]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/xfs/xfs_aops.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / fs / xfs / xfs_aops.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25
26 /*
27 * structure owned by writepages passed to individual writepage calls
28 */
29 struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
31 int fork;
32 unsigned int data_seq;
33 unsigned int cow_seq;
34 struct xfs_ioend *ioend;
35 };
36
37 struct block_device *
38 xfs_find_bdev_for_inode(
39 struct inode *inode)
40 {
41 struct xfs_inode *ip = XFS_I(inode);
42 struct xfs_mount *mp = ip->i_mount;
43
44 if (XFS_IS_REALTIME_INODE(ip))
45 return mp->m_rtdev_targp->bt_bdev;
46 else
47 return mp->m_ddev_targp->bt_bdev;
48 }
49
50 struct dax_device *
51 xfs_find_daxdev_for_inode(
52 struct inode *inode)
53 {
54 struct xfs_inode *ip = XFS_I(inode);
55 struct xfs_mount *mp = ip->i_mount;
56
57 if (XFS_IS_REALTIME_INODE(ip))
58 return mp->m_rtdev_targp->bt_daxdev;
59 else
60 return mp->m_ddev_targp->bt_daxdev;
61 }
62
63 static void
64 xfs_finish_page_writeback(
65 struct inode *inode,
66 struct bio_vec *bvec,
67 int error)
68 {
69 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
70
71 if (error) {
72 SetPageError(bvec->bv_page);
73 mapping_set_error(inode->i_mapping, -EIO);
74 }
75
76 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
77 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78
79 if (!iop || atomic_dec_and_test(&iop->write_count))
80 end_page_writeback(bvec->bv_page);
81 }
82
83 /*
84 * We're now finished for good with this ioend structure. Update the page
85 * state, release holds on bios, and finally free up memory. Do not use the
86 * ioend after this.
87 */
88 STATIC void
89 xfs_destroy_ioend(
90 struct xfs_ioend *ioend,
91 int error)
92 {
93 struct inode *inode = ioend->io_inode;
94 struct bio *bio = &ioend->io_inline_bio;
95 struct bio *last = ioend->io_bio, *next;
96 u64 start = bio->bi_iter.bi_sector;
97 bool quiet = bio_flagged(bio, BIO_QUIET);
98
99 for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 struct bio_vec *bvec;
101 int i;
102
103 /*
104 * For the last bio, bi_private points to the ioend, so we
105 * need to explicitly end the iteration here.
106 */
107 if (bio == last)
108 next = NULL;
109 else
110 next = bio->bi_private;
111
112 /* walk each page on bio, ending page IO on them */
113 bio_for_each_segment_all(bvec, bio, i)
114 xfs_finish_page_writeback(inode, bvec, error);
115 bio_put(bio);
116 }
117
118 if (unlikely(error && !quiet)) {
119 xfs_err_ratelimited(XFS_I(inode)->i_mount,
120 "writeback error on sector %llu", start);
121 }
122 }
123
124 /*
125 * Fast and loose check if this write could update the on-disk inode size.
126 */
127 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
128 {
129 return ioend->io_offset + ioend->io_size >
130 XFS_I(ioend->io_inode)->i_d.di_size;
131 }
132
133 STATIC int
134 xfs_setfilesize_trans_alloc(
135 struct xfs_ioend *ioend)
136 {
137 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
138 struct xfs_trans *tp;
139 int error;
140
141 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
142 XFS_TRANS_NOFS, &tp);
143 if (error)
144 return error;
145
146 ioend->io_append_trans = tp;
147
148 /*
149 * We may pass freeze protection with a transaction. So tell lockdep
150 * we released it.
151 */
152 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
153 /*
154 * We hand off the transaction to the completion thread now, so
155 * clear the flag here.
156 */
157 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
158 return 0;
159 }
160
161 /*
162 * Update on-disk file size now that data has been written to disk.
163 */
164 STATIC int
165 __xfs_setfilesize(
166 struct xfs_inode *ip,
167 struct xfs_trans *tp,
168 xfs_off_t offset,
169 size_t size)
170 {
171 xfs_fsize_t isize;
172
173 xfs_ilock(ip, XFS_ILOCK_EXCL);
174 isize = xfs_new_eof(ip, offset + size);
175 if (!isize) {
176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
177 xfs_trans_cancel(tp);
178 return 0;
179 }
180
181 trace_xfs_setfilesize(ip, offset, size);
182
183 ip->i_d.di_size = isize;
184 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
185 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
186
187 return xfs_trans_commit(tp);
188 }
189
190 int
191 xfs_setfilesize(
192 struct xfs_inode *ip,
193 xfs_off_t offset,
194 size_t size)
195 {
196 struct xfs_mount *mp = ip->i_mount;
197 struct xfs_trans *tp;
198 int error;
199
200 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
201 if (error)
202 return error;
203
204 return __xfs_setfilesize(ip, tp, offset, size);
205 }
206
207 STATIC int
208 xfs_setfilesize_ioend(
209 struct xfs_ioend *ioend,
210 int error)
211 {
212 struct xfs_inode *ip = XFS_I(ioend->io_inode);
213 struct xfs_trans *tp = ioend->io_append_trans;
214
215 /*
216 * The transaction may have been allocated in the I/O submission thread,
217 * thus we need to mark ourselves as being in a transaction manually.
218 * Similarly for freeze protection.
219 */
220 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
221 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
222
223 /* we abort the update if there was an IO error */
224 if (error) {
225 xfs_trans_cancel(tp);
226 return error;
227 }
228
229 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
230 }
231
232 /*
233 * IO write completion.
234 */
235 STATIC void
236 xfs_end_io(
237 struct work_struct *work)
238 {
239 struct xfs_ioend *ioend =
240 container_of(work, struct xfs_ioend, io_work);
241 struct xfs_inode *ip = XFS_I(ioend->io_inode);
242 xfs_off_t offset = ioend->io_offset;
243 size_t size = ioend->io_size;
244 int error;
245
246 /*
247 * Just clean up the in-memory strutures if the fs has been shut down.
248 */
249 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
250 error = -EIO;
251 goto done;
252 }
253
254 /*
255 * Clean up any COW blocks on an I/O error.
256 */
257 error = blk_status_to_errno(ioend->io_bio->bi_status);
258 if (unlikely(error)) {
259 if (ioend->io_fork == XFS_COW_FORK)
260 xfs_reflink_cancel_cow_range(ip, offset, size, true);
261 goto done;
262 }
263
264 /*
265 * Success: commit the COW or unwritten blocks if needed.
266 */
267 if (ioend->io_fork == XFS_COW_FORK)
268 error = xfs_reflink_end_cow(ip, offset, size);
269 else if (ioend->io_state == XFS_EXT_UNWRITTEN)
270 error = xfs_iomap_write_unwritten(ip, offset, size, false);
271 else
272 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
273
274 done:
275 if (ioend->io_append_trans)
276 error = xfs_setfilesize_ioend(ioend, error);
277 xfs_destroy_ioend(ioend, error);
278 }
279
280 STATIC void
281 xfs_end_bio(
282 struct bio *bio)
283 {
284 struct xfs_ioend *ioend = bio->bi_private;
285 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
286
287 if (ioend->io_fork == XFS_COW_FORK ||
288 ioend->io_state == XFS_EXT_UNWRITTEN)
289 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
290 else if (ioend->io_append_trans)
291 queue_work(mp->m_data_workqueue, &ioend->io_work);
292 else
293 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
294 }
295
296 /*
297 * Fast revalidation of the cached writeback mapping. Return true if the current
298 * mapping is valid, false otherwise.
299 */
300 static bool
301 xfs_imap_valid(
302 struct xfs_writepage_ctx *wpc,
303 struct xfs_inode *ip,
304 xfs_fileoff_t offset_fsb)
305 {
306 if (offset_fsb < wpc->imap.br_startoff ||
307 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
308 return false;
309 /*
310 * If this is a COW mapping, it is sufficient to check that the mapping
311 * covers the offset. Be careful to check this first because the caller
312 * can revalidate a COW mapping without updating the data seqno.
313 */
314 if (wpc->fork == XFS_COW_FORK)
315 return true;
316
317 /*
318 * This is not a COW mapping. Check the sequence number of the data fork
319 * because concurrent changes could have invalidated the extent. Check
320 * the COW fork because concurrent changes since the last time we
321 * checked (and found nothing at this offset) could have added
322 * overlapping blocks.
323 */
324 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
325 return false;
326 if (xfs_inode_has_cow_data(ip) &&
327 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
328 return false;
329 return true;
330 }
331
332 /*
333 * Pass in a dellalloc extent and convert it to real extents, return the real
334 * extent that maps offset_fsb in wpc->imap.
335 *
336 * The current page is held locked so nothing could have removed the block
337 * backing offset_fsb, although it could have moved from the COW to the data
338 * fork by another thread.
339 */
340 static int
341 xfs_convert_blocks(
342 struct xfs_writepage_ctx *wpc,
343 struct xfs_inode *ip,
344 xfs_fileoff_t offset_fsb)
345 {
346 int error;
347
348 /*
349 * Attempt to allocate whatever delalloc extent currently backs
350 * offset_fsb and put the result into wpc->imap. Allocate in a loop
351 * because it may take several attempts to allocate real blocks for a
352 * contiguous delalloc extent if free space is sufficiently fragmented.
353 */
354 do {
355 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
356 &wpc->imap, wpc->fork == XFS_COW_FORK ?
357 &wpc->cow_seq : &wpc->data_seq);
358 if (error)
359 return error;
360 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
361
362 return 0;
363 }
364
365 STATIC int
366 xfs_map_blocks(
367 struct xfs_writepage_ctx *wpc,
368 struct inode *inode,
369 loff_t offset)
370 {
371 struct xfs_inode *ip = XFS_I(inode);
372 struct xfs_mount *mp = ip->i_mount;
373 ssize_t count = i_blocksize(inode);
374 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
375 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
376 xfs_fileoff_t cow_fsb = NULLFILEOFF;
377 struct xfs_bmbt_irec imap;
378 struct xfs_iext_cursor icur;
379 int retries = 0;
380 int error = 0;
381
382 if (XFS_FORCED_SHUTDOWN(mp))
383 return -EIO;
384
385 /*
386 * COW fork blocks can overlap data fork blocks even if the blocks
387 * aren't shared. COW I/O always takes precedent, so we must always
388 * check for overlap on reflink inodes unless the mapping is already a
389 * COW one, or the COW fork hasn't changed from the last time we looked
390 * at it.
391 *
392 * It's safe to check the COW fork if_seq here without the ILOCK because
393 * we've indirectly protected against concurrent updates: writeback has
394 * the page locked, which prevents concurrent invalidations by reflink
395 * and directio and prevents concurrent buffered writes to the same
396 * page. Changes to if_seq always happen under i_lock, which protects
397 * against concurrent updates and provides a memory barrier on the way
398 * out that ensures that we always see the current value.
399 */
400 if (xfs_imap_valid(wpc, ip, offset_fsb))
401 return 0;
402
403 /*
404 * If we don't have a valid map, now it's time to get a new one for this
405 * offset. This will convert delayed allocations (including COW ones)
406 * into real extents. If we return without a valid map, it means we
407 * landed in a hole and we skip the block.
408 */
409 retry:
410 xfs_ilock(ip, XFS_ILOCK_SHARED);
411 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
412 (ip->i_df.if_flags & XFS_IFEXTENTS));
413
414 /*
415 * Check if this is offset is covered by a COW extents, and if yes use
416 * it directly instead of looking up anything in the data fork.
417 */
418 if (xfs_inode_has_cow_data(ip) &&
419 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
420 cow_fsb = imap.br_startoff;
421 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
422 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
423 xfs_iunlock(ip, XFS_ILOCK_SHARED);
424
425 wpc->fork = XFS_COW_FORK;
426 goto allocate_blocks;
427 }
428
429 /*
430 * No COW extent overlap. Revalidate now that we may have updated
431 * ->cow_seq. If the data mapping is still valid, we're done.
432 */
433 if (xfs_imap_valid(wpc, ip, offset_fsb)) {
434 xfs_iunlock(ip, XFS_ILOCK_SHARED);
435 return 0;
436 }
437
438 /*
439 * If we don't have a valid map, now it's time to get a new one for this
440 * offset. This will convert delayed allocations (including COW ones)
441 * into real extents.
442 */
443 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
444 imap.br_startoff = end_fsb; /* fake a hole past EOF */
445 wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
446 xfs_iunlock(ip, XFS_ILOCK_SHARED);
447
448 wpc->fork = XFS_DATA_FORK;
449
450 /* landed in a hole or beyond EOF? */
451 if (imap.br_startoff > offset_fsb) {
452 imap.br_blockcount = imap.br_startoff - offset_fsb;
453 imap.br_startoff = offset_fsb;
454 imap.br_startblock = HOLESTARTBLOCK;
455 imap.br_state = XFS_EXT_NORM;
456 }
457
458 /*
459 * Truncate to the next COW extent if there is one. This is the only
460 * opportunity to do this because we can skip COW fork lookups for the
461 * subsequent blocks in the mapping; however, the requirement to treat
462 * the COW range separately remains.
463 */
464 if (cow_fsb != NULLFILEOFF &&
465 cow_fsb < imap.br_startoff + imap.br_blockcount)
466 imap.br_blockcount = cow_fsb - imap.br_startoff;
467
468 /* got a delalloc extent? */
469 if (imap.br_startblock != HOLESTARTBLOCK &&
470 isnullstartblock(imap.br_startblock))
471 goto allocate_blocks;
472
473 wpc->imap = imap;
474 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
475 return 0;
476 allocate_blocks:
477 error = xfs_convert_blocks(wpc, ip, offset_fsb);
478 if (error) {
479 /*
480 * If we failed to find the extent in the COW fork we might have
481 * raced with a COW to data fork conversion or truncate.
482 * Restart the lookup to catch the extent in the data fork for
483 * the former case, but prevent additional retries to avoid
484 * looping forever for the latter case.
485 */
486 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
487 goto retry;
488 ASSERT(error != -EAGAIN);
489 return error;
490 }
491
492 /*
493 * Due to merging the return real extent might be larger than the
494 * original delalloc one. Trim the return extent to the next COW
495 * boundary again to force a re-lookup.
496 */
497 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
498 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
499 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
500
501 ASSERT(wpc->imap.br_startoff <= offset_fsb);
502 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
503 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
504 return 0;
505 }
506
507 /*
508 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
509 * it, and we submit that bio. The ioend may be used for multiple bio
510 * submissions, so we only want to allocate an append transaction for the ioend
511 * once. In the case of multiple bio submission, each bio will take an IO
512 * reference to the ioend to ensure that the ioend completion is only done once
513 * all bios have been submitted and the ioend is really done.
514 *
515 * If @fail is non-zero, it means that we have a situation where some part of
516 * the submission process has failed after we have marked paged for writeback
517 * and unlocked them. In this situation, we need to fail the bio and ioend
518 * rather than submit it to IO. This typically only happens on a filesystem
519 * shutdown.
520 */
521 STATIC int
522 xfs_submit_ioend(
523 struct writeback_control *wbc,
524 struct xfs_ioend *ioend,
525 int status)
526 {
527 /* Convert CoW extents to regular */
528 if (!status && ioend->io_fork == XFS_COW_FORK) {
529 /*
530 * Yuk. This can do memory allocation, but is not a
531 * transactional operation so everything is done in GFP_KERNEL
532 * context. That can deadlock, because we hold pages in
533 * writeback state and GFP_KERNEL allocations can block on them.
534 * Hence we must operate in nofs conditions here.
535 */
536 unsigned nofs_flag;
537
538 nofs_flag = memalloc_nofs_save();
539 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
540 ioend->io_offset, ioend->io_size);
541 memalloc_nofs_restore(nofs_flag);
542 }
543
544 /* Reserve log space if we might write beyond the on-disk inode size. */
545 if (!status &&
546 (ioend->io_fork == XFS_COW_FORK ||
547 ioend->io_state != XFS_EXT_UNWRITTEN) &&
548 xfs_ioend_is_append(ioend) &&
549 !ioend->io_append_trans)
550 status = xfs_setfilesize_trans_alloc(ioend);
551
552 ioend->io_bio->bi_private = ioend;
553 ioend->io_bio->bi_end_io = xfs_end_bio;
554 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
555
556 /*
557 * If we are failing the IO now, just mark the ioend with an
558 * error and finish it. This will run IO completion immediately
559 * as there is only one reference to the ioend at this point in
560 * time.
561 */
562 if (status) {
563 ioend->io_bio->bi_status = errno_to_blk_status(status);
564 bio_endio(ioend->io_bio);
565 return status;
566 }
567
568 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
569 submit_bio(ioend->io_bio);
570 return 0;
571 }
572
573 static struct xfs_ioend *
574 xfs_alloc_ioend(
575 struct inode *inode,
576 int fork,
577 xfs_exntst_t state,
578 xfs_off_t offset,
579 struct block_device *bdev,
580 sector_t sector)
581 {
582 struct xfs_ioend *ioend;
583 struct bio *bio;
584
585 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
586 bio_set_dev(bio, bdev);
587 bio->bi_iter.bi_sector = sector;
588
589 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
590 INIT_LIST_HEAD(&ioend->io_list);
591 ioend->io_fork = fork;
592 ioend->io_state = state;
593 ioend->io_inode = inode;
594 ioend->io_size = 0;
595 ioend->io_offset = offset;
596 INIT_WORK(&ioend->io_work, xfs_end_io);
597 ioend->io_append_trans = NULL;
598 ioend->io_bio = bio;
599 return ioend;
600 }
601
602 /*
603 * Allocate a new bio, and chain the old bio to the new one.
604 *
605 * Note that we have to do perform the chaining in this unintuitive order
606 * so that the bi_private linkage is set up in the right direction for the
607 * traversal in xfs_destroy_ioend().
608 */
609 static void
610 xfs_chain_bio(
611 struct xfs_ioend *ioend,
612 struct writeback_control *wbc,
613 struct block_device *bdev,
614 sector_t sector)
615 {
616 struct bio *new;
617
618 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
619 bio_set_dev(new, bdev);
620 new->bi_iter.bi_sector = sector;
621 bio_chain(ioend->io_bio, new);
622 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
623 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
624 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
625 submit_bio(ioend->io_bio);
626 ioend->io_bio = new;
627 }
628
629 /*
630 * Test to see if we have an existing ioend structure that we could append to
631 * first, otherwise finish off the current ioend and start another.
632 */
633 STATIC void
634 xfs_add_to_ioend(
635 struct inode *inode,
636 xfs_off_t offset,
637 struct page *page,
638 struct iomap_page *iop,
639 struct xfs_writepage_ctx *wpc,
640 struct writeback_control *wbc,
641 struct list_head *iolist)
642 {
643 struct xfs_inode *ip = XFS_I(inode);
644 struct xfs_mount *mp = ip->i_mount;
645 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
646 unsigned len = i_blocksize(inode);
647 unsigned poff = offset & (PAGE_SIZE - 1);
648 sector_t sector;
649
650 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
651 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
652
653 if (!wpc->ioend ||
654 wpc->fork != wpc->ioend->io_fork ||
655 wpc->imap.br_state != wpc->ioend->io_state ||
656 sector != bio_end_sector(wpc->ioend->io_bio) ||
657 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
658 if (wpc->ioend)
659 list_add(&wpc->ioend->io_list, iolist);
660 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
661 wpc->imap.br_state, offset, bdev, sector);
662 }
663
664 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
665 if (iop)
666 atomic_inc(&iop->write_count);
667 if (bio_full(wpc->ioend->io_bio))
668 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
669 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
670 }
671
672 wpc->ioend->io_size += len;
673 }
674
675 STATIC void
676 xfs_vm_invalidatepage(
677 struct page *page,
678 unsigned int offset,
679 unsigned int length)
680 {
681 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
682 iomap_invalidatepage(page, offset, length);
683 }
684
685 /*
686 * If the page has delalloc blocks on it, we need to punch them out before we
687 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
688 * inode that can trip up a later direct I/O read operation on the same region.
689 *
690 * We prevent this by truncating away the delalloc regions on the page. Because
691 * they are delalloc, we can do this without needing a transaction. Indeed - if
692 * we get ENOSPC errors, we have to be able to do this truncation without a
693 * transaction as there is no space left for block reservation (typically why we
694 * see a ENOSPC in writeback).
695 */
696 STATIC void
697 xfs_aops_discard_page(
698 struct page *page)
699 {
700 struct inode *inode = page->mapping->host;
701 struct xfs_inode *ip = XFS_I(inode);
702 struct xfs_mount *mp = ip->i_mount;
703 loff_t offset = page_offset(page);
704 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
705 int error;
706
707 if (XFS_FORCED_SHUTDOWN(mp))
708 goto out_invalidate;
709
710 xfs_alert(mp,
711 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
712 page, ip->i_ino, offset);
713
714 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
715 PAGE_SIZE / i_blocksize(inode));
716 if (error && !XFS_FORCED_SHUTDOWN(mp))
717 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
718 out_invalidate:
719 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
720 }
721
722 /*
723 * We implement an immediate ioend submission policy here to avoid needing to
724 * chain multiple ioends and hence nest mempool allocations which can violate
725 * forward progress guarantees we need to provide. The current ioend we are
726 * adding blocks to is cached on the writepage context, and if the new block
727 * does not append to the cached ioend it will create a new ioend and cache that
728 * instead.
729 *
730 * If a new ioend is created and cached, the old ioend is returned and queued
731 * locally for submission once the entire page is processed or an error has been
732 * detected. While ioends are submitted immediately after they are completed,
733 * batching optimisations are provided by higher level block plugging.
734 *
735 * At the end of a writeback pass, there will be a cached ioend remaining on the
736 * writepage context that the caller will need to submit.
737 */
738 static int
739 xfs_writepage_map(
740 struct xfs_writepage_ctx *wpc,
741 struct writeback_control *wbc,
742 struct inode *inode,
743 struct page *page,
744 uint64_t end_offset)
745 {
746 LIST_HEAD(submit_list);
747 struct iomap_page *iop = to_iomap_page(page);
748 unsigned len = i_blocksize(inode);
749 struct xfs_ioend *ioend, *next;
750 uint64_t file_offset; /* file offset of page */
751 int error = 0, count = 0, i;
752
753 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
754 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
755
756 /*
757 * Walk through the page to find areas to write back. If we run off the
758 * end of the current map or find the current map invalid, grab a new
759 * one.
760 */
761 for (i = 0, file_offset = page_offset(page);
762 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
763 i++, file_offset += len) {
764 if (iop && !test_bit(i, iop->uptodate))
765 continue;
766
767 error = xfs_map_blocks(wpc, inode, file_offset);
768 if (error)
769 break;
770 if (wpc->imap.br_startblock == HOLESTARTBLOCK)
771 continue;
772 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
773 &submit_list);
774 count++;
775 }
776
777 ASSERT(wpc->ioend || list_empty(&submit_list));
778 ASSERT(PageLocked(page));
779 ASSERT(!PageWriteback(page));
780
781 /*
782 * On error, we have to fail the ioend here because we may have set
783 * pages under writeback, we have to make sure we run IO completion to
784 * mark the error state of the IO appropriately, so we can't cancel the
785 * ioend directly here. That means we have to mark this page as under
786 * writeback if we included any blocks from it in the ioend chain so
787 * that completion treats it correctly.
788 *
789 * If we didn't include the page in the ioend, the on error we can
790 * simply discard and unlock it as there are no other users of the page
791 * now. The caller will still need to trigger submission of outstanding
792 * ioends on the writepage context so they are treated correctly on
793 * error.
794 */
795 if (unlikely(error)) {
796 if (!count) {
797 xfs_aops_discard_page(page);
798 ClearPageUptodate(page);
799 unlock_page(page);
800 goto done;
801 }
802
803 /*
804 * If the page was not fully cleaned, we need to ensure that the
805 * higher layers come back to it correctly. That means we need
806 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
807 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
808 * so another attempt to write this page in this writeback sweep
809 * will be made.
810 */
811 set_page_writeback_keepwrite(page);
812 } else {
813 clear_page_dirty_for_io(page);
814 set_page_writeback(page);
815 }
816
817 unlock_page(page);
818
819 /*
820 * Preserve the original error if there was one, otherwise catch
821 * submission errors here and propagate into subsequent ioend
822 * submissions.
823 */
824 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
825 int error2;
826
827 list_del_init(&ioend->io_list);
828 error2 = xfs_submit_ioend(wbc, ioend, error);
829 if (error2 && !error)
830 error = error2;
831 }
832
833 /*
834 * We can end up here with no error and nothing to write only if we race
835 * with a partial page truncate on a sub-page block sized filesystem.
836 */
837 if (!count)
838 end_page_writeback(page);
839 done:
840 mapping_set_error(page->mapping, error);
841 return error;
842 }
843
844 /*
845 * Write out a dirty page.
846 *
847 * For delalloc space on the page we need to allocate space and flush it.
848 * For unwritten space on the page we need to start the conversion to
849 * regular allocated space.
850 */
851 STATIC int
852 xfs_do_writepage(
853 struct page *page,
854 struct writeback_control *wbc,
855 void *data)
856 {
857 struct xfs_writepage_ctx *wpc = data;
858 struct inode *inode = page->mapping->host;
859 loff_t offset;
860 uint64_t end_offset;
861 pgoff_t end_index;
862
863 trace_xfs_writepage(inode, page, 0, 0);
864
865 /*
866 * Refuse to write the page out if we are called from reclaim context.
867 *
868 * This avoids stack overflows when called from deeply used stacks in
869 * random callers for direct reclaim or memcg reclaim. We explicitly
870 * allow reclaim from kswapd as the stack usage there is relatively low.
871 *
872 * This should never happen except in the case of a VM regression so
873 * warn about it.
874 */
875 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
876 PF_MEMALLOC))
877 goto redirty;
878
879 /*
880 * Given that we do not allow direct reclaim to call us, we should
881 * never be called while in a filesystem transaction.
882 */
883 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
884 goto redirty;
885
886 /*
887 * Is this page beyond the end of the file?
888 *
889 * The page index is less than the end_index, adjust the end_offset
890 * to the highest offset that this page should represent.
891 * -----------------------------------------------------
892 * | file mapping | <EOF> |
893 * -----------------------------------------------------
894 * | Page ... | Page N-2 | Page N-1 | Page N | |
895 * ^--------------------------------^----------|--------
896 * | desired writeback range | see else |
897 * ---------------------------------^------------------|
898 */
899 offset = i_size_read(inode);
900 end_index = offset >> PAGE_SHIFT;
901 if (page->index < end_index)
902 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
903 else {
904 /*
905 * Check whether the page to write out is beyond or straddles
906 * i_size or not.
907 * -------------------------------------------------------
908 * | file mapping | <EOF> |
909 * -------------------------------------------------------
910 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
911 * ^--------------------------------^-----------|---------
912 * | | Straddles |
913 * ---------------------------------^-----------|--------|
914 */
915 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
916
917 /*
918 * Skip the page if it is fully outside i_size, e.g. due to a
919 * truncate operation that is in progress. We must redirty the
920 * page so that reclaim stops reclaiming it. Otherwise
921 * xfs_vm_releasepage() is called on it and gets confused.
922 *
923 * Note that the end_index is unsigned long, it would overflow
924 * if the given offset is greater than 16TB on 32-bit system
925 * and if we do check the page is fully outside i_size or not
926 * via "if (page->index >= end_index + 1)" as "end_index + 1"
927 * will be evaluated to 0. Hence this page will be redirtied
928 * and be written out repeatedly which would result in an
929 * infinite loop, the user program that perform this operation
930 * will hang. Instead, we can verify this situation by checking
931 * if the page to write is totally beyond the i_size or if it's
932 * offset is just equal to the EOF.
933 */
934 if (page->index > end_index ||
935 (page->index == end_index && offset_into_page == 0))
936 goto redirty;
937
938 /*
939 * The page straddles i_size. It must be zeroed out on each
940 * and every writepage invocation because it may be mmapped.
941 * "A file is mapped in multiples of the page size. For a file
942 * that is not a multiple of the page size, the remaining
943 * memory is zeroed when mapped, and writes to that region are
944 * not written out to the file."
945 */
946 zero_user_segment(page, offset_into_page, PAGE_SIZE);
947
948 /* Adjust the end_offset to the end of file */
949 end_offset = offset;
950 }
951
952 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
953
954 redirty:
955 redirty_page_for_writepage(wbc, page);
956 unlock_page(page);
957 return 0;
958 }
959
960 STATIC int
961 xfs_vm_writepage(
962 struct page *page,
963 struct writeback_control *wbc)
964 {
965 struct xfs_writepage_ctx wpc = { };
966 int ret;
967
968 ret = xfs_do_writepage(page, wbc, &wpc);
969 if (wpc.ioend)
970 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
971 return ret;
972 }
973
974 STATIC int
975 xfs_vm_writepages(
976 struct address_space *mapping,
977 struct writeback_control *wbc)
978 {
979 struct xfs_writepage_ctx wpc = { };
980 int ret;
981
982 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
983 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
984 if (wpc.ioend)
985 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
986 return ret;
987 }
988
989 STATIC int
990 xfs_dax_writepages(
991 struct address_space *mapping,
992 struct writeback_control *wbc)
993 {
994 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
995 return dax_writeback_mapping_range(mapping,
996 xfs_find_bdev_for_inode(mapping->host), wbc);
997 }
998
999 STATIC int
1000 xfs_vm_releasepage(
1001 struct page *page,
1002 gfp_t gfp_mask)
1003 {
1004 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1005 return iomap_releasepage(page, gfp_mask);
1006 }
1007
1008 STATIC sector_t
1009 xfs_vm_bmap(
1010 struct address_space *mapping,
1011 sector_t block)
1012 {
1013 struct xfs_inode *ip = XFS_I(mapping->host);
1014
1015 trace_xfs_vm_bmap(ip);
1016
1017 /*
1018 * The swap code (ab-)uses ->bmap to get a block mapping and then
1019 * bypasses the file system for actual I/O. We really can't allow
1020 * that on reflinks inodes, so we have to skip out here. And yes,
1021 * 0 is the magic code for a bmap error.
1022 *
1023 * Since we don't pass back blockdev info, we can't return bmap
1024 * information for rt files either.
1025 */
1026 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1027 return 0;
1028 return iomap_bmap(mapping, block, &xfs_iomap_ops);
1029 }
1030
1031 STATIC int
1032 xfs_vm_readpage(
1033 struct file *unused,
1034 struct page *page)
1035 {
1036 trace_xfs_vm_readpage(page->mapping->host, 1);
1037 return iomap_readpage(page, &xfs_iomap_ops);
1038 }
1039
1040 STATIC int
1041 xfs_vm_readpages(
1042 struct file *unused,
1043 struct address_space *mapping,
1044 struct list_head *pages,
1045 unsigned nr_pages)
1046 {
1047 trace_xfs_vm_readpages(mapping->host, nr_pages);
1048 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1049 }
1050
1051 static int
1052 xfs_iomap_swapfile_activate(
1053 struct swap_info_struct *sis,
1054 struct file *swap_file,
1055 sector_t *span)
1056 {
1057 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1058 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1059 }
1060
1061 const struct address_space_operations xfs_address_space_operations = {
1062 .readpage = xfs_vm_readpage,
1063 .readpages = xfs_vm_readpages,
1064 .writepage = xfs_vm_writepage,
1065 .writepages = xfs_vm_writepages,
1066 .set_page_dirty = iomap_set_page_dirty,
1067 .releasepage = xfs_vm_releasepage,
1068 .invalidatepage = xfs_vm_invalidatepage,
1069 .bmap = xfs_vm_bmap,
1070 .direct_IO = noop_direct_IO,
1071 .migratepage = iomap_migrate_page,
1072 .is_partially_uptodate = iomap_is_partially_uptodate,
1073 .error_remove_page = generic_error_remove_page,
1074 .swap_activate = xfs_iomap_swapfile_activate,
1075 };
1076
1077 const struct address_space_operations xfs_dax_aops = {
1078 .writepages = xfs_dax_writepages,
1079 .direct_IO = noop_direct_IO,
1080 .set_page_dirty = noop_set_page_dirty,
1081 .invalidatepage = noop_invalidatepage,
1082 .swap_activate = xfs_iomap_swapfile_activate,
1083 };