]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_aops.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 /*
41 * structure owned by writepages passed to individual writepage calls
42 */
43 struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49 };
50
51 void
52 xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56 {
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68 }
69
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 struct inode *inode)
73 {
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81 }
82
83 /*
84 * We're now finished for good with this page. Update the page state via the
85 * associated buffer_heads, paying attention to the start and end offsets that
86 * we need to process on the page.
87 *
88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90 * the page at all, as we may be racing with memory reclaim and it can free both
91 * the bufferhead chain and the page as it will see the page as clean and
92 * unused.
93 */
94 static void
95 xfs_finish_page_writeback(
96 struct inode *inode,
97 struct bio_vec *bvec,
98 int error)
99 {
100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
101 struct buffer_head *head, *bh, *next;
102 unsigned int off = 0;
103 unsigned int bsize;
104
105 ASSERT(bvec->bv_offset < PAGE_SIZE);
106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
107 ASSERT(end < PAGE_SIZE);
108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
109
110 bh = head = page_buffers(bvec->bv_page);
111
112 bsize = bh->b_size;
113 do {
114 if (off > end)
115 break;
116 next = bh->b_this_page;
117 if (off < bvec->bv_offset)
118 goto next_bh;
119 bh->b_end_io(bh, !error);
120 next_bh:
121 off += bsize;
122 } while ((bh = next) != head);
123 }
124
125 /*
126 * We're now finished for good with this ioend structure. Update the page
127 * state, release holds on bios, and finally free up memory. Do not use the
128 * ioend after this.
129 */
130 STATIC void
131 xfs_destroy_ioend(
132 struct xfs_ioend *ioend,
133 int error)
134 {
135 struct inode *inode = ioend->io_inode;
136 struct bio *last = ioend->io_bio;
137 struct bio *bio, *next;
138
139 for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 struct bio_vec *bvec;
141 int i;
142
143 /*
144 * For the last bio, bi_private points to the ioend, so we
145 * need to explicitly end the iteration here.
146 */
147 if (bio == last)
148 next = NULL;
149 else
150 next = bio->bi_private;
151
152 /* walk each page on bio, ending page IO on them */
153 bio_for_each_segment_all(bvec, bio, i)
154 xfs_finish_page_writeback(inode, bvec, error);
155
156 bio_put(bio);
157 }
158 }
159
160 /*
161 * Fast and loose check if this write could update the on-disk inode size.
162 */
163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
164 {
165 return ioend->io_offset + ioend->io_size >
166 XFS_I(ioend->io_inode)->i_d.di_size;
167 }
168
169 STATIC int
170 xfs_setfilesize_trans_alloc(
171 struct xfs_ioend *ioend)
172 {
173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
174 struct xfs_trans *tp;
175 int error;
176
177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
178 if (error)
179 return error;
180
181 ioend->io_append_trans = tp;
182
183 /*
184 * We may pass freeze protection with a transaction. So tell lockdep
185 * we released it.
186 */
187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
188 /*
189 * We hand off the transaction to the completion thread now, so
190 * clear the flag here.
191 */
192 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
193 return 0;
194 }
195
196 /*
197 * Update on-disk file size now that data has been written to disk.
198 */
199 STATIC int
200 __xfs_setfilesize(
201 struct xfs_inode *ip,
202 struct xfs_trans *tp,
203 xfs_off_t offset,
204 size_t size)
205 {
206 xfs_fsize_t isize;
207
208 xfs_ilock(ip, XFS_ILOCK_EXCL);
209 isize = xfs_new_eof(ip, offset + size);
210 if (!isize) {
211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
212 xfs_trans_cancel(tp);
213 return 0;
214 }
215
216 trace_xfs_setfilesize(ip, offset, size);
217
218 ip->i_d.di_size = isize;
219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221
222 return xfs_trans_commit(tp);
223 }
224
225 int
226 xfs_setfilesize(
227 struct xfs_inode *ip,
228 xfs_off_t offset,
229 size_t size)
230 {
231 struct xfs_mount *mp = ip->i_mount;
232 struct xfs_trans *tp;
233 int error;
234
235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
236 if (error)
237 return error;
238
239 return __xfs_setfilesize(ip, tp, offset, size);
240 }
241
242 STATIC int
243 xfs_setfilesize_ioend(
244 struct xfs_ioend *ioend,
245 int error)
246 {
247 struct xfs_inode *ip = XFS_I(ioend->io_inode);
248 struct xfs_trans *tp = ioend->io_append_trans;
249
250 /*
251 * The transaction may have been allocated in the I/O submission thread,
252 * thus we need to mark ourselves as being in a transaction manually.
253 * Similarly for freeze protection.
254 */
255 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
257
258 /* we abort the update if there was an IO error */
259 if (error) {
260 xfs_trans_cancel(tp);
261 return error;
262 }
263
264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
265 }
266
267 /*
268 * IO write completion.
269 */
270 STATIC void
271 xfs_end_io(
272 struct work_struct *work)
273 {
274 struct xfs_ioend *ioend =
275 container_of(work, struct xfs_ioend, io_work);
276 struct xfs_inode *ip = XFS_I(ioend->io_inode);
277 xfs_off_t offset = ioend->io_offset;
278 size_t size = ioend->io_size;
279 int error;
280
281 /*
282 * Just clean up the in-memory strutures if the fs has been shut down.
283 */
284 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
285 error = -EIO;
286 goto done;
287 }
288
289 /*
290 * Clean up any COW blocks on an I/O error.
291 */
292 error = blk_status_to_errno(ioend->io_bio->bi_status);
293 if (unlikely(error)) {
294 switch (ioend->io_type) {
295 case XFS_IO_COW:
296 xfs_reflink_cancel_cow_range(ip, offset, size, true);
297 break;
298 }
299
300 goto done;
301 }
302
303 /*
304 * Success: commit the COW or unwritten blocks if needed.
305 */
306 switch (ioend->io_type) {
307 case XFS_IO_COW:
308 error = xfs_reflink_end_cow(ip, offset, size);
309 break;
310 case XFS_IO_UNWRITTEN:
311 error = xfs_iomap_write_unwritten(ip, offset, size);
312 break;
313 default:
314 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
315 break;
316 }
317
318 done:
319 if (ioend->io_append_trans)
320 error = xfs_setfilesize_ioend(ioend, error);
321 xfs_destroy_ioend(ioend, error);
322 }
323
324 STATIC void
325 xfs_end_bio(
326 struct bio *bio)
327 {
328 struct xfs_ioend *ioend = bio->bi_private;
329 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
330
331 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
332 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
333 else if (ioend->io_append_trans)
334 queue_work(mp->m_data_workqueue, &ioend->io_work);
335 else
336 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
337 }
338
339 STATIC int
340 xfs_map_blocks(
341 struct inode *inode,
342 loff_t offset,
343 struct xfs_bmbt_irec *imap,
344 int type)
345 {
346 struct xfs_inode *ip = XFS_I(inode);
347 struct xfs_mount *mp = ip->i_mount;
348 ssize_t count = i_blocksize(inode);
349 xfs_fileoff_t offset_fsb, end_fsb;
350 int error = 0;
351 int bmapi_flags = XFS_BMAPI_ENTIRE;
352 int nimaps = 1;
353
354 if (XFS_FORCED_SHUTDOWN(mp))
355 return -EIO;
356
357 ASSERT(type != XFS_IO_COW);
358 if (type == XFS_IO_UNWRITTEN)
359 bmapi_flags |= XFS_BMAPI_IGSTATE;
360
361 xfs_ilock(ip, XFS_ILOCK_SHARED);
362 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
363 (ip->i_df.if_flags & XFS_IFEXTENTS));
364 ASSERT(offset <= mp->m_super->s_maxbytes);
365
366 if (offset + count > mp->m_super->s_maxbytes)
367 count = mp->m_super->s_maxbytes - offset;
368 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
369 offset_fsb = XFS_B_TO_FSBT(mp, offset);
370 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
371 imap, &nimaps, bmapi_flags);
372 /*
373 * Truncate an overwrite extent if there's a pending CoW
374 * reservation before the end of this extent. This forces us
375 * to come back to writepage to take care of the CoW.
376 */
377 if (nimaps && type == XFS_IO_OVERWRITE)
378 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
379 xfs_iunlock(ip, XFS_ILOCK_SHARED);
380
381 if (error)
382 return error;
383
384 if (type == XFS_IO_DELALLOC &&
385 (!nimaps || isnullstartblock(imap->br_startblock))) {
386 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
387 imap);
388 if (!error)
389 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
390 return error;
391 }
392
393 #ifdef DEBUG
394 if (type == XFS_IO_UNWRITTEN) {
395 ASSERT(nimaps);
396 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
397 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
398 }
399 #endif
400 if (nimaps)
401 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
402 return 0;
403 }
404
405 STATIC bool
406 xfs_imap_valid(
407 struct inode *inode,
408 struct xfs_bmbt_irec *imap,
409 xfs_off_t offset)
410 {
411 offset >>= inode->i_blkbits;
412
413 return offset >= imap->br_startoff &&
414 offset < imap->br_startoff + imap->br_blockcount;
415 }
416
417 STATIC void
418 xfs_start_buffer_writeback(
419 struct buffer_head *bh)
420 {
421 ASSERT(buffer_mapped(bh));
422 ASSERT(buffer_locked(bh));
423 ASSERT(!buffer_delay(bh));
424 ASSERT(!buffer_unwritten(bh));
425
426 mark_buffer_async_write(bh);
427 set_buffer_uptodate(bh);
428 clear_buffer_dirty(bh);
429 }
430
431 STATIC void
432 xfs_start_page_writeback(
433 struct page *page,
434 int clear_dirty)
435 {
436 ASSERT(PageLocked(page));
437 ASSERT(!PageWriteback(page));
438
439 /*
440 * if the page was not fully cleaned, we need to ensure that the higher
441 * layers come back to it correctly. That means we need to keep the page
442 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
443 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
444 * write this page in this writeback sweep will be made.
445 */
446 if (clear_dirty) {
447 clear_page_dirty_for_io(page);
448 set_page_writeback(page);
449 } else
450 set_page_writeback_keepwrite(page);
451
452 unlock_page(page);
453 }
454
455 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
456 {
457 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
458 }
459
460 /*
461 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
462 * it, and we submit that bio. The ioend may be used for multiple bio
463 * submissions, so we only want to allocate an append transaction for the ioend
464 * once. In the case of multiple bio submission, each bio will take an IO
465 * reference to the ioend to ensure that the ioend completion is only done once
466 * all bios have been submitted and the ioend is really done.
467 *
468 * If @fail is non-zero, it means that we have a situation where some part of
469 * the submission process has failed after we have marked paged for writeback
470 * and unlocked them. In this situation, we need to fail the bio and ioend
471 * rather than submit it to IO. This typically only happens on a filesystem
472 * shutdown.
473 */
474 STATIC int
475 xfs_submit_ioend(
476 struct writeback_control *wbc,
477 struct xfs_ioend *ioend,
478 int status)
479 {
480 /* Convert CoW extents to regular */
481 if (!status && ioend->io_type == XFS_IO_COW) {
482 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
483 ioend->io_offset, ioend->io_size);
484 }
485
486 /* Reserve log space if we might write beyond the on-disk inode size. */
487 if (!status &&
488 ioend->io_type != XFS_IO_UNWRITTEN &&
489 xfs_ioend_is_append(ioend) &&
490 !ioend->io_append_trans)
491 status = xfs_setfilesize_trans_alloc(ioend);
492
493 ioend->io_bio->bi_private = ioend;
494 ioend->io_bio->bi_end_io = xfs_end_bio;
495 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
496
497 /*
498 * If we are failing the IO now, just mark the ioend with an
499 * error and finish it. This will run IO completion immediately
500 * as there is only one reference to the ioend at this point in
501 * time.
502 */
503 if (status) {
504 ioend->io_bio->bi_status = errno_to_blk_status(status);
505 bio_endio(ioend->io_bio);
506 return status;
507 }
508
509 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
510 submit_bio(ioend->io_bio);
511 return 0;
512 }
513
514 static void
515 xfs_init_bio_from_bh(
516 struct bio *bio,
517 struct buffer_head *bh)
518 {
519 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
520 bio->bi_bdev = bh->b_bdev;
521 }
522
523 static struct xfs_ioend *
524 xfs_alloc_ioend(
525 struct inode *inode,
526 unsigned int type,
527 xfs_off_t offset,
528 struct buffer_head *bh)
529 {
530 struct xfs_ioend *ioend;
531 struct bio *bio;
532
533 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
534 xfs_init_bio_from_bh(bio, bh);
535
536 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
537 INIT_LIST_HEAD(&ioend->io_list);
538 ioend->io_type = type;
539 ioend->io_inode = inode;
540 ioend->io_size = 0;
541 ioend->io_offset = offset;
542 INIT_WORK(&ioend->io_work, xfs_end_io);
543 ioend->io_append_trans = NULL;
544 ioend->io_bio = bio;
545 return ioend;
546 }
547
548 /*
549 * Allocate a new bio, and chain the old bio to the new one.
550 *
551 * Note that we have to do perform the chaining in this unintuitive order
552 * so that the bi_private linkage is set up in the right direction for the
553 * traversal in xfs_destroy_ioend().
554 */
555 static void
556 xfs_chain_bio(
557 struct xfs_ioend *ioend,
558 struct writeback_control *wbc,
559 struct buffer_head *bh)
560 {
561 struct bio *new;
562
563 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
564 xfs_init_bio_from_bh(new, bh);
565
566 bio_chain(ioend->io_bio, new);
567 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
568 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
569 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
570 submit_bio(ioend->io_bio);
571 ioend->io_bio = new;
572 }
573
574 /*
575 * Test to see if we've been building up a completion structure for
576 * earlier buffers -- if so, we try to append to this ioend if we
577 * can, otherwise we finish off any current ioend and start another.
578 * Return the ioend we finished off so that the caller can submit it
579 * once it has finished processing the dirty page.
580 */
581 STATIC void
582 xfs_add_to_ioend(
583 struct inode *inode,
584 struct buffer_head *bh,
585 xfs_off_t offset,
586 struct xfs_writepage_ctx *wpc,
587 struct writeback_control *wbc,
588 struct list_head *iolist)
589 {
590 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
591 bh->b_blocknr != wpc->last_block + 1 ||
592 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
593 if (wpc->ioend)
594 list_add(&wpc->ioend->io_list, iolist);
595 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
596 }
597
598 /*
599 * If the buffer doesn't fit into the bio we need to allocate a new
600 * one. This shouldn't happen more than once for a given buffer.
601 */
602 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
603 xfs_chain_bio(wpc->ioend, wbc, bh);
604
605 wpc->ioend->io_size += bh->b_size;
606 wpc->last_block = bh->b_blocknr;
607 xfs_start_buffer_writeback(bh);
608 }
609
610 STATIC void
611 xfs_map_buffer(
612 struct inode *inode,
613 struct buffer_head *bh,
614 struct xfs_bmbt_irec *imap,
615 xfs_off_t offset)
616 {
617 sector_t bn;
618 struct xfs_mount *m = XFS_I(inode)->i_mount;
619 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
620 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
621
622 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
624
625 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
626 ((offset - iomap_offset) >> inode->i_blkbits);
627
628 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
629
630 bh->b_blocknr = bn;
631 set_buffer_mapped(bh);
632 }
633
634 STATIC void
635 xfs_map_at_offset(
636 struct inode *inode,
637 struct buffer_head *bh,
638 struct xfs_bmbt_irec *imap,
639 xfs_off_t offset)
640 {
641 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
642 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
643
644 xfs_map_buffer(inode, bh, imap, offset);
645 set_buffer_mapped(bh);
646 clear_buffer_delay(bh);
647 clear_buffer_unwritten(bh);
648 }
649
650 /*
651 * Test if a given page contains at least one buffer of a given @type.
652 * If @check_all_buffers is true, then we walk all the buffers in the page to
653 * try to find one of the type passed in. If it is not set, then the caller only
654 * needs to check the first buffer on the page for a match.
655 */
656 STATIC bool
657 xfs_check_page_type(
658 struct page *page,
659 unsigned int type,
660 bool check_all_buffers)
661 {
662 struct buffer_head *bh;
663 struct buffer_head *head;
664
665 if (PageWriteback(page))
666 return false;
667 if (!page->mapping)
668 return false;
669 if (!page_has_buffers(page))
670 return false;
671
672 bh = head = page_buffers(page);
673 do {
674 if (buffer_unwritten(bh)) {
675 if (type == XFS_IO_UNWRITTEN)
676 return true;
677 } else if (buffer_delay(bh)) {
678 if (type == XFS_IO_DELALLOC)
679 return true;
680 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
681 if (type == XFS_IO_OVERWRITE)
682 return true;
683 }
684
685 /* If we are only checking the first buffer, we are done now. */
686 if (!check_all_buffers)
687 break;
688 } while ((bh = bh->b_this_page) != head);
689
690 return false;
691 }
692
693 STATIC void
694 xfs_vm_invalidatepage(
695 struct page *page,
696 unsigned int offset,
697 unsigned int length)
698 {
699 trace_xfs_invalidatepage(page->mapping->host, page, offset,
700 length);
701 block_invalidatepage(page, offset, length);
702 }
703
704 /*
705 * If the page has delalloc buffers on it, we need to punch them out before we
706 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
707 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
708 * is done on that same region - the delalloc extent is returned when none is
709 * supposed to be there.
710 *
711 * We prevent this by truncating away the delalloc regions on the page before
712 * invalidating it. Because they are delalloc, we can do this without needing a
713 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
714 * truncation without a transaction as there is no space left for block
715 * reservation (typically why we see a ENOSPC in writeback).
716 *
717 * This is not a performance critical path, so for now just do the punching a
718 * buffer head at a time.
719 */
720 STATIC void
721 xfs_aops_discard_page(
722 struct page *page)
723 {
724 struct inode *inode = page->mapping->host;
725 struct xfs_inode *ip = XFS_I(inode);
726 struct buffer_head *bh, *head;
727 loff_t offset = page_offset(page);
728
729 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
730 goto out_invalidate;
731
732 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
733 goto out_invalidate;
734
735 xfs_alert(ip->i_mount,
736 "page discard on page %p, inode 0x%llx, offset %llu.",
737 page, ip->i_ino, offset);
738
739 xfs_ilock(ip, XFS_ILOCK_EXCL);
740 bh = head = page_buffers(page);
741 do {
742 int error;
743 xfs_fileoff_t start_fsb;
744
745 if (!buffer_delay(bh))
746 goto next_buffer;
747
748 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
749 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
750 if (error) {
751 /* something screwed, just bail */
752 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
753 xfs_alert(ip->i_mount,
754 "page discard unable to remove delalloc mapping.");
755 }
756 break;
757 }
758 next_buffer:
759 offset += i_blocksize(inode);
760
761 } while ((bh = bh->b_this_page) != head);
762
763 xfs_iunlock(ip, XFS_ILOCK_EXCL);
764 out_invalidate:
765 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
766 return;
767 }
768
769 static int
770 xfs_map_cow(
771 struct xfs_writepage_ctx *wpc,
772 struct inode *inode,
773 loff_t offset,
774 unsigned int *new_type)
775 {
776 struct xfs_inode *ip = XFS_I(inode);
777 struct xfs_bmbt_irec imap;
778 bool is_cow = false;
779 int error;
780
781 /*
782 * If we already have a valid COW mapping keep using it.
783 */
784 if (wpc->io_type == XFS_IO_COW) {
785 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
786 if (wpc->imap_valid) {
787 *new_type = XFS_IO_COW;
788 return 0;
789 }
790 }
791
792 /*
793 * Else we need to check if there is a COW mapping at this offset.
794 */
795 xfs_ilock(ip, XFS_ILOCK_SHARED);
796 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
797 xfs_iunlock(ip, XFS_ILOCK_SHARED);
798
799 if (!is_cow)
800 return 0;
801
802 /*
803 * And if the COW mapping has a delayed extent here we need to
804 * allocate real space for it now.
805 */
806 if (isnullstartblock(imap.br_startblock)) {
807 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
808 &imap);
809 if (error)
810 return error;
811 }
812
813 wpc->io_type = *new_type = XFS_IO_COW;
814 wpc->imap_valid = true;
815 wpc->imap = imap;
816 return 0;
817 }
818
819 /*
820 * We implement an immediate ioend submission policy here to avoid needing to
821 * chain multiple ioends and hence nest mempool allocations which can violate
822 * forward progress guarantees we need to provide. The current ioend we are
823 * adding buffers to is cached on the writepage context, and if the new buffer
824 * does not append to the cached ioend it will create a new ioend and cache that
825 * instead.
826 *
827 * If a new ioend is created and cached, the old ioend is returned and queued
828 * locally for submission once the entire page is processed or an error has been
829 * detected. While ioends are submitted immediately after they are completed,
830 * batching optimisations are provided by higher level block plugging.
831 *
832 * At the end of a writeback pass, there will be a cached ioend remaining on the
833 * writepage context that the caller will need to submit.
834 */
835 static int
836 xfs_writepage_map(
837 struct xfs_writepage_ctx *wpc,
838 struct writeback_control *wbc,
839 struct inode *inode,
840 struct page *page,
841 loff_t offset,
842 uint64_t end_offset)
843 {
844 LIST_HEAD(submit_list);
845 struct xfs_ioend *ioend, *next;
846 struct buffer_head *bh, *head;
847 ssize_t len = i_blocksize(inode);
848 int error = 0;
849 int count = 0;
850 int uptodate = 1;
851 unsigned int new_type;
852
853 bh = head = page_buffers(page);
854 offset = page_offset(page);
855 do {
856 if (offset >= end_offset)
857 break;
858 if (!buffer_uptodate(bh))
859 uptodate = 0;
860
861 /*
862 * set_page_dirty dirties all buffers in a page, independent
863 * of their state. The dirty state however is entirely
864 * meaningless for holes (!mapped && uptodate), so skip
865 * buffers covering holes here.
866 */
867 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
868 wpc->imap_valid = false;
869 continue;
870 }
871
872 if (buffer_unwritten(bh))
873 new_type = XFS_IO_UNWRITTEN;
874 else if (buffer_delay(bh))
875 new_type = XFS_IO_DELALLOC;
876 else if (buffer_uptodate(bh))
877 new_type = XFS_IO_OVERWRITE;
878 else {
879 if (PageUptodate(page))
880 ASSERT(buffer_mapped(bh));
881 /*
882 * This buffer is not uptodate and will not be
883 * written to disk. Ensure that we will put any
884 * subsequent writeable buffers into a new
885 * ioend.
886 */
887 wpc->imap_valid = false;
888 continue;
889 }
890
891 if (xfs_is_reflink_inode(XFS_I(inode))) {
892 error = xfs_map_cow(wpc, inode, offset, &new_type);
893 if (error)
894 goto out;
895 }
896
897 if (wpc->io_type != new_type) {
898 wpc->io_type = new_type;
899 wpc->imap_valid = false;
900 }
901
902 if (wpc->imap_valid)
903 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
904 offset);
905 if (!wpc->imap_valid) {
906 error = xfs_map_blocks(inode, offset, &wpc->imap,
907 wpc->io_type);
908 if (error)
909 goto out;
910 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
911 offset);
912 }
913 if (wpc->imap_valid) {
914 lock_buffer(bh);
915 if (wpc->io_type != XFS_IO_OVERWRITE)
916 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
917 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
918 count++;
919 }
920
921 } while (offset += len, ((bh = bh->b_this_page) != head));
922
923 if (uptodate && bh == head)
924 SetPageUptodate(page);
925
926 ASSERT(wpc->ioend || list_empty(&submit_list));
927
928 out:
929 /*
930 * On error, we have to fail the ioend here because we have locked
931 * buffers in the ioend. If we don't do this, we'll deadlock
932 * invalidating the page as that tries to lock the buffers on the page.
933 * Also, because we may have set pages under writeback, we have to make
934 * sure we run IO completion to mark the error state of the IO
935 * appropriately, so we can't cancel the ioend directly here. That means
936 * we have to mark this page as under writeback if we included any
937 * buffers from it in the ioend chain so that completion treats it
938 * correctly.
939 *
940 * If we didn't include the page in the ioend, the on error we can
941 * simply discard and unlock it as there are no other users of the page
942 * or it's buffers right now. The caller will still need to trigger
943 * submission of outstanding ioends on the writepage context so they are
944 * treated correctly on error.
945 */
946 if (count) {
947 xfs_start_page_writeback(page, !error);
948
949 /*
950 * Preserve the original error if there was one, otherwise catch
951 * submission errors here and propagate into subsequent ioend
952 * submissions.
953 */
954 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
955 int error2;
956
957 list_del_init(&ioend->io_list);
958 error2 = xfs_submit_ioend(wbc, ioend, error);
959 if (error2 && !error)
960 error = error2;
961 }
962 } else if (error) {
963 xfs_aops_discard_page(page);
964 ClearPageUptodate(page);
965 unlock_page(page);
966 } else {
967 /*
968 * We can end up here with no error and nothing to write if we
969 * race with a partial page truncate on a sub-page block sized
970 * filesystem. In that case we need to mark the page clean.
971 */
972 xfs_start_page_writeback(page, 1);
973 end_page_writeback(page);
974 }
975
976 mapping_set_error(page->mapping, error);
977 return error;
978 }
979
980 /*
981 * Write out a dirty page.
982 *
983 * For delalloc space on the page we need to allocate space and flush it.
984 * For unwritten space on the page we need to start the conversion to
985 * regular allocated space.
986 * For any other dirty buffer heads on the page we should flush them.
987 */
988 STATIC int
989 xfs_do_writepage(
990 struct page *page,
991 struct writeback_control *wbc,
992 void *data)
993 {
994 struct xfs_writepage_ctx *wpc = data;
995 struct inode *inode = page->mapping->host;
996 loff_t offset;
997 uint64_t end_offset;
998 pgoff_t end_index;
999
1000 trace_xfs_writepage(inode, page, 0, 0);
1001
1002 ASSERT(page_has_buffers(page));
1003
1004 /*
1005 * Refuse to write the page out if we are called from reclaim context.
1006 *
1007 * This avoids stack overflows when called from deeply used stacks in
1008 * random callers for direct reclaim or memcg reclaim. We explicitly
1009 * allow reclaim from kswapd as the stack usage there is relatively low.
1010 *
1011 * This should never happen except in the case of a VM regression so
1012 * warn about it.
1013 */
1014 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1015 PF_MEMALLOC))
1016 goto redirty;
1017
1018 /*
1019 * Given that we do not allow direct reclaim to call us, we should
1020 * never be called while in a filesystem transaction.
1021 */
1022 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1023 goto redirty;
1024
1025 /*
1026 * Is this page beyond the end of the file?
1027 *
1028 * The page index is less than the end_index, adjust the end_offset
1029 * to the highest offset that this page should represent.
1030 * -----------------------------------------------------
1031 * | file mapping | <EOF> |
1032 * -----------------------------------------------------
1033 * | Page ... | Page N-2 | Page N-1 | Page N | |
1034 * ^--------------------------------^----------|--------
1035 * | desired writeback range | see else |
1036 * ---------------------------------^------------------|
1037 */
1038 offset = i_size_read(inode);
1039 end_index = offset >> PAGE_SHIFT;
1040 if (page->index < end_index)
1041 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1042 else {
1043 /*
1044 * Check whether the page to write out is beyond or straddles
1045 * i_size or not.
1046 * -------------------------------------------------------
1047 * | file mapping | <EOF> |
1048 * -------------------------------------------------------
1049 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1050 * ^--------------------------------^-----------|---------
1051 * | | Straddles |
1052 * ---------------------------------^-----------|--------|
1053 */
1054 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1055
1056 /*
1057 * Skip the page if it is fully outside i_size, e.g. due to a
1058 * truncate operation that is in progress. We must redirty the
1059 * page so that reclaim stops reclaiming it. Otherwise
1060 * xfs_vm_releasepage() is called on it and gets confused.
1061 *
1062 * Note that the end_index is unsigned long, it would overflow
1063 * if the given offset is greater than 16TB on 32-bit system
1064 * and if we do check the page is fully outside i_size or not
1065 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1066 * will be evaluated to 0. Hence this page will be redirtied
1067 * and be written out repeatedly which would result in an
1068 * infinite loop, the user program that perform this operation
1069 * will hang. Instead, we can verify this situation by checking
1070 * if the page to write is totally beyond the i_size or if it's
1071 * offset is just equal to the EOF.
1072 */
1073 if (page->index > end_index ||
1074 (page->index == end_index && offset_into_page == 0))
1075 goto redirty;
1076
1077 /*
1078 * The page straddles i_size. It must be zeroed out on each
1079 * and every writepage invocation because it may be mmapped.
1080 * "A file is mapped in multiples of the page size. For a file
1081 * that is not a multiple of the page size, the remaining
1082 * memory is zeroed when mapped, and writes to that region are
1083 * not written out to the file."
1084 */
1085 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1086
1087 /* Adjust the end_offset to the end of file */
1088 end_offset = offset;
1089 }
1090
1091 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1092
1093 redirty:
1094 redirty_page_for_writepage(wbc, page);
1095 unlock_page(page);
1096 return 0;
1097 }
1098
1099 STATIC int
1100 xfs_vm_writepage(
1101 struct page *page,
1102 struct writeback_control *wbc)
1103 {
1104 struct xfs_writepage_ctx wpc = {
1105 .io_type = XFS_IO_INVALID,
1106 };
1107 int ret;
1108
1109 ret = xfs_do_writepage(page, wbc, &wpc);
1110 if (wpc.ioend)
1111 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1112 return ret;
1113 }
1114
1115 STATIC int
1116 xfs_vm_writepages(
1117 struct address_space *mapping,
1118 struct writeback_control *wbc)
1119 {
1120 struct xfs_writepage_ctx wpc = {
1121 .io_type = XFS_IO_INVALID,
1122 };
1123 int ret;
1124
1125 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1126 if (dax_mapping(mapping))
1127 return dax_writeback_mapping_range(mapping,
1128 xfs_find_bdev_for_inode(mapping->host), wbc);
1129
1130 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1131 if (wpc.ioend)
1132 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1133 return ret;
1134 }
1135
1136 /*
1137 * Called to move a page into cleanable state - and from there
1138 * to be released. The page should already be clean. We always
1139 * have buffer heads in this call.
1140 *
1141 * Returns 1 if the page is ok to release, 0 otherwise.
1142 */
1143 STATIC int
1144 xfs_vm_releasepage(
1145 struct page *page,
1146 gfp_t gfp_mask)
1147 {
1148 int delalloc, unwritten;
1149
1150 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1151
1152 /*
1153 * mm accommodates an old ext3 case where clean pages might not have had
1154 * the dirty bit cleared. Thus, it can send actual dirty pages to
1155 * ->releasepage() via shrink_active_list(). Conversely,
1156 * block_invalidatepage() can send pages that are still marked dirty
1157 * but otherwise have invalidated buffers.
1158 *
1159 * We want to release the latter to avoid unnecessary buildup of the
1160 * LRU, skip the former and warn if we've left any lingering
1161 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1162 * or unwritten buffers and warn if the page is not dirty. Otherwise
1163 * try to release the buffers.
1164 */
1165 xfs_count_page_state(page, &delalloc, &unwritten);
1166
1167 if (delalloc) {
1168 WARN_ON_ONCE(!PageDirty(page));
1169 return 0;
1170 }
1171 if (unwritten) {
1172 WARN_ON_ONCE(!PageDirty(page));
1173 return 0;
1174 }
1175
1176 return try_to_free_buffers(page);
1177 }
1178
1179 /*
1180 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1181 * is, so that we can avoid repeated get_blocks calls.
1182 *
1183 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1184 * for blocks beyond EOF must be marked new so that sub block regions can be
1185 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1186 * was just allocated or is unwritten, otherwise the callers would overwrite
1187 * existing data with zeros. Hence we have to split the mapping into a range up
1188 * to and including EOF, and a second mapping for beyond EOF.
1189 */
1190 static void
1191 xfs_map_trim_size(
1192 struct inode *inode,
1193 sector_t iblock,
1194 struct buffer_head *bh_result,
1195 struct xfs_bmbt_irec *imap,
1196 xfs_off_t offset,
1197 ssize_t size)
1198 {
1199 xfs_off_t mapping_size;
1200
1201 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1202 mapping_size <<= inode->i_blkbits;
1203
1204 ASSERT(mapping_size > 0);
1205 if (mapping_size > size)
1206 mapping_size = size;
1207 if (offset < i_size_read(inode) &&
1208 offset + mapping_size >= i_size_read(inode)) {
1209 /* limit mapping to block that spans EOF */
1210 mapping_size = roundup_64(i_size_read(inode) - offset,
1211 i_blocksize(inode));
1212 }
1213 if (mapping_size > LONG_MAX)
1214 mapping_size = LONG_MAX;
1215
1216 bh_result->b_size = mapping_size;
1217 }
1218
1219 static int
1220 xfs_get_blocks(
1221 struct inode *inode,
1222 sector_t iblock,
1223 struct buffer_head *bh_result,
1224 int create)
1225 {
1226 struct xfs_inode *ip = XFS_I(inode);
1227 struct xfs_mount *mp = ip->i_mount;
1228 xfs_fileoff_t offset_fsb, end_fsb;
1229 int error = 0;
1230 int lockmode = 0;
1231 struct xfs_bmbt_irec imap;
1232 int nimaps = 1;
1233 xfs_off_t offset;
1234 ssize_t size;
1235
1236 BUG_ON(create);
1237
1238 if (XFS_FORCED_SHUTDOWN(mp))
1239 return -EIO;
1240
1241 offset = (xfs_off_t)iblock << inode->i_blkbits;
1242 ASSERT(bh_result->b_size >= i_blocksize(inode));
1243 size = bh_result->b_size;
1244
1245 if (offset >= i_size_read(inode))
1246 return 0;
1247
1248 /*
1249 * Direct I/O is usually done on preallocated files, so try getting
1250 * a block mapping without an exclusive lock first.
1251 */
1252 lockmode = xfs_ilock_data_map_shared(ip);
1253
1254 ASSERT(offset <= mp->m_super->s_maxbytes);
1255 if (offset + size > mp->m_super->s_maxbytes)
1256 size = mp->m_super->s_maxbytes - offset;
1257 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1258 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1259
1260 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1261 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1262 if (error)
1263 goto out_unlock;
1264
1265 if (nimaps) {
1266 trace_xfs_get_blocks_found(ip, offset, size,
1267 imap.br_state == XFS_EXT_UNWRITTEN ?
1268 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1269 xfs_iunlock(ip, lockmode);
1270 } else {
1271 trace_xfs_get_blocks_notfound(ip, offset, size);
1272 goto out_unlock;
1273 }
1274
1275 /* trim mapping down to size requested */
1276 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1277
1278 /*
1279 * For unwritten extents do not report a disk address in the buffered
1280 * read case (treat as if we're reading into a hole).
1281 */
1282 if (xfs_bmap_is_real_extent(&imap))
1283 xfs_map_buffer(inode, bh_result, &imap, offset);
1284
1285 /*
1286 * If this is a realtime file, data may be on a different device.
1287 * to that pointed to from the buffer_head b_bdev currently.
1288 */
1289 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1290 return 0;
1291
1292 out_unlock:
1293 xfs_iunlock(ip, lockmode);
1294 return error;
1295 }
1296
1297 STATIC ssize_t
1298 xfs_vm_direct_IO(
1299 struct kiocb *iocb,
1300 struct iov_iter *iter)
1301 {
1302 /*
1303 * We just need the method present so that open/fcntl allow direct I/O.
1304 */
1305 return -EINVAL;
1306 }
1307
1308 STATIC sector_t
1309 xfs_vm_bmap(
1310 struct address_space *mapping,
1311 sector_t block)
1312 {
1313 struct inode *inode = (struct inode *)mapping->host;
1314 struct xfs_inode *ip = XFS_I(inode);
1315
1316 trace_xfs_vm_bmap(XFS_I(inode));
1317
1318 /*
1319 * The swap code (ab-)uses ->bmap to get a block mapping and then
1320 * bypasseѕ the file system for actual I/O. We really can't allow
1321 * that on reflinks inodes, so we have to skip out here. And yes,
1322 * 0 is the magic code for a bmap error.
1323 *
1324 * Since we don't pass back blockdev info, we can't return bmap
1325 * information for rt files either.
1326 */
1327 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1328 return 0;
1329
1330 filemap_write_and_wait(mapping);
1331 return generic_block_bmap(mapping, block, xfs_get_blocks);
1332 }
1333
1334 STATIC int
1335 xfs_vm_readpage(
1336 struct file *unused,
1337 struct page *page)
1338 {
1339 trace_xfs_vm_readpage(page->mapping->host, 1);
1340 return mpage_readpage(page, xfs_get_blocks);
1341 }
1342
1343 STATIC int
1344 xfs_vm_readpages(
1345 struct file *unused,
1346 struct address_space *mapping,
1347 struct list_head *pages,
1348 unsigned nr_pages)
1349 {
1350 trace_xfs_vm_readpages(mapping->host, nr_pages);
1351 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1352 }
1353
1354 /*
1355 * This is basically a copy of __set_page_dirty_buffers() with one
1356 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1357 * dirty, we'll never be able to clean them because we don't write buffers
1358 * beyond EOF, and that means we can't invalidate pages that span EOF
1359 * that have been marked dirty. Further, the dirty state can leak into
1360 * the file interior if the file is extended, resulting in all sorts of
1361 * bad things happening as the state does not match the underlying data.
1362 *
1363 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1364 * this only exist because of bufferheads and how the generic code manages them.
1365 */
1366 STATIC int
1367 xfs_vm_set_page_dirty(
1368 struct page *page)
1369 {
1370 struct address_space *mapping = page->mapping;
1371 struct inode *inode = mapping->host;
1372 loff_t end_offset;
1373 loff_t offset;
1374 int newly_dirty;
1375
1376 if (unlikely(!mapping))
1377 return !TestSetPageDirty(page);
1378
1379 end_offset = i_size_read(inode);
1380 offset = page_offset(page);
1381
1382 spin_lock(&mapping->private_lock);
1383 if (page_has_buffers(page)) {
1384 struct buffer_head *head = page_buffers(page);
1385 struct buffer_head *bh = head;
1386
1387 do {
1388 if (offset < end_offset)
1389 set_buffer_dirty(bh);
1390 bh = bh->b_this_page;
1391 offset += i_blocksize(inode);
1392 } while (bh != head);
1393 }
1394 /*
1395 * Lock out page->mem_cgroup migration to keep PageDirty
1396 * synchronized with per-memcg dirty page counters.
1397 */
1398 lock_page_memcg(page);
1399 newly_dirty = !TestSetPageDirty(page);
1400 spin_unlock(&mapping->private_lock);
1401
1402 if (newly_dirty) {
1403 /* sigh - __set_page_dirty() is static, so copy it here, too */
1404 unsigned long flags;
1405
1406 spin_lock_irqsave(&mapping->tree_lock, flags);
1407 if (page->mapping) { /* Race with truncate? */
1408 WARN_ON_ONCE(!PageUptodate(page));
1409 account_page_dirtied(page, mapping);
1410 radix_tree_tag_set(&mapping->page_tree,
1411 page_index(page), PAGECACHE_TAG_DIRTY);
1412 }
1413 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1414 }
1415 unlock_page_memcg(page);
1416 if (newly_dirty)
1417 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1418 return newly_dirty;
1419 }
1420
1421 const struct address_space_operations xfs_address_space_operations = {
1422 .readpage = xfs_vm_readpage,
1423 .readpages = xfs_vm_readpages,
1424 .writepage = xfs_vm_writepage,
1425 .writepages = xfs_vm_writepages,
1426 .set_page_dirty = xfs_vm_set_page_dirty,
1427 .releasepage = xfs_vm_releasepage,
1428 .invalidatepage = xfs_vm_invalidatepage,
1429 .bmap = xfs_vm_bmap,
1430 .direct_IO = xfs_vm_direct_IO,
1431 .migratepage = buffer_migrate_page,
1432 .is_partially_uptodate = block_is_partially_uptodate,
1433 .error_remove_page = generic_error_remove_page,
1434 };