code. hence we don't need
1252 * reference counting here.
1253 */
1254 static void
1255 xfs_map_direct(
1256 struct inode *inode,
1257 struct buffer_head *bh_result,
1258 struct xfs_bmbt_irec *imap,
1259 xfs_off_t offset)
1260 {
1261 struct xfs_ioend *ioend;
1262 xfs_off_t size = bh_result->b_size;
1263 int type;
1264
1265 if (ISUNWRITTEN(imap))
1266 type = XFS_IO_UNWRITTEN;
1267 else
1268 type = XFS_IO_OVERWRITE;
1269
1270 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1271
1272 if (bh_result->b_private) {
1273 ioend = bh_result->b_private;
1274 ASSERT(ioend->io_size > 0);
1275 ASSERT(offset >= ioend->io_offset);
1276 if (offset + size > ioend->io_offset + ioend->io_size)
1277 ioend->io_size = offset - ioend->io_offset + size;
1278
1279 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1280 ioend->io_type = XFS_IO_UNWRITTEN;
1281
1282 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1283 ioend->io_size, ioend->io_type,
1284 imap);
1285 } else if (type == XFS_IO_UNWRITTEN ||
1286 offset + size > i_size_read(inode)) {
1287 ioend = xfs_alloc_ioend(inode, type);
1288 ioend->io_offset = offset;
1289 ioend->io_size = size;
1290
1291 bh_result->b_private = ioend;
1292 set_buffer_defer_completion(bh_result);
1293
1294 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1295 imap);
1296 } else {
1297 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1298 imap);
1299 }
1300 }
1301
1302 /*
1303 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1304 * is, so that we can avoid repeated get_blocks calls.
1305 *
1306 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1307 * for blocks beyond EOF must be marked new so that sub block regions can be
1308 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1309 * was just allocated or is unwritten, otherwise the callers would overwrite
1310 * existing data with zeros. Hence we have to split the mapping into a range up
1311 * to and including EOF, and a second mapping for beyond EOF.
1312 */
1313 static void
1314 xfs_map_trim_size(
1315 struct inode *inode,
1316 sector_t iblock,
1317 struct buffer_head *bh_result,
1318 struct xfs_bmbt_irec *imap,
1319 xfs_off_t offset,
1320 ssize_t size)
1321 {
1322 xfs_off_t mapping_size;
1323
1324 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1325 mapping_size <<= inode->i_blkbits;
1326
1327 ASSERT(mapping_size > 0);
1328 if (mapping_size > size)
1329 mapping_size = size;
1330 if (offset < i_size_read(inode) &&
1331 offset + mapping_size >= i_size_read(inode)) {
1332 /* limit mapping to block that spans EOF */
1333 mapping_size = roundup_64(i_size_read(inode) - offset,
1334 1 << inode->i_blkbits);
1335 }
1336 if (mapping_size > LONG_MAX)
1337 mapping_size = LONG_MAX;
1338
1339 bh_result->b_size = mapping_size;
1340 }
1341
1342 STATIC int
1343 __xfs_get_blocks(
1344 struct inode *inode,
1345 sector_t iblock,
1346 struct buffer_head *bh_result,
1347 int create,
1348 bool direct)
1349 {
1350 struct xfs_inode *ip = XFS_I(inode);
1351 struct xfs_mount *mp = ip->i_mount;
1352 xfs_fileoff_t offset_fsb, end_fsb;
1353 int error = 0;
1354 int lockmode = 0;
1355 struct xfs_bmbt_irec imap;
1356 int nimaps = 1;
1357 xfs_off_t offset;
1358 ssize_t size;
1359 int new = 0;
1360
1361 if (XFS_FORCED_SHUTDOWN(mp))
1362 return -EIO;
1363
1364 offset = (xfs_off_t)iblock << inode->i_blkbits;
1365 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1366 size = bh_result->b_size;
1367
1368 if (!create && direct && offset >= i_size_read(inode))
1369 return 0;
1370
1371 /*
1372 * Direct I/O is usually done on preallocated files, so try getting
1373 * a block mapping without an exclusive lock first. For buffered
1374 * writes we already have the exclusive iolock anyway, so avoiding
1375 * a lock roundtrip here by taking the ilock exclusive from the
1376 * beginning is a useful micro optimization.
1377 */
1378 if (create && !direct) {
1379 lockmode = XFS_ILOCK_EXCL;
1380 xfs_ilock(ip, lockmode);
1381 } else {
1382 lockmode = xfs_ilock_data_map_shared(ip);
1383 }
1384
1385 ASSERT(offset <= mp->m_super->s_maxbytes);
1386 if (offset + size > mp->m_super->s_maxbytes)
1387 size = mp->m_super->s_maxbytes - offset;
1388 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1389 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1390
1391 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1392 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1393 if (error)
1394 goto out_unlock;
1395
1396 if (create &&
1397 (!nimaps ||
1398 (imap.br_startblock == HOLESTARTBLOCK ||
1399 imap.br_startblock == DELAYSTARTBLOCK))) {
1400 if (direct || xfs_get_extsz_hint(ip)) {
1401 /*
1402 * Drop the ilock in preparation for starting the block
1403 * allocation transaction. It will be retaken
1404 * exclusively inside xfs_iomap_write_direct for the
1405 * actual allocation.
1406 */
1407 xfs_iunlock(ip, lockmode);
1408 error = xfs_iomap_write_direct(ip, offset, size,
1409 &imap, nimaps);
1410 if (error)
1411 return error;
1412 new = 1;
1413
1414 } else {
1415 /*
1416 * Delalloc reservations do not require a transaction,
1417 * we can go on without dropping the lock here. If we
1418 * are allocating a new delalloc block, make sure that
1419 * we set the new flag so that we mark the buffer new so
1420 * that we know that it is newly allocated if the write
1421 * fails.
1422 */
1423 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1424 new = 1;
1425 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1426 if (error)
1427 goto out_unlock;
1428
1429 xfs_iunlock(ip, lockmode);
1430 }
1431 trace_xfs_get_blocks_alloc(ip, offset, size,
1432 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1433 : XFS_IO_DELALLOC, &imap);
1434 } else if (nimaps) {
1435 trace_xfs_get_blocks_found(ip, offset, size,
1436 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1437 : XFS_IO_OVERWRITE, &imap);
1438 xfs_iunlock(ip, lockmode);
1439 } else {
1440 trace_xfs_get_blocks_notfound(ip, offset, size);
1441 goto out_unlock;
1442 }
1443
1444 /* trim mapping down to size requested */
1445 if (direct || size > (1 << inode->i_blkbits))
1446 xfs_map_trim_size(inode, iblock, bh_result,
1447 &imap, offset, size);
1448
1449 /*
1450 * For unwritten extents do not report a disk address in the buffered
1451 * read case (treat as if we're reading into a hole).
1452 */
1453 if (imap.br_startblock != HOLESTARTBLOCK &&
1454 imap.br_startblock != DELAYSTARTBLOCK &&
1455 (create || !ISUNWRITTEN(&imap))) {
1456 xfs_map_buffer(inode, bh_result, &imap, offset);
1457 if (ISUNWRITTEN(&imap))
1458 set_buffer_unwritten(bh_result);
1459 /* direct IO needs special help */
1460 if (create && direct)
1461 xfs_map_direct(inode, bh_result, &imap, offset);
1462 }
1463
1464 /*
1465 * If this is a realtime file, data may be on a different device.
1466 * to that pointed to from the buffer_head b_bdev currently.
1467 */
1468 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1469
1470 /*
1471 * If we previously allocated a block out beyond eof and we are now
1472 * coming back to use it then we will need to flag it as new even if it
1473 * has a disk address.
1474 *
1475 * With sub-block writes into unwritten extents we also need to mark
1476 * the buffer as new so that the unwritten parts of the buffer gets
1477 * correctly zeroed.
1478 */
1479 if (create &&
1480 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1481 (offset >= i_size_read(inode)) ||
1482 (new || ISUNWRITTEN(&imap))))
1483 set_buffer_new(bh_result);
1484
1485 if (imap.br_startblock == DELAYSTARTBLOCK) {
1486 BUG_ON(direct);
1487 if (create) {
1488 set_buffer_uptodate(bh_result);
1489 set_buffer_mapped(bh_result);
1490 set_buffer_delay(bh_result);
1491 }
1492 }
1493
1494 return 0;
1495
1496 out_unlock:
1497 xfs_iunlock(ip, lockmode);
1498 return error;
1499 }
1500
1501 int
1502 xfs_get_blocks(
1503 struct inode *inode,
1504 sector_t iblock,
1505 struct buffer_head *bh_result,
1506 int create)
1507 {
1508 return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1509 }
1510
1511 int
1512 xfs_get_blocks_direct(
1513 struct inode *inode,
1514 sector_t iblock,
1515 struct buffer_head *bh_result,
1516 int create)
1517 {
1518 return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1519 }
1520
1521 static void
1522 __xfs_end_io_direct_write(
1523 struct inode *inode,
1524 struct xfs_ioend *ioend,
1525 loff_t offset,
1526 ssize_t size)
1527 {
1528 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1529
1530 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1531 goto out_end_io;
1532
1533 /*
1534 * dio completion end_io functions are only called on writes if more
1535 * than 0 bytes was written.
1536 */
1537 ASSERT(size > 0);
1538
1539 /*
1540 * The ioend only maps whole blocks, while the IO may be sector aligned.
1541 * Hence the ioend offset/size may not match the IO offset/size exactly.
1542 * Because we don't map overwrites within EOF into the ioend, the offset
1543 * may not match, but only if the endio spans EOF. Either way, write
1544 * the IO sizes into the ioend so that completion processing does the
1545 * right thing.
1546 */
1547 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1548 ioend->io_size = size;
1549 ioend->io_offset = offset;
1550
1551 /*
1552 * The ioend tells us whether we are doing unwritten extent conversion
1553 * or an append transaction that updates the on-disk file size. These
1554 * cases are the only cases where we should *potentially* be needing
1555 * to update the VFS inode size.
1556 *
1557 * We need to update the in-core inode size here so that we don't end up
1558 * with the on-disk inode size being outside the in-core inode size. We
1559 * have no other method of updating EOF for AIO, so always do it here
1560 * if necessary.
1561 *
1562 * We need to lock the test/set EOF update as we can be racing with
1563 * other IO completions here to update the EOF. Failing to serialise
1564 * here can result in EOF moving backwards and Bad Things Happen when
1565 * that occurs.
1566 */
1567 spin_lock(&XFS_I(inode)->i_flags_lock);
1568 if (offset + size > i_size_read(inode))
1569 i_size_write(inode, offset + size);
1570 spin_unlock(&XFS_I(inode)->i_flags_lock);
1571
1572 /*
1573 * If we are doing an append IO that needs to update the EOF on disk,
1574 * do the transaction reserve now so we can use common end io
1575 * processing. Stashing the error (if there is one) in the ioend will
1576 * result in the ioend processing passing on the error if it is
1577 * possible as we can't return it from here.
1578 */
1579 if (ioend->io_type == XFS_IO_OVERWRITE)
1580 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1581
1582 out_end_io:
1583 xfs_end_io(&ioend->io_work);
1584 return;
1585 }
1586
1587 /*
1588 * Complete a direct I/O write request.
1589 *
1590 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1591 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1592 * wholly within the EOF and so there is nothing for us to do. Note that in this
1593 * case the completion can be called in interrupt context, whereas if we have an
1594 * ioend we will always be called in task context (i.e. from a workqueue).
1595 */
1596 STATIC void
1597 xfs_end_io_direct_write(
1598 struct kiocb *iocb,
1599 loff_t offset,
1600 ssize_t size,
1601 void *private)
1602 {
1603 struct inode *inode = file_inode(iocb->ki_filp);
1604 struct xfs_ioend *ioend = private;
1605
1606 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1607 ioend ? ioend->io_type : 0, NULL);
1608
1609 if (!ioend) {
1610 ASSERT(offset + size <= i_size_read(inode));
1611 return;
1612 }
1613
1614 __xfs_end_io_direct_write(inode, ioend, offset, size);
1615 }
1616
1617 /*
1618 * For DAX we need a mapping buffer callback for unwritten extent conversion
1619 * when page faults allocate blocks and then zero them. Note that in this
1620 * case the mapping indicated by the ioend may extend beyond EOF. We most
1621 * definitely do not want to extend EOF here, so we trim back the ioend size to
1622 * EOF.
1623 */
1624 #ifdef CONFIG_FS_DAX
1625 void
1626 xfs_end_io_dax_write(
1627 struct buffer_head *bh,
1628 int uptodate)
1629 {
1630 struct xfs_ioend *ioend = bh->b_private;
1631 struct inode *inode = ioend->io_inode;
1632 ssize_t size = ioend->io_size;
1633
1634 ASSERT(IS_DAX(ioend->io_inode));
1635
1636 /* if there was an error zeroing, then don't convert it */
1637 if (!uptodate)
1638 ioend->io_error = -EIO;
1639
1640 /*
1641 * Trim update to EOF, so we don't extend EOF during unwritten extent
1642 * conversion of partial EOF blocks.
1643 */
1644 spin_lock(&XFS_I(inode)->i_flags_lock);
1645 if (ioend->io_offset + size > i_size_read(inode))
1646 size = i_size_read(inode) - ioend->io_offset;
1647 spin_unlock(&XFS_I(inode)->i_flags_lock);
1648
1649 __xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1650
1651 }
1652 #else
1653 void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1654 #endif
1655
1656 static inline ssize_t
1657 xfs_vm_do_dio(
1658 struct inode *inode,
1659 struct kiocb *iocb,
1660 struct iov_iter *iter,
1661 loff_t offset,
1662 void (*endio)(struct kiocb *iocb,
1663 loff_t offset,
1664 ssize_t size,
1665 void *private),
1666 int flags)
1667 {
1668 struct block_device *bdev;
1669
1670 if (IS_DAX(inode))
1671 return dax_do_io(iocb, inode, iter, offset,
1672 xfs_get_blocks_direct, endio, 0);
1673
1674 bdev = xfs_find_bdev_for_inode(inode);
1675 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1676 xfs_get_blocks_direct, endio, NULL, flags);
1677 }
1678
1679 STATIC ssize_t
1680 xfs_vm_direct_IO(
1681 struct kiocb *iocb,
1682 struct iov_iter *iter,
1683 loff_t offset)
1684 {
1685 struct inode *inode = iocb->ki_filp->f_mapping->host;
1686
1687 if (iov_iter_rw(iter) == WRITE)
1688 return xfs_vm_do_dio(inode, iocb, iter, offset,
1689 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1690 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1691 }
1692
1693 /*
1694 * Punch out the delalloc blocks we have already allocated.
1695 *
1696 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1697 * as the page is still locked at this point.
1698 */
1699 STATIC void
1700 xfs_vm_kill_delalloc_range(
1701 struct inode *inode,
1702 loff_t start,
1703 loff_t end)
1704 {
1705 struct xfs_inode *ip = XFS_I(inode);
1706 xfs_fileoff_t start_fsb;
1707 xfs_fileoff_t end_fsb;
1708 int error;
1709
1710 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1711 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1712 if (end_fsb <= start_fsb)
1713 return;
1714
1715 xfs_ilock(ip, XFS_ILOCK_EXCL);
1716 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1717 end_fsb - start_fsb);
1718 if (error) {
1719 /* something screwed, just bail */
1720 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1721 xfs_alert(ip->i_mount,
1722 "xfs_vm_write_failed: unable to clean up ino %lld",
1723 ip->i_ino);
1724 }
1725 }
1726 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1727 }
1728
1729 STATIC void
1730 xfs_vm_write_failed(
1731 struct inode *inode,
1732 struct page *page,
1733 loff_t pos,
1734 unsigned len)
1735 {
1736 loff_t block_offset;
1737 loff_t block_start;
1738 loff_t block_end;
1739 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1740 loff_t to = from + len;
1741 struct buffer_head *bh, *head;
1742
1743 /*
1744 * The request pos offset might be 32 or 64 bit, this is all fine
1745 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1746 * platform, the high 32-bit will be masked off if we evaluate the
1747 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1748 * 0xfffff000 as an unsigned long, hence the result is incorrect
1749 * which could cause the following ASSERT failed in most cases.
1750 * In order to avoid this, we can evaluate the block_offset of the
1751 * start of the page by using shifts rather than masks the mismatch
1752 * problem.
1753 */
1754 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1755
1756 ASSERT(block_offset + from == pos);
1757
1758 head = page_buffers(page);
1759 block_start = 0;
1760 for (bh = head; bh != head || !block_start;
1761 bh = bh->b_this_page, block_start = block_end,
1762 block_offset += bh->b_size) {
1763 block_end = block_start + bh->b_size;
1764
1765 /* skip buffers before the write */
1766 if (block_end <= from)
1767 continue;
1768
1769 /* if the buffer is after the write, we're done */
1770 if (block_start >= to)
1771 break;
1772
1773 if (!buffer_delay(bh))
1774 continue;
1775
1776 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1777 continue;
1778
1779 xfs_vm_kill_delalloc_range(inode, block_offset,
1780 block_offset + bh->b_size);
1781
1782 /*
1783 * This buffer does not contain data anymore. make sure anyone
1784 * who finds it knows that for certain.
1785 */
1786 clear_buffer_delay(bh);
1787 clear_buffer_uptodate(bh);
1788 clear_buffer_mapped(bh);
1789 clear_buffer_new(bh);
1790 clear_buffer_dirty(bh);
1791 }
1792
1793 }
1794
1795 /*
1796 * This used to call block_write_begin(), but it unlocks and releases the page
1797 * on error, and we need that page to be able to punch stale delalloc blocks out
1798 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1799 * the appropriate point.
1800 */
1801 STATIC int
1802 xfs_vm_write_begin(
1803 struct file *file,
1804 struct address_space *mapping,
1805 loff_t pos,
1806 unsigned len,
1807 unsigned flags,
1808 struct page **pagep,
1809 void **fsdata)
1810 {
1811 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1812 struct page *page;
1813 int status;
1814
1815 ASSERT(len <= PAGE_CACHE_SIZE);
1816
1817 page = grab_cache_page_write_begin(mapping, index, flags);
1818 if (!page)
1819 return -ENOMEM;
1820
1821 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1822 if (unlikely(status)) {
1823 struct inode *inode = mapping->host;
1824 size_t isize = i_size_read(inode);
1825
1826 xfs_vm_write_failed(inode, page, pos, len);
1827 unlock_page(page);
1828
1829 /*
1830 * If the write is beyond EOF, we only want to kill blocks
1831 * allocated in this write, not blocks that were previously
1832 * written successfully.
1833 */
1834 if (pos + len > isize) {
1835 ssize_t start = max_t(ssize_t, pos, isize);
1836
1837 truncate_pagecache_range(inode, start, pos + len);
1838 }
1839
1840 page_cache_release(page);
1841 page = NULL;
1842 }
1843
1844 *pagep = page;
1845 return status;
1846 }
1847
1848 /*
1849 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1850 * this specific write because they will never be written. Previous writes
1851 * beyond EOF where block allocation succeeded do not need to be trashed, so
1852 * only new blocks from this write should be trashed. For blocks within
1853 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1854 * written with all the other valid data.
1855 */
1856 STATIC int
1857 xfs_vm_write_end(
1858 struct file *file,
1859 struct address_space *mapping,
1860 loff_t pos,
1861 unsigned len,
1862 unsigned copied,
1863 struct page *page,
1864 void *fsdata)
1865 {
1866 int ret;
1867
1868 ASSERT(len <= PAGE_CACHE_SIZE);
1869
1870 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1871 if (unlikely(ret < len)) {
1872 struct inode *inode = mapping->host;
1873 size_t isize = i_size_read(inode);
1874 loff_t to = pos + len;
1875
1876 if (to > isize) {
1877 /* only kill blocks in this write beyond EOF */
1878 if (pos > isize)
1879 isize = pos;
1880 xfs_vm_kill_delalloc_range(inode, isize, to);
1881 truncate_pagecache_range(inode, isize, to);
1882 }
1883 }
1884 return ret;
1885 }
1886
1887 STATIC sector_t
1888 xfs_vm_bmap(
1889 struct address_space *mapping,
1890 sector_t block)
1891 {
1892 struct inode *inode = (struct inode *)mapping->host;
1893 struct xfs_inode *ip = XFS_I(inode);
1894
1895 trace_xfs_vm_bmap(XFS_I(inode));
1896 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1897 filemap_write_and_wait(mapping);
1898 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1899 return generic_block_bmap(mapping, block, xfs_get_blocks);
1900 }
1901
1902 STATIC int
1903 xfs_vm_readpage(
1904 struct file *unused,
1905 struct page *page)
1906 {
1907 return mpage_readpage(page, xfs_get_blocks);
1908 }
1909
1910 STATIC int
1911 xfs_vm_readpages(
1912 struct file *unused,
1913 struct address_space *mapping,
1914 struct list_head *pages,
1915 unsigned nr_pages)
1916 {
1917 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1918 }
1919
1920 /*
1921 * This is basically a copy of __set_page_dirty_buffers() with one
1922 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1923 * dirty, we'll never be able to clean them because we don't write buffers
1924 * beyond EOF, and that means we can't invalidate pages that span EOF
1925 * that have been marked dirty. Further, the dirty state can leak into
1926 * the file interior if the file is extended, resulting in all sorts of
1927 * bad things happening as the state does not match the underlying data.
1928 *
1929 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1930 * this only exist because of bufferheads and how the generic code manages them.
1931 */
1932 STATIC int
1933 xfs_vm_set_page_dirty(
1934 struct page *page)
1935 {
1936 struct address_space *mapping = page->mapping;
1937 struct inode *inode = mapping->host;
1938 loff_t end_offset;
1939 loff_t offset;
1940 int newly_dirty;
1941 struct mem_cgroup *memcg;
1942
1943 if (unlikely(!mapping))
1944 return !TestSetPageDirty(page);
1945
1946 end_offset = i_size_read(inode);
1947 offset = page_offset(page);
1948
1949 spin_lock(&mapping->private_lock);
1950 if (page_has_buffers(page)) {
1951 struct buffer_head *head = page_buffers(page);
1952 struct buffer_head *bh = head;
1953
1954 do {
1955 if (offset < end_offset)
1956 set_buffer_dirty(bh);
1957 bh = bh->b_this_page;
1958 offset += 1 << inode->i_blkbits;
1959 } while (bh != head);
1960 }
1961 /*
1962 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1963 * per-memcg dirty page counters.
1964 */
1965 memcg = mem_cgroup_begin_page_stat(page);
1966 newly_dirty = !TestSetPageDirty(page);
1967 spin_unlock(&mapping->private_lock);
1968
1969 if (newly_dirty) {
1970 /* sigh - __set_page_dirty() is static, so copy it here, too */
1971 unsigned long flags;
1972
1973 spin_lock_irqsave(&mapping->tree_lock, flags);
1974 if (page->mapping) { /* Race with truncate? */
1975 WARN_ON_ONCE(!PageUptodate(page));
1976 account_page_dirtied(page, mapping, memcg);
1977 radix_tree_tag_set(&mapping->page_tree,
1978 page_index(page), PAGECACHE_TAG_DIRTY);
1979 }
1980 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981 }
1982 mem_cgroup_end_page_stat(memcg);
1983 if (newly_dirty)
1984 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1985 return newly_dirty;
1986 }
1987
1988 const struct address_space_operations xfs_address_space_operations = {
1989 .readpage = xfs_vm_readpage,
1990 .readpages = xfs_vm_readpages,
1991 .writepage = xfs_vm_writepage,
1992 .writepages = xfs_vm_writepages,
1993 .set_page_dirty = xfs_vm_set_page_dirty,
1994 .releasepage = xfs_vm_releasepage,
1995 .invalidatepage = xfs_vm_invalidatepage,
1996 .write_begin = xfs_vm_write_begin,
1997 .write_end = xfs_vm_write_end,
1998 .bmap = xfs_vm_bmap,
1999 .direct_IO = xfs_vm_direct_IO,
2000 .migratepage = buffer_migrate_page,
2001 .is_partially_uptodate = block_is_partially_uptodate,
2002 .error_remove_page = generic_error_remove_page,
2003 };