]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_aops.c
d03946719992ad299bb50b70f3b9c52d990e9c4b
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
42
43 /*
44 * structure owned by writepages passed to individual writepage calls
45 */
46 struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52 };
53
54 void
55 xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
58 int *unwritten)
59 {
60 struct buffer_head *bh, *head;
61
62 *delalloc = *unwritten = 0;
63
64 bh = head = page_buffers(page);
65 do {
66 if (buffer_unwritten(bh))
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71 }
72
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 struct inode *inode)
76 {
77 struct xfs_inode *ip = XFS_I(inode);
78 struct xfs_mount *mp = ip->i_mount;
79
80 if (XFS_IS_REALTIME_INODE(ip))
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84 }
85
86 /*
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
91 */
92 STATIC void
93 xfs_destroy_ioend(
94 xfs_ioend_t *ioend)
95 {
96 struct buffer_head *bh, *next;
97
98 for (bh = ioend->io_buffer_head; bh; bh = next) {
99 next = bh->b_private;
100 bh->b_end_io(bh, !ioend->io_error);
101 }
102
103 mempool_free(ioend, xfs_ioend_pool);
104 }
105
106 /*
107 * Fast and loose check if this write could update the on-disk inode size.
108 */
109 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110 {
111 return ioend->io_offset + ioend->io_size >
112 XFS_I(ioend->io_inode)->i_d.di_size;
113 }
114
115 STATIC int
116 xfs_setfilesize_trans_alloc(
117 struct xfs_ioend *ioend)
118 {
119 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
120 struct xfs_trans *tp;
121 int error;
122
123 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
124
125 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
126 if (error) {
127 xfs_trans_cancel(tp);
128 return error;
129 }
130
131 ioend->io_append_trans = tp;
132
133 /*
134 * We may pass freeze protection with a transaction. So tell lockdep
135 * we released it.
136 */
137 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
138 /*
139 * We hand off the transaction to the completion thread now, so
140 * clear the flag here.
141 */
142 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
143 return 0;
144 }
145
146 /*
147 * Update on-disk file size now that data has been written to disk.
148 */
149 STATIC int
150 xfs_setfilesize(
151 struct xfs_inode *ip,
152 struct xfs_trans *tp,
153 xfs_off_t offset,
154 size_t size)
155 {
156 xfs_fsize_t isize;
157
158 xfs_ilock(ip, XFS_ILOCK_EXCL);
159 isize = xfs_new_eof(ip, offset + size);
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 xfs_trans_cancel(tp);
163 return 0;
164 }
165
166 trace_xfs_setfilesize(ip, offset, size);
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
172 return xfs_trans_commit(tp);
173 }
174
175 STATIC int
176 xfs_setfilesize_ioend(
177 struct xfs_ioend *ioend)
178 {
179 struct xfs_inode *ip = XFS_I(ioend->io_inode);
180 struct xfs_trans *tp = ioend->io_append_trans;
181
182 /*
183 * The transaction may have been allocated in the I/O submission thread,
184 * thus we need to mark ourselves as being in a transaction manually.
185 * Similarly for freeze protection.
186 */
187 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
188 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
189
190 /* we abort the update if there was an IO error */
191 if (ioend->io_error) {
192 xfs_trans_cancel(tp);
193 return ioend->io_error;
194 }
195
196 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
197 }
198
199 /*
200 * Schedule IO completion handling on the final put of an ioend.
201 *
202 * If there is no work to do we might as well call it a day and free the
203 * ioend right now.
204 */
205 STATIC void
206 xfs_finish_ioend(
207 struct xfs_ioend *ioend)
208 {
209 if (atomic_dec_and_test(&ioend->io_remaining)) {
210 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
211
212 if (ioend->io_type == XFS_IO_UNWRITTEN)
213 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
214 else if (ioend->io_append_trans)
215 queue_work(mp->m_data_workqueue, &ioend->io_work);
216 else
217 xfs_destroy_ioend(ioend);
218 }
219 }
220
221 /*
222 * IO write completion.
223 */
224 STATIC void
225 xfs_end_io(
226 struct work_struct *work)
227 {
228 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
229 struct xfs_inode *ip = XFS_I(ioend->io_inode);
230 int error = 0;
231
232 /*
233 * Set an error if the mount has shut down and proceed with end I/O
234 * processing so it can perform whatever cleanups are necessary.
235 */
236 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
237 ioend->io_error = -EIO;
238
239 /*
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
242 * Detecting and handling completion IO errors is done individually
243 * for each case as different cleanup operations need to be performed
244 * on error.
245 */
246 if (ioend->io_type == XFS_IO_UNWRITTEN) {
247 if (ioend->io_error)
248 goto done;
249 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
250 ioend->io_size);
251 } else if (ioend->io_append_trans) {
252 error = xfs_setfilesize_ioend(ioend);
253 } else {
254 ASSERT(!xfs_ioend_is_append(ioend));
255 }
256
257 done:
258 if (error)
259 ioend->io_error = error;
260 xfs_destroy_ioend(ioend);
261 }
262
263 /*
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
267 * (vs. incore size).
268 */
269 STATIC xfs_ioend_t *
270 xfs_alloc_ioend(
271 struct inode *inode,
272 unsigned int type)
273 {
274 xfs_ioend_t *ioend;
275
276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277 memset(ioend, 0, sizeof(*ioend));
278
279 /*
280 * Set the count to 1 initially, which will prevent an I/O
281 * completion callback from happening before we have started
282 * all the I/O from calling the completion routine too early.
283 */
284 atomic_set(&ioend->io_remaining, 1);
285 INIT_LIST_HEAD(&ioend->io_list);
286 ioend->io_type = type;
287 ioend->io_inode = inode;
288 INIT_WORK(&ioend->io_work, xfs_end_io);
289 return ioend;
290 }
291
292 STATIC int
293 xfs_map_blocks(
294 struct inode *inode,
295 loff_t offset,
296 struct xfs_bmbt_irec *imap,
297 int type)
298 {
299 struct xfs_inode *ip = XFS_I(inode);
300 struct xfs_mount *mp = ip->i_mount;
301 ssize_t count = 1 << inode->i_blkbits;
302 xfs_fileoff_t offset_fsb, end_fsb;
303 int error = 0;
304 int bmapi_flags = XFS_BMAPI_ENTIRE;
305 int nimaps = 1;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -EIO;
309
310 if (type == XFS_IO_UNWRITTEN)
311 bmapi_flags |= XFS_BMAPI_IGSTATE;
312
313 xfs_ilock(ip, XFS_ILOCK_SHARED);
314 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
315 (ip->i_df.if_flags & XFS_IFEXTENTS));
316 ASSERT(offset <= mp->m_super->s_maxbytes);
317
318 if (offset + count > mp->m_super->s_maxbytes)
319 count = mp->m_super->s_maxbytes - offset;
320 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
321 offset_fsb = XFS_B_TO_FSBT(mp, offset);
322 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
323 imap, &nimaps, bmapi_flags);
324 xfs_iunlock(ip, XFS_ILOCK_SHARED);
325
326 if (error)
327 return error;
328
329 if (type == XFS_IO_DELALLOC &&
330 (!nimaps || isnullstartblock(imap->br_startblock))) {
331 error = xfs_iomap_write_allocate(ip, offset, imap);
332 if (!error)
333 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
334 return error;
335 }
336
337 #ifdef DEBUG
338 if (type == XFS_IO_UNWRITTEN) {
339 ASSERT(nimaps);
340 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
341 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
342 }
343 #endif
344 if (nimaps)
345 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
346 return 0;
347 }
348
349 STATIC bool
350 xfs_imap_valid(
351 struct inode *inode,
352 struct xfs_bmbt_irec *imap,
353 xfs_off_t offset)
354 {
355 offset >>= inode->i_blkbits;
356
357 return offset >= imap->br_startoff &&
358 offset < imap->br_startoff + imap->br_blockcount;
359 }
360
361 /*
362 * BIO completion handler for buffered IO.
363 */
364 STATIC void
365 xfs_end_bio(
366 struct bio *bio)
367 {
368 xfs_ioend_t *ioend = bio->bi_private;
369
370 if (!ioend->io_error)
371 ioend->io_error = bio->bi_error;
372
373 /* Toss bio and pass work off to an xfsdatad thread */
374 bio->bi_private = NULL;
375 bio->bi_end_io = NULL;
376 bio_put(bio);
377
378 xfs_finish_ioend(ioend);
379 }
380
381 STATIC void
382 xfs_submit_ioend_bio(
383 struct writeback_control *wbc,
384 xfs_ioend_t *ioend,
385 struct bio *bio)
386 {
387 atomic_inc(&ioend->io_remaining);
388 bio->bi_private = ioend;
389 bio->bi_end_io = xfs_end_bio;
390 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
391 }
392
393 STATIC struct bio *
394 xfs_alloc_ioend_bio(
395 struct buffer_head *bh)
396 {
397 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
398
399 ASSERT(bio->bi_private == NULL);
400 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
401 bio->bi_bdev = bh->b_bdev;
402 return bio;
403 }
404
405 STATIC void
406 xfs_start_buffer_writeback(
407 struct buffer_head *bh)
408 {
409 ASSERT(buffer_mapped(bh));
410 ASSERT(buffer_locked(bh));
411 ASSERT(!buffer_delay(bh));
412 ASSERT(!buffer_unwritten(bh));
413
414 mark_buffer_async_write(bh);
415 set_buffer_uptodate(bh);
416 clear_buffer_dirty(bh);
417 }
418
419 STATIC void
420 xfs_start_page_writeback(
421 struct page *page,
422 int clear_dirty)
423 {
424 ASSERT(PageLocked(page));
425 ASSERT(!PageWriteback(page));
426
427 /*
428 * if the page was not fully cleaned, we need to ensure that the higher
429 * layers come back to it correctly. That means we need to keep the page
430 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
431 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
432 * write this page in this writeback sweep will be made.
433 */
434 if (clear_dirty) {
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
437 } else
438 set_page_writeback_keepwrite(page);
439
440 unlock_page(page);
441 }
442
443 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444 {
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446 }
447
448 /*
449 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
450 * it, and we submit that bio. The ioend may be used for multiple bio
451 * submissions, so we only want to allocate an append transaction for the ioend
452 * once. In the case of multiple bio submission, each bio will take an IO
453 * reference to the ioend to ensure that the ioend completion is only done once
454 * all bios have been submitted and the ioend is really done.
455 *
456 * If @fail is non-zero, it means that we have a situation where some part of
457 * the submission process has failed after we have marked paged for writeback
458 * and unlocked them. In this situation, we need to fail the bio and ioend
459 * rather than submit it to IO. This typically only happens on a filesystem
460 * shutdown.
461 */
462 STATIC int
463 xfs_submit_ioend(
464 struct writeback_control *wbc,
465 xfs_ioend_t *ioend,
466 int status)
467 {
468 /* Reserve log space if we might write beyond the on-disk inode size. */
469 if (!status &&
470 ioend->io_bio && ioend->io_type != XFS_IO_UNWRITTEN &&
471 xfs_ioend_is_append(ioend) &&
472 !ioend->io_append_trans)
473 status = xfs_setfilesize_trans_alloc(ioend);
474
475 /*
476 * If we are failing the IO now, just mark the ioend with an
477 * error and finish it. This will run IO completion immediately
478 * as there is only one reference to the ioend at this point in
479 * time.
480 */
481 if (status) {
482 if (ioend->io_bio)
483 bio_put(ioend->io_bio);
484 ioend->io_error = status;
485 xfs_finish_ioend(ioend);
486 return status;
487 }
488
489 xfs_submit_ioend_bio(wbc, ioend, ioend->io_bio);
490 ioend->io_bio = NULL;
491 xfs_finish_ioend(ioend);
492 return 0;
493 }
494
495 /*
496 * Test to see if we've been building up a completion structure for
497 * earlier buffers -- if so, we try to append to this ioend if we
498 * can, otherwise we finish off any current ioend and start another.
499 * Return the ioend we finished off so that the caller can submit it
500 * once it has finished processing the dirty page.
501 */
502 STATIC void
503 xfs_add_to_ioend(
504 struct inode *inode,
505 struct buffer_head *bh,
506 xfs_off_t offset,
507 struct xfs_writepage_ctx *wpc,
508 struct writeback_control *wbc,
509 struct list_head *iolist)
510 {
511 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
512 bh->b_blocknr != wpc->last_block + 1 ||
513 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
514 struct xfs_ioend *new;
515
516 if (wpc->ioend)
517 list_add(&wpc->ioend->io_list, iolist);
518
519 new = xfs_alloc_ioend(inode, wpc->io_type);
520 new->io_offset = offset;
521 new->io_buffer_head = bh;
522 new->io_buffer_tail = bh;
523 wpc->ioend = new;
524 } else {
525 wpc->ioend->io_buffer_tail->b_private = bh;
526 wpc->ioend->io_buffer_tail = bh;
527 }
528 bh->b_private = NULL;
529
530 retry:
531 if (!wpc->ioend->io_bio)
532 wpc->ioend->io_bio = xfs_alloc_ioend_bio(bh);
533
534 if (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) {
535 xfs_submit_ioend_bio(wbc, wpc->ioend, wpc->ioend->io_bio);
536 wpc->ioend->io_bio = NULL;
537 goto retry;
538 }
539
540 wpc->ioend->io_size += bh->b_size;
541 wpc->last_block = bh->b_blocknr;
542 xfs_start_buffer_writeback(bh);
543 }
544
545 STATIC void
546 xfs_map_buffer(
547 struct inode *inode,
548 struct buffer_head *bh,
549 struct xfs_bmbt_irec *imap,
550 xfs_off_t offset)
551 {
552 sector_t bn;
553 struct xfs_mount *m = XFS_I(inode)->i_mount;
554 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
555 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
556
557 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
558 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
559
560 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
561 ((offset - iomap_offset) >> inode->i_blkbits);
562
563 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
564
565 bh->b_blocknr = bn;
566 set_buffer_mapped(bh);
567 }
568
569 STATIC void
570 xfs_map_at_offset(
571 struct inode *inode,
572 struct buffer_head *bh,
573 struct xfs_bmbt_irec *imap,
574 xfs_off_t offset)
575 {
576 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
577 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
578
579 xfs_map_buffer(inode, bh, imap, offset);
580 set_buffer_mapped(bh);
581 clear_buffer_delay(bh);
582 clear_buffer_unwritten(bh);
583 }
584
585 /*
586 * Test if a given page contains at least one buffer of a given @type.
587 * If @check_all_buffers is true, then we walk all the buffers in the page to
588 * try to find one of the type passed in. If it is not set, then the caller only
589 * needs to check the first buffer on the page for a match.
590 */
591 STATIC bool
592 xfs_check_page_type(
593 struct page *page,
594 unsigned int type,
595 bool check_all_buffers)
596 {
597 struct buffer_head *bh;
598 struct buffer_head *head;
599
600 if (PageWriteback(page))
601 return false;
602 if (!page->mapping)
603 return false;
604 if (!page_has_buffers(page))
605 return false;
606
607 bh = head = page_buffers(page);
608 do {
609 if (buffer_unwritten(bh)) {
610 if (type == XFS_IO_UNWRITTEN)
611 return true;
612 } else if (buffer_delay(bh)) {
613 if (type == XFS_IO_DELALLOC)
614 return true;
615 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
616 if (type == XFS_IO_OVERWRITE)
617 return true;
618 }
619
620 /* If we are only checking the first buffer, we are done now. */
621 if (!check_all_buffers)
622 break;
623 } while ((bh = bh->b_this_page) != head);
624
625 return false;
626 }
627
628 STATIC void
629 xfs_vm_invalidatepage(
630 struct page *page,
631 unsigned int offset,
632 unsigned int length)
633 {
634 trace_xfs_invalidatepage(page->mapping->host, page, offset,
635 length);
636 block_invalidatepage(page, offset, length);
637 }
638
639 /*
640 * If the page has delalloc buffers on it, we need to punch them out before we
641 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
642 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
643 * is done on that same region - the delalloc extent is returned when none is
644 * supposed to be there.
645 *
646 * We prevent this by truncating away the delalloc regions on the page before
647 * invalidating it. Because they are delalloc, we can do this without needing a
648 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
649 * truncation without a transaction as there is no space left for block
650 * reservation (typically why we see a ENOSPC in writeback).
651 *
652 * This is not a performance critical path, so for now just do the punching a
653 * buffer head at a time.
654 */
655 STATIC void
656 xfs_aops_discard_page(
657 struct page *page)
658 {
659 struct inode *inode = page->mapping->host;
660 struct xfs_inode *ip = XFS_I(inode);
661 struct buffer_head *bh, *head;
662 loff_t offset = page_offset(page);
663
664 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
665 goto out_invalidate;
666
667 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
668 goto out_invalidate;
669
670 xfs_alert(ip->i_mount,
671 "page discard on page %p, inode 0x%llx, offset %llu.",
672 page, ip->i_ino, offset);
673
674 xfs_ilock(ip, XFS_ILOCK_EXCL);
675 bh = head = page_buffers(page);
676 do {
677 int error;
678 xfs_fileoff_t start_fsb;
679
680 if (!buffer_delay(bh))
681 goto next_buffer;
682
683 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
684 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
685 if (error) {
686 /* something screwed, just bail */
687 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
688 xfs_alert(ip->i_mount,
689 "page discard unable to remove delalloc mapping.");
690 }
691 break;
692 }
693 next_buffer:
694 offset += 1 << inode->i_blkbits;
695
696 } while ((bh = bh->b_this_page) != head);
697
698 xfs_iunlock(ip, XFS_ILOCK_EXCL);
699 out_invalidate:
700 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
701 return;
702 }
703
704 /*
705 * We implement an immediate ioend submission policy here to avoid needing to
706 * chain multiple ioends and hence nest mempool allocations which can violate
707 * forward progress guarantees we need to provide. The current ioend we are
708 * adding buffers to is cached on the writepage context, and if the new buffer
709 * does not append to the cached ioend it will create a new ioend and cache that
710 * instead.
711 *
712 * If a new ioend is created and cached, the old ioend is returned and queued
713 * locally for submission once the entire page is processed or an error has been
714 * detected. While ioends are submitted immediately after they are completed,
715 * batching optimisations are provided by higher level block plugging.
716 *
717 * At the end of a writeback pass, there will be a cached ioend remaining on the
718 * writepage context that the caller will need to submit.
719 */
720 static int
721 xfs_writepage_map(
722 struct xfs_writepage_ctx *wpc,
723 struct writeback_control *wbc,
724 struct inode *inode,
725 struct page *page,
726 loff_t offset,
727 __uint64_t end_offset)
728 {
729 LIST_HEAD(submit_list);
730 struct xfs_ioend *ioend, *next;
731 struct buffer_head *bh, *head;
732 ssize_t len = 1 << inode->i_blkbits;
733 int error = 0;
734 int count = 0;
735 int uptodate = 1;
736
737 bh = head = page_buffers(page);
738 offset = page_offset(page);
739 do {
740 if (offset >= end_offset)
741 break;
742 if (!buffer_uptodate(bh))
743 uptodate = 0;
744
745 /*
746 * set_page_dirty dirties all buffers in a page, independent
747 * of their state. The dirty state however is entirely
748 * meaningless for holes (!mapped && uptodate), so skip
749 * buffers covering holes here.
750 */
751 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
752 wpc->imap_valid = false;
753 continue;
754 }
755
756 if (buffer_unwritten(bh)) {
757 if (wpc->io_type != XFS_IO_UNWRITTEN) {
758 wpc->io_type = XFS_IO_UNWRITTEN;
759 wpc->imap_valid = false;
760 }
761 } else if (buffer_delay(bh)) {
762 if (wpc->io_type != XFS_IO_DELALLOC) {
763 wpc->io_type = XFS_IO_DELALLOC;
764 wpc->imap_valid = false;
765 }
766 } else if (buffer_uptodate(bh)) {
767 if (wpc->io_type != XFS_IO_OVERWRITE) {
768 wpc->io_type = XFS_IO_OVERWRITE;
769 wpc->imap_valid = false;
770 }
771 } else {
772 if (PageUptodate(page))
773 ASSERT(buffer_mapped(bh));
774 /*
775 * This buffer is not uptodate and will not be
776 * written to disk. Ensure that we will put any
777 * subsequent writeable buffers into a new
778 * ioend.
779 */
780 wpc->imap_valid = false;
781 continue;
782 }
783
784 if (wpc->imap_valid)
785 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
786 offset);
787 if (!wpc->imap_valid) {
788 error = xfs_map_blocks(inode, offset, &wpc->imap,
789 wpc->io_type);
790 if (error)
791 goto out;
792 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 offset);
794 }
795 if (wpc->imap_valid) {
796 lock_buffer(bh);
797 if (wpc->io_type != XFS_IO_OVERWRITE)
798 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
799 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
800 count++;
801 }
802
803 } while (offset += len, ((bh = bh->b_this_page) != head));
804
805 if (uptodate && bh == head)
806 SetPageUptodate(page);
807
808 ASSERT(wpc->ioend || list_empty(&submit_list));
809
810 out:
811 /*
812 * On error, we have to fail the ioend here because we have locked
813 * buffers in the ioend. If we don't do this, we'll deadlock
814 * invalidating the page as that tries to lock the buffers on the page.
815 * Also, because we may have set pages under writeback, we have to make
816 * sure we run IO completion to mark the error state of the IO
817 * appropriately, so we can't cancel the ioend directly here. That means
818 * we have to mark this page as under writeback if we included any
819 * buffers from it in the ioend chain so that completion treats it
820 * correctly.
821 *
822 * If we didn't include the page in the ioend, the on error we can
823 * simply discard and unlock it as there are no other users of the page
824 * or it's buffers right now. The caller will still need to trigger
825 * submission of outstanding ioends on the writepage context so they are
826 * treated correctly on error.
827 */
828 if (count) {
829 xfs_start_page_writeback(page, !error);
830
831 /*
832 * Preserve the original error if there was one, otherwise catch
833 * submission errors here and propagate into subsequent ioend
834 * submissions.
835 */
836 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
837 int error2;
838
839 list_del_init(&ioend->io_list);
840 error2 = xfs_submit_ioend(wbc, ioend, error);
841 if (error2 && !error)
842 error = error2;
843 }
844 } else if (error) {
845 xfs_aops_discard_page(page);
846 ClearPageUptodate(page);
847 unlock_page(page);
848 } else {
849 /*
850 * We can end up here with no error and nothing to write if we
851 * race with a partial page truncate on a sub-page block sized
852 * filesystem. In that case we need to mark the page clean.
853 */
854 xfs_start_page_writeback(page, 1);
855 end_page_writeback(page);
856 }
857
858 mapping_set_error(page->mapping, error);
859 return error;
860 }
861
862 /*
863 * Write out a dirty page.
864 *
865 * For delalloc space on the page we need to allocate space and flush it.
866 * For unwritten space on the page we need to start the conversion to
867 * regular allocated space.
868 * For any other dirty buffer heads on the page we should flush them.
869 */
870 STATIC int
871 xfs_do_writepage(
872 struct page *page,
873 struct writeback_control *wbc,
874 void *data)
875 {
876 struct xfs_writepage_ctx *wpc = data;
877 struct inode *inode = page->mapping->host;
878 loff_t offset;
879 __uint64_t end_offset;
880 pgoff_t end_index;
881
882 trace_xfs_writepage(inode, page, 0, 0);
883
884 ASSERT(page_has_buffers(page));
885
886 /*
887 * Refuse to write the page out if we are called from reclaim context.
888 *
889 * This avoids stack overflows when called from deeply used stacks in
890 * random callers for direct reclaim or memcg reclaim. We explicitly
891 * allow reclaim from kswapd as the stack usage there is relatively low.
892 *
893 * This should never happen except in the case of a VM regression so
894 * warn about it.
895 */
896 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
897 PF_MEMALLOC))
898 goto redirty;
899
900 /*
901 * Given that we do not allow direct reclaim to call us, we should
902 * never be called while in a filesystem transaction.
903 */
904 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
905 goto redirty;
906
907 /*
908 * Is this page beyond the end of the file?
909 *
910 * The page index is less than the end_index, adjust the end_offset
911 * to the highest offset that this page should represent.
912 * -----------------------------------------------------
913 * | file mapping | <EOF> |
914 * -----------------------------------------------------
915 * | Page ... | Page N-2 | Page N-1 | Page N | |
916 * ^--------------------------------^----------|--------
917 * | desired writeback range | see else |
918 * ---------------------------------^------------------|
919 */
920 offset = i_size_read(inode);
921 end_index = offset >> PAGE_CACHE_SHIFT;
922 if (page->index < end_index)
923 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
924 else {
925 /*
926 * Check whether the page to write out is beyond or straddles
927 * i_size or not.
928 * -------------------------------------------------------
929 * | file mapping | <EOF> |
930 * -------------------------------------------------------
931 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
932 * ^--------------------------------^-----------|---------
933 * | | Straddles |
934 * ---------------------------------^-----------|--------|
935 */
936 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
937
938 /*
939 * Skip the page if it is fully outside i_size, e.g. due to a
940 * truncate operation that is in progress. We must redirty the
941 * page so that reclaim stops reclaiming it. Otherwise
942 * xfs_vm_releasepage() is called on it and gets confused.
943 *
944 * Note that the end_index is unsigned long, it would overflow
945 * if the given offset is greater than 16TB on 32-bit system
946 * and if we do check the page is fully outside i_size or not
947 * via "if (page->index >= end_index + 1)" as "end_index + 1"
948 * will be evaluated to 0. Hence this page will be redirtied
949 * and be written out repeatedly which would result in an
950 * infinite loop, the user program that perform this operation
951 * will hang. Instead, we can verify this situation by checking
952 * if the page to write is totally beyond the i_size or if it's
953 * offset is just equal to the EOF.
954 */
955 if (page->index > end_index ||
956 (page->index == end_index && offset_into_page == 0))
957 goto redirty;
958
959 /*
960 * The page straddles i_size. It must be zeroed out on each
961 * and every writepage invocation because it may be mmapped.
962 * "A file is mapped in multiples of the page size. For a file
963 * that is not a multiple of the page size, the remaining
964 * memory is zeroed when mapped, and writes to that region are
965 * not written out to the file."
966 */
967 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
968
969 /* Adjust the end_offset to the end of file */
970 end_offset = offset;
971 }
972
973 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
974
975 redirty:
976 redirty_page_for_writepage(wbc, page);
977 unlock_page(page);
978 return 0;
979 }
980
981 STATIC int
982 xfs_vm_writepage(
983 struct page *page,
984 struct writeback_control *wbc)
985 {
986 struct xfs_writepage_ctx wpc = {
987 .io_type = XFS_IO_INVALID,
988 };
989 int ret;
990
991 ret = xfs_do_writepage(page, wbc, &wpc);
992 if (wpc.ioend)
993 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
994 return ret;
995 }
996
997 STATIC int
998 xfs_vm_writepages(
999 struct address_space *mapping,
1000 struct writeback_control *wbc)
1001 {
1002 struct xfs_writepage_ctx wpc = {
1003 .io_type = XFS_IO_INVALID,
1004 };
1005 int ret;
1006
1007 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1008 if (dax_mapping(mapping))
1009 return dax_writeback_mapping_range(mapping,
1010 xfs_find_bdev_for_inode(mapping->host), wbc);
1011
1012 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1013 if (wpc.ioend)
1014 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1015 return ret;
1016 }
1017
1018 /*
1019 * Called to move a page into cleanable state - and from there
1020 * to be released. The page should already be clean. We always
1021 * have buffer heads in this call.
1022 *
1023 * Returns 1 if the page is ok to release, 0 otherwise.
1024 */
1025 STATIC int
1026 xfs_vm_releasepage(
1027 struct page *page,
1028 gfp_t gfp_mask)
1029 {
1030 int delalloc, unwritten;
1031
1032 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1033
1034 xfs_count_page_state(page, &delalloc, &unwritten);
1035
1036 if (WARN_ON_ONCE(delalloc))
1037 return 0;
1038 if (WARN_ON_ONCE(unwritten))
1039 return 0;
1040
1041 return try_to_free_buffers(page);
1042 }
1043
1044 /*
1045 * When we map a DIO buffer, we may need to pass flags to
1046 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1047 *
1048 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1049 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1050 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1051 * extending the file size. We won't know for sure until IO completion is run
1052 * and the actual max write offset is communicated to the IO completion
1053 * routine.
1054 */
1055 static void
1056 xfs_map_direct(
1057 struct inode *inode,
1058 struct buffer_head *bh_result,
1059 struct xfs_bmbt_irec *imap,
1060 xfs_off_t offset)
1061 {
1062 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1063 xfs_off_t size = bh_result->b_size;
1064
1065 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1066 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1067
1068 if (ISUNWRITTEN(imap)) {
1069 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1070 set_buffer_defer_completion(bh_result);
1071 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1072 *flags |= XFS_DIO_FLAG_APPEND;
1073 set_buffer_defer_completion(bh_result);
1074 }
1075 }
1076
1077 /*
1078 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1079 * is, so that we can avoid repeated get_blocks calls.
1080 *
1081 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1082 * for blocks beyond EOF must be marked new so that sub block regions can be
1083 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1084 * was just allocated or is unwritten, otherwise the callers would overwrite
1085 * existing data with zeros. Hence we have to split the mapping into a range up
1086 * to and including EOF, and a second mapping for beyond EOF.
1087 */
1088 static void
1089 xfs_map_trim_size(
1090 struct inode *inode,
1091 sector_t iblock,
1092 struct buffer_head *bh_result,
1093 struct xfs_bmbt_irec *imap,
1094 xfs_off_t offset,
1095 ssize_t size)
1096 {
1097 xfs_off_t mapping_size;
1098
1099 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1100 mapping_size <<= inode->i_blkbits;
1101
1102 ASSERT(mapping_size > 0);
1103 if (mapping_size > size)
1104 mapping_size = size;
1105 if (offset < i_size_read(inode) &&
1106 offset + mapping_size >= i_size_read(inode)) {
1107 /* limit mapping to block that spans EOF */
1108 mapping_size = roundup_64(i_size_read(inode) - offset,
1109 1 << inode->i_blkbits);
1110 }
1111 if (mapping_size > LONG_MAX)
1112 mapping_size = LONG_MAX;
1113
1114 bh_result->b_size = mapping_size;
1115 }
1116
1117 STATIC int
1118 __xfs_get_blocks(
1119 struct inode *inode,
1120 sector_t iblock,
1121 struct buffer_head *bh_result,
1122 int create,
1123 bool direct,
1124 bool dax_fault)
1125 {
1126 struct xfs_inode *ip = XFS_I(inode);
1127 struct xfs_mount *mp = ip->i_mount;
1128 xfs_fileoff_t offset_fsb, end_fsb;
1129 int error = 0;
1130 int lockmode = 0;
1131 struct xfs_bmbt_irec imap;
1132 int nimaps = 1;
1133 xfs_off_t offset;
1134 ssize_t size;
1135 int new = 0;
1136
1137 if (XFS_FORCED_SHUTDOWN(mp))
1138 return -EIO;
1139
1140 offset = (xfs_off_t)iblock << inode->i_blkbits;
1141 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1142 size = bh_result->b_size;
1143
1144 if (!create && direct && offset >= i_size_read(inode))
1145 return 0;
1146
1147 /*
1148 * Direct I/O is usually done on preallocated files, so try getting
1149 * a block mapping without an exclusive lock first. For buffered
1150 * writes we already have the exclusive iolock anyway, so avoiding
1151 * a lock roundtrip here by taking the ilock exclusive from the
1152 * beginning is a useful micro optimization.
1153 */
1154 if (create && !direct) {
1155 lockmode = XFS_ILOCK_EXCL;
1156 xfs_ilock(ip, lockmode);
1157 } else {
1158 lockmode = xfs_ilock_data_map_shared(ip);
1159 }
1160
1161 ASSERT(offset <= mp->m_super->s_maxbytes);
1162 if (offset + size > mp->m_super->s_maxbytes)
1163 size = mp->m_super->s_maxbytes - offset;
1164 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1165 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1166
1167 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1168 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1169 if (error)
1170 goto out_unlock;
1171
1172 /* for DAX, we convert unwritten extents directly */
1173 if (create &&
1174 (!nimaps ||
1175 (imap.br_startblock == HOLESTARTBLOCK ||
1176 imap.br_startblock == DELAYSTARTBLOCK) ||
1177 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1178 if (direct || xfs_get_extsz_hint(ip)) {
1179 /*
1180 * xfs_iomap_write_direct() expects the shared lock. It
1181 * is unlocked on return.
1182 */
1183 if (lockmode == XFS_ILOCK_EXCL)
1184 xfs_ilock_demote(ip, lockmode);
1185
1186 error = xfs_iomap_write_direct(ip, offset, size,
1187 &imap, nimaps);
1188 if (error)
1189 return error;
1190 new = 1;
1191
1192 } else {
1193 /*
1194 * Delalloc reservations do not require a transaction,
1195 * we can go on without dropping the lock here. If we
1196 * are allocating a new delalloc block, make sure that
1197 * we set the new flag so that we mark the buffer new so
1198 * that we know that it is newly allocated if the write
1199 * fails.
1200 */
1201 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1202 new = 1;
1203 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1204 if (error)
1205 goto out_unlock;
1206
1207 xfs_iunlock(ip, lockmode);
1208 }
1209 trace_xfs_get_blocks_alloc(ip, offset, size,
1210 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1211 : XFS_IO_DELALLOC, &imap);
1212 } else if (nimaps) {
1213 trace_xfs_get_blocks_found(ip, offset, size,
1214 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1215 : XFS_IO_OVERWRITE, &imap);
1216 xfs_iunlock(ip, lockmode);
1217 } else {
1218 trace_xfs_get_blocks_notfound(ip, offset, size);
1219 goto out_unlock;
1220 }
1221
1222 if (IS_DAX(inode) && create) {
1223 ASSERT(!ISUNWRITTEN(&imap));
1224 /* zeroing is not needed at a higher layer */
1225 new = 0;
1226 }
1227
1228 /* trim mapping down to size requested */
1229 if (direct || size > (1 << inode->i_blkbits))
1230 xfs_map_trim_size(inode, iblock, bh_result,
1231 &imap, offset, size);
1232
1233 /*
1234 * For unwritten extents do not report a disk address in the buffered
1235 * read case (treat as if we're reading into a hole).
1236 */
1237 if (imap.br_startblock != HOLESTARTBLOCK &&
1238 imap.br_startblock != DELAYSTARTBLOCK &&
1239 (create || !ISUNWRITTEN(&imap))) {
1240 xfs_map_buffer(inode, bh_result, &imap, offset);
1241 if (ISUNWRITTEN(&imap))
1242 set_buffer_unwritten(bh_result);
1243 /* direct IO needs special help */
1244 if (create && direct) {
1245 if (dax_fault)
1246 ASSERT(!ISUNWRITTEN(&imap));
1247 else
1248 xfs_map_direct(inode, bh_result, &imap, offset);
1249 }
1250 }
1251
1252 /*
1253 * If this is a realtime file, data may be on a different device.
1254 * to that pointed to from the buffer_head b_bdev currently.
1255 */
1256 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1257
1258 /*
1259 * If we previously allocated a block out beyond eof and we are now
1260 * coming back to use it then we will need to flag it as new even if it
1261 * has a disk address.
1262 *
1263 * With sub-block writes into unwritten extents we also need to mark
1264 * the buffer as new so that the unwritten parts of the buffer gets
1265 * correctly zeroed.
1266 */
1267 if (create &&
1268 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1269 (offset >= i_size_read(inode)) ||
1270 (new || ISUNWRITTEN(&imap))))
1271 set_buffer_new(bh_result);
1272
1273 if (imap.br_startblock == DELAYSTARTBLOCK) {
1274 BUG_ON(direct);
1275 if (create) {
1276 set_buffer_uptodate(bh_result);
1277 set_buffer_mapped(bh_result);
1278 set_buffer_delay(bh_result);
1279 }
1280 }
1281
1282 return 0;
1283
1284 out_unlock:
1285 xfs_iunlock(ip, lockmode);
1286 return error;
1287 }
1288
1289 int
1290 xfs_get_blocks(
1291 struct inode *inode,
1292 sector_t iblock,
1293 struct buffer_head *bh_result,
1294 int create)
1295 {
1296 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1297 }
1298
1299 int
1300 xfs_get_blocks_direct(
1301 struct inode *inode,
1302 sector_t iblock,
1303 struct buffer_head *bh_result,
1304 int create)
1305 {
1306 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1307 }
1308
1309 int
1310 xfs_get_blocks_dax_fault(
1311 struct inode *inode,
1312 sector_t iblock,
1313 struct buffer_head *bh_result,
1314 int create)
1315 {
1316 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1317 }
1318
1319 /*
1320 * Complete a direct I/O write request.
1321 *
1322 * xfs_map_direct passes us some flags in the private data to tell us what to
1323 * do. If no flags are set, then the write IO is an overwrite wholly within
1324 * the existing allocated file size and so there is nothing for us to do.
1325 *
1326 * Note that in this case the completion can be called in interrupt context,
1327 * whereas if we have flags set we will always be called in task context
1328 * (i.e. from a workqueue).
1329 */
1330 STATIC int
1331 xfs_end_io_direct_write(
1332 struct kiocb *iocb,
1333 loff_t offset,
1334 ssize_t size,
1335 void *private)
1336 {
1337 struct inode *inode = file_inode(iocb->ki_filp);
1338 struct xfs_inode *ip = XFS_I(inode);
1339 struct xfs_mount *mp = ip->i_mount;
1340 uintptr_t flags = (uintptr_t)private;
1341 int error = 0;
1342
1343 trace_xfs_end_io_direct_write(ip, offset, size);
1344
1345 if (XFS_FORCED_SHUTDOWN(mp))
1346 return -EIO;
1347
1348 if (size <= 0)
1349 return size;
1350
1351 /*
1352 * The flags tell us whether we are doing unwritten extent conversions
1353 * or an append transaction that updates the on-disk file size. These
1354 * cases are the only cases where we should *potentially* be needing
1355 * to update the VFS inode size.
1356 */
1357 if (flags == 0) {
1358 ASSERT(offset + size <= i_size_read(inode));
1359 return 0;
1360 }
1361
1362 /*
1363 * We need to update the in-core inode size here so that we don't end up
1364 * with the on-disk inode size being outside the in-core inode size. We
1365 * have no other method of updating EOF for AIO, so always do it here
1366 * if necessary.
1367 *
1368 * We need to lock the test/set EOF update as we can be racing with
1369 * other IO completions here to update the EOF. Failing to serialise
1370 * here can result in EOF moving backwards and Bad Things Happen when
1371 * that occurs.
1372 */
1373 spin_lock(&ip->i_flags_lock);
1374 if (offset + size > i_size_read(inode))
1375 i_size_write(inode, offset + size);
1376 spin_unlock(&ip->i_flags_lock);
1377
1378 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1379 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1380
1381 error = xfs_iomap_write_unwritten(ip, offset, size);
1382 } else if (flags & XFS_DIO_FLAG_APPEND) {
1383 struct xfs_trans *tp;
1384
1385 trace_xfs_end_io_direct_write_append(ip, offset, size);
1386
1387 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1388 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1389 if (error) {
1390 xfs_trans_cancel(tp);
1391 return error;
1392 }
1393 error = xfs_setfilesize(ip, tp, offset, size);
1394 }
1395
1396 return error;
1397 }
1398
1399 STATIC ssize_t
1400 xfs_vm_direct_IO(
1401 struct kiocb *iocb,
1402 struct iov_iter *iter,
1403 loff_t offset)
1404 {
1405 struct inode *inode = iocb->ki_filp->f_mapping->host;
1406 dio_iodone_t *endio = NULL;
1407 int flags = 0;
1408 struct block_device *bdev;
1409
1410 if (iov_iter_rw(iter) == WRITE) {
1411 endio = xfs_end_io_direct_write;
1412 flags = DIO_ASYNC_EXTEND;
1413 }
1414
1415 if (IS_DAX(inode)) {
1416 return dax_do_io(iocb, inode, iter, offset,
1417 xfs_get_blocks_direct, endio, 0);
1418 }
1419
1420 bdev = xfs_find_bdev_for_inode(inode);
1421 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1422 xfs_get_blocks_direct, endio, NULL, flags);
1423 }
1424
1425 /*
1426 * Punch out the delalloc blocks we have already allocated.
1427 *
1428 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1429 * as the page is still locked at this point.
1430 */
1431 STATIC void
1432 xfs_vm_kill_delalloc_range(
1433 struct inode *inode,
1434 loff_t start,
1435 loff_t end)
1436 {
1437 struct xfs_inode *ip = XFS_I(inode);
1438 xfs_fileoff_t start_fsb;
1439 xfs_fileoff_t end_fsb;
1440 int error;
1441
1442 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1443 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1444 if (end_fsb <= start_fsb)
1445 return;
1446
1447 xfs_ilock(ip, XFS_ILOCK_EXCL);
1448 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1449 end_fsb - start_fsb);
1450 if (error) {
1451 /* something screwed, just bail */
1452 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1453 xfs_alert(ip->i_mount,
1454 "xfs_vm_write_failed: unable to clean up ino %lld",
1455 ip->i_ino);
1456 }
1457 }
1458 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1459 }
1460
1461 STATIC void
1462 xfs_vm_write_failed(
1463 struct inode *inode,
1464 struct page *page,
1465 loff_t pos,
1466 unsigned len)
1467 {
1468 loff_t block_offset;
1469 loff_t block_start;
1470 loff_t block_end;
1471 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1472 loff_t to = from + len;
1473 struct buffer_head *bh, *head;
1474 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1475
1476 /*
1477 * The request pos offset might be 32 or 64 bit, this is all fine
1478 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1479 * platform, the high 32-bit will be masked off if we evaluate the
1480 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1481 * 0xfffff000 as an unsigned long, hence the result is incorrect
1482 * which could cause the following ASSERT failed in most cases.
1483 * In order to avoid this, we can evaluate the block_offset of the
1484 * start of the page by using shifts rather than masks the mismatch
1485 * problem.
1486 */
1487 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1488
1489 ASSERT(block_offset + from == pos);
1490
1491 head = page_buffers(page);
1492 block_start = 0;
1493 for (bh = head; bh != head || !block_start;
1494 bh = bh->b_this_page, block_start = block_end,
1495 block_offset += bh->b_size) {
1496 block_end = block_start + bh->b_size;
1497
1498 /* skip buffers before the write */
1499 if (block_end <= from)
1500 continue;
1501
1502 /* if the buffer is after the write, we're done */
1503 if (block_start >= to)
1504 break;
1505
1506 /*
1507 * Process delalloc and unwritten buffers beyond EOF. We can
1508 * encounter unwritten buffers in the event that a file has
1509 * post-EOF unwritten extents and an extending write happens to
1510 * fail (e.g., an unaligned write that also involves a delalloc
1511 * to the same page).
1512 */
1513 if (!buffer_delay(bh) && !buffer_unwritten(bh))
1514 continue;
1515
1516 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1517 block_offset < i_size_read(inode))
1518 continue;
1519
1520 if (buffer_delay(bh))
1521 xfs_vm_kill_delalloc_range(inode, block_offset,
1522 block_offset + bh->b_size);
1523
1524 /*
1525 * This buffer does not contain data anymore. make sure anyone
1526 * who finds it knows that for certain.
1527 */
1528 clear_buffer_delay(bh);
1529 clear_buffer_uptodate(bh);
1530 clear_buffer_mapped(bh);
1531 clear_buffer_new(bh);
1532 clear_buffer_dirty(bh);
1533 clear_buffer_unwritten(bh);
1534 }
1535
1536 }
1537
1538 /*
1539 * This used to call block_write_begin(), but it unlocks and releases the page
1540 * on error, and we need that page to be able to punch stale delalloc blocks out
1541 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1542 * the appropriate point.
1543 */
1544 STATIC int
1545 xfs_vm_write_begin(
1546 struct file *file,
1547 struct address_space *mapping,
1548 loff_t pos,
1549 unsigned len,
1550 unsigned flags,
1551 struct page **pagep,
1552 void **fsdata)
1553 {
1554 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1555 struct page *page;
1556 int status;
1557 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
1558
1559 ASSERT(len <= PAGE_CACHE_SIZE);
1560
1561 page = grab_cache_page_write_begin(mapping, index, flags);
1562 if (!page)
1563 return -ENOMEM;
1564
1565 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1566 if (xfs_mp_fail_writes(mp))
1567 status = -EIO;
1568 if (unlikely(status)) {
1569 struct inode *inode = mapping->host;
1570 size_t isize = i_size_read(inode);
1571
1572 xfs_vm_write_failed(inode, page, pos, len);
1573 unlock_page(page);
1574
1575 /*
1576 * If the write is beyond EOF, we only want to kill blocks
1577 * allocated in this write, not blocks that were previously
1578 * written successfully.
1579 */
1580 if (xfs_mp_fail_writes(mp))
1581 isize = 0;
1582 if (pos + len > isize) {
1583 ssize_t start = max_t(ssize_t, pos, isize);
1584
1585 truncate_pagecache_range(inode, start, pos + len);
1586 }
1587
1588 page_cache_release(page);
1589 page = NULL;
1590 }
1591
1592 *pagep = page;
1593 return status;
1594 }
1595
1596 /*
1597 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1598 * this specific write because they will never be written. Previous writes
1599 * beyond EOF where block allocation succeeded do not need to be trashed, so
1600 * only new blocks from this write should be trashed. For blocks within
1601 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1602 * written with all the other valid data.
1603 */
1604 STATIC int
1605 xfs_vm_write_end(
1606 struct file *file,
1607 struct address_space *mapping,
1608 loff_t pos,
1609 unsigned len,
1610 unsigned copied,
1611 struct page *page,
1612 void *fsdata)
1613 {
1614 int ret;
1615
1616 ASSERT(len <= PAGE_CACHE_SIZE);
1617
1618 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1619 if (unlikely(ret < len)) {
1620 struct inode *inode = mapping->host;
1621 size_t isize = i_size_read(inode);
1622 loff_t to = pos + len;
1623
1624 if (to > isize) {
1625 /* only kill blocks in this write beyond EOF */
1626 if (pos > isize)
1627 isize = pos;
1628 xfs_vm_kill_delalloc_range(inode, isize, to);
1629 truncate_pagecache_range(inode, isize, to);
1630 }
1631 }
1632 return ret;
1633 }
1634
1635 STATIC sector_t
1636 xfs_vm_bmap(
1637 struct address_space *mapping,
1638 sector_t block)
1639 {
1640 struct inode *inode = (struct inode *)mapping->host;
1641 struct xfs_inode *ip = XFS_I(inode);
1642
1643 trace_xfs_vm_bmap(XFS_I(inode));
1644 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1645 filemap_write_and_wait(mapping);
1646 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1647 return generic_block_bmap(mapping, block, xfs_get_blocks);
1648 }
1649
1650 STATIC int
1651 xfs_vm_readpage(
1652 struct file *unused,
1653 struct page *page)
1654 {
1655 trace_xfs_vm_readpage(page->mapping->host, 1);
1656 return mpage_readpage(page, xfs_get_blocks);
1657 }
1658
1659 STATIC int
1660 xfs_vm_readpages(
1661 struct file *unused,
1662 struct address_space *mapping,
1663 struct list_head *pages,
1664 unsigned nr_pages)
1665 {
1666 trace_xfs_vm_readpages(mapping->host, nr_pages);
1667 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1668 }
1669
1670 /*
1671 * This is basically a copy of __set_page_dirty_buffers() with one
1672 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1673 * dirty, we'll never be able to clean them because we don't write buffers
1674 * beyond EOF, and that means we can't invalidate pages that span EOF
1675 * that have been marked dirty. Further, the dirty state can leak into
1676 * the file interior if the file is extended, resulting in all sorts of
1677 * bad things happening as the state does not match the underlying data.
1678 *
1679 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1680 * this only exist because of bufferheads and how the generic code manages them.
1681 */
1682 STATIC int
1683 xfs_vm_set_page_dirty(
1684 struct page *page)
1685 {
1686 struct address_space *mapping = page->mapping;
1687 struct inode *inode = mapping->host;
1688 loff_t end_offset;
1689 loff_t offset;
1690 int newly_dirty;
1691
1692 if (unlikely(!mapping))
1693 return !TestSetPageDirty(page);
1694
1695 end_offset = i_size_read(inode);
1696 offset = page_offset(page);
1697
1698 spin_lock(&mapping->private_lock);
1699 if (page_has_buffers(page)) {
1700 struct buffer_head *head = page_buffers(page);
1701 struct buffer_head *bh = head;
1702
1703 do {
1704 if (offset < end_offset)
1705 set_buffer_dirty(bh);
1706 bh = bh->b_this_page;
1707 offset += 1 << inode->i_blkbits;
1708 } while (bh != head);
1709 }
1710 /*
1711 * Lock out page->mem_cgroup migration to keep PageDirty
1712 * synchronized with per-memcg dirty page counters.
1713 */
1714 lock_page_memcg(page);
1715 newly_dirty = !TestSetPageDirty(page);
1716 spin_unlock(&mapping->private_lock);
1717
1718 if (newly_dirty) {
1719 /* sigh - __set_page_dirty() is static, so copy it here, too */
1720 unsigned long flags;
1721
1722 spin_lock_irqsave(&mapping->tree_lock, flags);
1723 if (page->mapping) { /* Race with truncate? */
1724 WARN_ON_ONCE(!PageUptodate(page));
1725 account_page_dirtied(page, mapping);
1726 radix_tree_tag_set(&mapping->page_tree,
1727 page_index(page), PAGECACHE_TAG_DIRTY);
1728 }
1729 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1730 }
1731 unlock_page_memcg(page);
1732 if (newly_dirty)
1733 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1734 return newly_dirty;
1735 }
1736
1737 const struct address_space_operations xfs_address_space_operations = {
1738 .readpage = xfs_vm_readpage,
1739 .readpages = xfs_vm_readpages,
1740 .writepage = xfs_vm_writepage,
1741 .writepages = xfs_vm_writepages,
1742 .set_page_dirty = xfs_vm_set_page_dirty,
1743 .releasepage = xfs_vm_releasepage,
1744 .invalidatepage = xfs_vm_invalidatepage,
1745 .write_begin = xfs_vm_write_begin,
1746 .write_end = xfs_vm_write_end,
1747 .bmap = xfs_vm_bmap,
1748 .direct_IO = xfs_vm_direct_IO,
1749 .migratepage = buffer_migrate_page,
1750 .is_partially_uptodate = block_is_partially_uptodate,
1751 .error_remove_page = generic_error_remove_page,
1752 };