]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_aops.c
Merge branch 'xfs-4.10-misc-fixes-1' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
42 #define XFS_DIO_FLAG_APPEND (1 << 1)
43 #define XFS_DIO_FLAG_COW (1 << 2)
44
45 /*
46 * structure owned by writepages passed to individual writepage calls
47 */
48 struct xfs_writepage_ctx {
49 struct xfs_bmbt_irec imap;
50 bool imap_valid;
51 unsigned int io_type;
52 struct xfs_ioend *ioend;
53 sector_t last_block;
54 };
55
56 void
57 xfs_count_page_state(
58 struct page *page,
59 int *delalloc,
60 int *unwritten)
61 {
62 struct buffer_head *bh, *head;
63
64 *delalloc = *unwritten = 0;
65
66 bh = head = page_buffers(page);
67 do {
68 if (buffer_unwritten(bh))
69 (*unwritten) = 1;
70 else if (buffer_delay(bh))
71 (*delalloc) = 1;
72 } while ((bh = bh->b_this_page) != head);
73 }
74
75 struct block_device *
76 xfs_find_bdev_for_inode(
77 struct inode *inode)
78 {
79 struct xfs_inode *ip = XFS_I(inode);
80 struct xfs_mount *mp = ip->i_mount;
81
82 if (XFS_IS_REALTIME_INODE(ip))
83 return mp->m_rtdev_targp->bt_bdev;
84 else
85 return mp->m_ddev_targp->bt_bdev;
86 }
87
88 /*
89 * We're now finished for good with this page. Update the page state via the
90 * associated buffer_heads, paying attention to the start and end offsets that
91 * we need to process on the page.
92 *
93 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
94 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
95 * the page at all, as we may be racing with memory reclaim and it can free both
96 * the bufferhead chain and the page as it will see the page as clean and
97 * unused.
98 */
99 static void
100 xfs_finish_page_writeback(
101 struct inode *inode,
102 struct bio_vec *bvec,
103 int error)
104 {
105 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
106 struct buffer_head *head, *bh, *next;
107 unsigned int off = 0;
108 unsigned int bsize;
109
110 ASSERT(bvec->bv_offset < PAGE_SIZE);
111 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
112 ASSERT(end < PAGE_SIZE);
113 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
114
115 bh = head = page_buffers(bvec->bv_page);
116
117 bsize = bh->b_size;
118 do {
119 next = bh->b_this_page;
120 if (off < bvec->bv_offset)
121 goto next_bh;
122 if (off > end)
123 break;
124 bh->b_end_io(bh, !error);
125 next_bh:
126 off += bsize;
127 } while ((bh = next) != head);
128 }
129
130 /*
131 * We're now finished for good with this ioend structure. Update the page
132 * state, release holds on bios, and finally free up memory. Do not use the
133 * ioend after this.
134 */
135 STATIC void
136 xfs_destroy_ioend(
137 struct xfs_ioend *ioend,
138 int error)
139 {
140 struct inode *inode = ioend->io_inode;
141 struct bio *last = ioend->io_bio;
142 struct bio *bio, *next;
143
144 for (bio = &ioend->io_inline_bio; bio; bio = next) {
145 struct bio_vec *bvec;
146 int i;
147
148 /*
149 * For the last bio, bi_private points to the ioend, so we
150 * need to explicitly end the iteration here.
151 */
152 if (bio == last)
153 next = NULL;
154 else
155 next = bio->bi_private;
156
157 /* walk each page on bio, ending page IO on them */
158 bio_for_each_segment_all(bvec, bio, i)
159 xfs_finish_page_writeback(inode, bvec, error);
160
161 bio_put(bio);
162 }
163 }
164
165 /*
166 * Fast and loose check if this write could update the on-disk inode size.
167 */
168 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
169 {
170 return ioend->io_offset + ioend->io_size >
171 XFS_I(ioend->io_inode)->i_d.di_size;
172 }
173
174 STATIC int
175 xfs_setfilesize_trans_alloc(
176 struct xfs_ioend *ioend)
177 {
178 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
179 struct xfs_trans *tp;
180 int error;
181
182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
183 if (error)
184 return error;
185
186 ioend->io_append_trans = tp;
187
188 /*
189 * We may pass freeze protection with a transaction. So tell lockdep
190 * we released it.
191 */
192 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
193 /*
194 * We hand off the transaction to the completion thread now, so
195 * clear the flag here.
196 */
197 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
198 return 0;
199 }
200
201 /*
202 * Update on-disk file size now that data has been written to disk.
203 */
204 STATIC int
205 __xfs_setfilesize(
206 struct xfs_inode *ip,
207 struct xfs_trans *tp,
208 xfs_off_t offset,
209 size_t size)
210 {
211 xfs_fsize_t isize;
212
213 xfs_ilock(ip, XFS_ILOCK_EXCL);
214 isize = xfs_new_eof(ip, offset + size);
215 if (!isize) {
216 xfs_iunlock(ip, XFS_ILOCK_EXCL);
217 xfs_trans_cancel(tp);
218 return 0;
219 }
220
221 trace_xfs_setfilesize(ip, offset, size);
222
223 ip->i_d.di_size = isize;
224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
226
227 return xfs_trans_commit(tp);
228 }
229
230 int
231 xfs_setfilesize(
232 struct xfs_inode *ip,
233 xfs_off_t offset,
234 size_t size)
235 {
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_trans *tp;
238 int error;
239
240 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
241 if (error)
242 return error;
243
244 return __xfs_setfilesize(ip, tp, offset, size);
245 }
246
247 STATIC int
248 xfs_setfilesize_ioend(
249 struct xfs_ioend *ioend,
250 int error)
251 {
252 struct xfs_inode *ip = XFS_I(ioend->io_inode);
253 struct xfs_trans *tp = ioend->io_append_trans;
254
255 /*
256 * The transaction may have been allocated in the I/O submission thread,
257 * thus we need to mark ourselves as being in a transaction manually.
258 * Similarly for freeze protection.
259 */
260 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
261 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
262
263 /* we abort the update if there was an IO error */
264 if (error) {
265 xfs_trans_cancel(tp);
266 return error;
267 }
268
269 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
270 }
271
272 /*
273 * IO write completion.
274 */
275 STATIC void
276 xfs_end_io(
277 struct work_struct *work)
278 {
279 struct xfs_ioend *ioend =
280 container_of(work, struct xfs_ioend, io_work);
281 struct xfs_inode *ip = XFS_I(ioend->io_inode);
282 int error = ioend->io_bio->bi_error;
283
284 /*
285 * Set an error if the mount has shut down and proceed with end I/O
286 * processing so it can perform whatever cleanups are necessary.
287 */
288 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
289 error = -EIO;
290
291 /*
292 * For a CoW extent, we need to move the mapping from the CoW fork
293 * to the data fork. If instead an error happened, just dump the
294 * new blocks.
295 */
296 if (ioend->io_type == XFS_IO_COW) {
297 if (error)
298 goto done;
299 if (ioend->io_bio->bi_error) {
300 error = xfs_reflink_cancel_cow_range(ip,
301 ioend->io_offset, ioend->io_size);
302 goto done;
303 }
304 error = xfs_reflink_end_cow(ip, ioend->io_offset,
305 ioend->io_size);
306 if (error)
307 goto done;
308 }
309
310 /*
311 * For unwritten extents we need to issue transactions to convert a
312 * range to normal written extens after the data I/O has finished.
313 * Detecting and handling completion IO errors is done individually
314 * for each case as different cleanup operations need to be performed
315 * on error.
316 */
317 if (ioend->io_type == XFS_IO_UNWRITTEN) {
318 if (error)
319 goto done;
320 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
321 ioend->io_size);
322 } else if (ioend->io_append_trans) {
323 error = xfs_setfilesize_ioend(ioend, error);
324 } else {
325 ASSERT(!xfs_ioend_is_append(ioend) ||
326 ioend->io_type == XFS_IO_COW);
327 }
328
329 done:
330 xfs_destroy_ioend(ioend, error);
331 }
332
333 STATIC void
334 xfs_end_bio(
335 struct bio *bio)
336 {
337 struct xfs_ioend *ioend = bio->bi_private;
338 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
339
340 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
341 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
342 else if (ioend->io_append_trans)
343 queue_work(mp->m_data_workqueue, &ioend->io_work);
344 else
345 xfs_destroy_ioend(ioend, bio->bi_error);
346 }
347
348 STATIC int
349 xfs_map_blocks(
350 struct inode *inode,
351 loff_t offset,
352 struct xfs_bmbt_irec *imap,
353 int type)
354 {
355 struct xfs_inode *ip = XFS_I(inode);
356 struct xfs_mount *mp = ip->i_mount;
357 ssize_t count = 1 << inode->i_blkbits;
358 xfs_fileoff_t offset_fsb, end_fsb;
359 int error = 0;
360 int bmapi_flags = XFS_BMAPI_ENTIRE;
361 int nimaps = 1;
362
363 if (XFS_FORCED_SHUTDOWN(mp))
364 return -EIO;
365
366 ASSERT(type != XFS_IO_COW);
367 if (type == XFS_IO_UNWRITTEN)
368 bmapi_flags |= XFS_BMAPI_IGSTATE;
369
370 xfs_ilock(ip, XFS_ILOCK_SHARED);
371 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
372 (ip->i_df.if_flags & XFS_IFEXTENTS));
373 ASSERT(offset <= mp->m_super->s_maxbytes);
374
375 if (offset + count > mp->m_super->s_maxbytes)
376 count = mp->m_super->s_maxbytes - offset;
377 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
378 offset_fsb = XFS_B_TO_FSBT(mp, offset);
379 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
380 imap, &nimaps, bmapi_flags);
381 /*
382 * Truncate an overwrite extent if there's a pending CoW
383 * reservation before the end of this extent. This forces us
384 * to come back to writepage to take care of the CoW.
385 */
386 if (nimaps && type == XFS_IO_OVERWRITE)
387 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
388 xfs_iunlock(ip, XFS_ILOCK_SHARED);
389
390 if (error)
391 return error;
392
393 if (type == XFS_IO_DELALLOC &&
394 (!nimaps || isnullstartblock(imap->br_startblock))) {
395 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
396 imap);
397 if (!error)
398 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
399 return error;
400 }
401
402 #ifdef DEBUG
403 if (type == XFS_IO_UNWRITTEN) {
404 ASSERT(nimaps);
405 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
406 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
407 }
408 #endif
409 if (nimaps)
410 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
411 return 0;
412 }
413
414 STATIC bool
415 xfs_imap_valid(
416 struct inode *inode,
417 struct xfs_bmbt_irec *imap,
418 xfs_off_t offset)
419 {
420 offset >>= inode->i_blkbits;
421
422 return offset >= imap->br_startoff &&
423 offset < imap->br_startoff + imap->br_blockcount;
424 }
425
426 STATIC void
427 xfs_start_buffer_writeback(
428 struct buffer_head *bh)
429 {
430 ASSERT(buffer_mapped(bh));
431 ASSERT(buffer_locked(bh));
432 ASSERT(!buffer_delay(bh));
433 ASSERT(!buffer_unwritten(bh));
434
435 mark_buffer_async_write(bh);
436 set_buffer_uptodate(bh);
437 clear_buffer_dirty(bh);
438 }
439
440 STATIC void
441 xfs_start_page_writeback(
442 struct page *page,
443 int clear_dirty)
444 {
445 ASSERT(PageLocked(page));
446 ASSERT(!PageWriteback(page));
447
448 /*
449 * if the page was not fully cleaned, we need to ensure that the higher
450 * layers come back to it correctly. That means we need to keep the page
451 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
452 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
453 * write this page in this writeback sweep will be made.
454 */
455 if (clear_dirty) {
456 clear_page_dirty_for_io(page);
457 set_page_writeback(page);
458 } else
459 set_page_writeback_keepwrite(page);
460
461 unlock_page(page);
462 }
463
464 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465 {
466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467 }
468
469 /*
470 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
471 * it, and we submit that bio. The ioend may be used for multiple bio
472 * submissions, so we only want to allocate an append transaction for the ioend
473 * once. In the case of multiple bio submission, each bio will take an IO
474 * reference to the ioend to ensure that the ioend completion is only done once
475 * all bios have been submitted and the ioend is really done.
476 *
477 * If @fail is non-zero, it means that we have a situation where some part of
478 * the submission process has failed after we have marked paged for writeback
479 * and unlocked them. In this situation, we need to fail the bio and ioend
480 * rather than submit it to IO. This typically only happens on a filesystem
481 * shutdown.
482 */
483 STATIC int
484 xfs_submit_ioend(
485 struct writeback_control *wbc,
486 struct xfs_ioend *ioend,
487 int status)
488 {
489 /* Reserve log space if we might write beyond the on-disk inode size. */
490 if (!status &&
491 ioend->io_type != XFS_IO_UNWRITTEN &&
492 xfs_ioend_is_append(ioend) &&
493 !ioend->io_append_trans)
494 status = xfs_setfilesize_trans_alloc(ioend);
495
496 ioend->io_bio->bi_private = ioend;
497 ioend->io_bio->bi_end_io = xfs_end_bio;
498 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
499 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
500 /*
501 * If we are failing the IO now, just mark the ioend with an
502 * error and finish it. This will run IO completion immediately
503 * as there is only one reference to the ioend at this point in
504 * time.
505 */
506 if (status) {
507 ioend->io_bio->bi_error = status;
508 bio_endio(ioend->io_bio);
509 return status;
510 }
511
512 submit_bio(ioend->io_bio);
513 return 0;
514 }
515
516 static void
517 xfs_init_bio_from_bh(
518 struct bio *bio,
519 struct buffer_head *bh)
520 {
521 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
522 bio->bi_bdev = bh->b_bdev;
523 }
524
525 static struct xfs_ioend *
526 xfs_alloc_ioend(
527 struct inode *inode,
528 unsigned int type,
529 xfs_off_t offset,
530 struct buffer_head *bh)
531 {
532 struct xfs_ioend *ioend;
533 struct bio *bio;
534
535 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
536 xfs_init_bio_from_bh(bio, bh);
537
538 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
539 INIT_LIST_HEAD(&ioend->io_list);
540 ioend->io_type = type;
541 ioend->io_inode = inode;
542 ioend->io_size = 0;
543 ioend->io_offset = offset;
544 INIT_WORK(&ioend->io_work, xfs_end_io);
545 ioend->io_append_trans = NULL;
546 ioend->io_bio = bio;
547 return ioend;
548 }
549
550 /*
551 * Allocate a new bio, and chain the old bio to the new one.
552 *
553 * Note that we have to do perform the chaining in this unintuitive order
554 * so that the bi_private linkage is set up in the right direction for the
555 * traversal in xfs_destroy_ioend().
556 */
557 static void
558 xfs_chain_bio(
559 struct xfs_ioend *ioend,
560 struct writeback_control *wbc,
561 struct buffer_head *bh)
562 {
563 struct bio *new;
564
565 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
566 xfs_init_bio_from_bh(new, bh);
567
568 bio_chain(ioend->io_bio, new);
569 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
570 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
571 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
572 submit_bio(ioend->io_bio);
573 ioend->io_bio = new;
574 }
575
576 /*
577 * Test to see if we've been building up a completion structure for
578 * earlier buffers -- if so, we try to append to this ioend if we
579 * can, otherwise we finish off any current ioend and start another.
580 * Return the ioend we finished off so that the caller can submit it
581 * once it has finished processing the dirty page.
582 */
583 STATIC void
584 xfs_add_to_ioend(
585 struct inode *inode,
586 struct buffer_head *bh,
587 xfs_off_t offset,
588 struct xfs_writepage_ctx *wpc,
589 struct writeback_control *wbc,
590 struct list_head *iolist)
591 {
592 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
593 bh->b_blocknr != wpc->last_block + 1 ||
594 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
595 if (wpc->ioend)
596 list_add(&wpc->ioend->io_list, iolist);
597 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
598 }
599
600 /*
601 * If the buffer doesn't fit into the bio we need to allocate a new
602 * one. This shouldn't happen more than once for a given buffer.
603 */
604 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
605 xfs_chain_bio(wpc->ioend, wbc, bh);
606
607 wpc->ioend->io_size += bh->b_size;
608 wpc->last_block = bh->b_blocknr;
609 xfs_start_buffer_writeback(bh);
610 }
611
612 STATIC void
613 xfs_map_buffer(
614 struct inode *inode,
615 struct buffer_head *bh,
616 struct xfs_bmbt_irec *imap,
617 xfs_off_t offset)
618 {
619 sector_t bn;
620 struct xfs_mount *m = XFS_I(inode)->i_mount;
621 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
622 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
623
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626
627 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
628 ((offset - iomap_offset) >> inode->i_blkbits);
629
630 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
631
632 bh->b_blocknr = bn;
633 set_buffer_mapped(bh);
634 }
635
636 STATIC void
637 xfs_map_at_offset(
638 struct inode *inode,
639 struct buffer_head *bh,
640 struct xfs_bmbt_irec *imap,
641 xfs_off_t offset)
642 {
643 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
644 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
645
646 xfs_map_buffer(inode, bh, imap, offset);
647 set_buffer_mapped(bh);
648 clear_buffer_delay(bh);
649 clear_buffer_unwritten(bh);
650 }
651
652 /*
653 * Test if a given page contains at least one buffer of a given @type.
654 * If @check_all_buffers is true, then we walk all the buffers in the page to
655 * try to find one of the type passed in. If it is not set, then the caller only
656 * needs to check the first buffer on the page for a match.
657 */
658 STATIC bool
659 xfs_check_page_type(
660 struct page *page,
661 unsigned int type,
662 bool check_all_buffers)
663 {
664 struct buffer_head *bh;
665 struct buffer_head *head;
666
667 if (PageWriteback(page))
668 return false;
669 if (!page->mapping)
670 return false;
671 if (!page_has_buffers(page))
672 return false;
673
674 bh = head = page_buffers(page);
675 do {
676 if (buffer_unwritten(bh)) {
677 if (type == XFS_IO_UNWRITTEN)
678 return true;
679 } else if (buffer_delay(bh)) {
680 if (type == XFS_IO_DELALLOC)
681 return true;
682 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
683 if (type == XFS_IO_OVERWRITE)
684 return true;
685 }
686
687 /* If we are only checking the first buffer, we are done now. */
688 if (!check_all_buffers)
689 break;
690 } while ((bh = bh->b_this_page) != head);
691
692 return false;
693 }
694
695 STATIC void
696 xfs_vm_invalidatepage(
697 struct page *page,
698 unsigned int offset,
699 unsigned int length)
700 {
701 trace_xfs_invalidatepage(page->mapping->host, page, offset,
702 length);
703 block_invalidatepage(page, offset, length);
704 }
705
706 /*
707 * If the page has delalloc buffers on it, we need to punch them out before we
708 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710 * is done on that same region - the delalloc extent is returned when none is
711 * supposed to be there.
712 *
713 * We prevent this by truncating away the delalloc regions on the page before
714 * invalidating it. Because they are delalloc, we can do this without needing a
715 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716 * truncation without a transaction as there is no space left for block
717 * reservation (typically why we see a ENOSPC in writeback).
718 *
719 * This is not a performance critical path, so for now just do the punching a
720 * buffer head at a time.
721 */
722 STATIC void
723 xfs_aops_discard_page(
724 struct page *page)
725 {
726 struct inode *inode = page->mapping->host;
727 struct xfs_inode *ip = XFS_I(inode);
728 struct buffer_head *bh, *head;
729 loff_t offset = page_offset(page);
730
731 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
732 goto out_invalidate;
733
734 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
735 goto out_invalidate;
736
737 xfs_alert(ip->i_mount,
738 "page discard on page %p, inode 0x%llx, offset %llu.",
739 page, ip->i_ino, offset);
740
741 xfs_ilock(ip, XFS_ILOCK_EXCL);
742 bh = head = page_buffers(page);
743 do {
744 int error;
745 xfs_fileoff_t start_fsb;
746
747 if (!buffer_delay(bh))
748 goto next_buffer;
749
750 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
751 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
752 if (error) {
753 /* something screwed, just bail */
754 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
755 xfs_alert(ip->i_mount,
756 "page discard unable to remove delalloc mapping.");
757 }
758 break;
759 }
760 next_buffer:
761 offset += 1 << inode->i_blkbits;
762
763 } while ((bh = bh->b_this_page) != head);
764
765 xfs_iunlock(ip, XFS_ILOCK_EXCL);
766 out_invalidate:
767 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
768 return;
769 }
770
771 static int
772 xfs_map_cow(
773 struct xfs_writepage_ctx *wpc,
774 struct inode *inode,
775 loff_t offset,
776 unsigned int *new_type)
777 {
778 struct xfs_inode *ip = XFS_I(inode);
779 struct xfs_bmbt_irec imap;
780 bool is_cow = false, need_alloc = false;
781 int error;
782
783 /*
784 * If we already have a valid COW mapping keep using it.
785 */
786 if (wpc->io_type == XFS_IO_COW) {
787 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
788 if (wpc->imap_valid) {
789 *new_type = XFS_IO_COW;
790 return 0;
791 }
792 }
793
794 /*
795 * Else we need to check if there is a COW mapping at this offset.
796 */
797 xfs_ilock(ip, XFS_ILOCK_SHARED);
798 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
799 xfs_iunlock(ip, XFS_ILOCK_SHARED);
800
801 if (!is_cow)
802 return 0;
803
804 /*
805 * And if the COW mapping has a delayed extent here we need to
806 * allocate real space for it now.
807 */
808 if (need_alloc) {
809 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
810 &imap);
811 if (error)
812 return error;
813 }
814
815 wpc->io_type = *new_type = XFS_IO_COW;
816 wpc->imap_valid = true;
817 wpc->imap = imap;
818 return 0;
819 }
820
821 /*
822 * We implement an immediate ioend submission policy here to avoid needing to
823 * chain multiple ioends and hence nest mempool allocations which can violate
824 * forward progress guarantees we need to provide. The current ioend we are
825 * adding buffers to is cached on the writepage context, and if the new buffer
826 * does not append to the cached ioend it will create a new ioend and cache that
827 * instead.
828 *
829 * If a new ioend is created and cached, the old ioend is returned and queued
830 * locally for submission once the entire page is processed or an error has been
831 * detected. While ioends are submitted immediately after they are completed,
832 * batching optimisations are provided by higher level block plugging.
833 *
834 * At the end of a writeback pass, there will be a cached ioend remaining on the
835 * writepage context that the caller will need to submit.
836 */
837 static int
838 xfs_writepage_map(
839 struct xfs_writepage_ctx *wpc,
840 struct writeback_control *wbc,
841 struct inode *inode,
842 struct page *page,
843 loff_t offset,
844 __uint64_t end_offset)
845 {
846 LIST_HEAD(submit_list);
847 struct xfs_ioend *ioend, *next;
848 struct buffer_head *bh, *head;
849 ssize_t len = 1 << inode->i_blkbits;
850 int error = 0;
851 int count = 0;
852 int uptodate = 1;
853 unsigned int new_type;
854
855 bh = head = page_buffers(page);
856 offset = page_offset(page);
857 do {
858 if (offset >= end_offset)
859 break;
860 if (!buffer_uptodate(bh))
861 uptodate = 0;
862
863 /*
864 * set_page_dirty dirties all buffers in a page, independent
865 * of their state. The dirty state however is entirely
866 * meaningless for holes (!mapped && uptodate), so skip
867 * buffers covering holes here.
868 */
869 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
870 wpc->imap_valid = false;
871 continue;
872 }
873
874 if (buffer_unwritten(bh))
875 new_type = XFS_IO_UNWRITTEN;
876 else if (buffer_delay(bh))
877 new_type = XFS_IO_DELALLOC;
878 else if (buffer_uptodate(bh))
879 new_type = XFS_IO_OVERWRITE;
880 else {
881 if (PageUptodate(page))
882 ASSERT(buffer_mapped(bh));
883 /*
884 * This buffer is not uptodate and will not be
885 * written to disk. Ensure that we will put any
886 * subsequent writeable buffers into a new
887 * ioend.
888 */
889 wpc->imap_valid = false;
890 continue;
891 }
892
893 if (xfs_is_reflink_inode(XFS_I(inode))) {
894 error = xfs_map_cow(wpc, inode, offset, &new_type);
895 if (error)
896 goto out;
897 }
898
899 if (wpc->io_type != new_type) {
900 wpc->io_type = new_type;
901 wpc->imap_valid = false;
902 }
903
904 if (wpc->imap_valid)
905 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
906 offset);
907 if (!wpc->imap_valid) {
908 error = xfs_map_blocks(inode, offset, &wpc->imap,
909 wpc->io_type);
910 if (error)
911 goto out;
912 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
913 offset);
914 }
915 if (wpc->imap_valid) {
916 lock_buffer(bh);
917 if (wpc->io_type != XFS_IO_OVERWRITE)
918 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
919 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
920 count++;
921 }
922
923 } while (offset += len, ((bh = bh->b_this_page) != head));
924
925 if (uptodate && bh == head)
926 SetPageUptodate(page);
927
928 ASSERT(wpc->ioend || list_empty(&submit_list));
929
930 out:
931 /*
932 * On error, we have to fail the ioend here because we have locked
933 * buffers in the ioend. If we don't do this, we'll deadlock
934 * invalidating the page as that tries to lock the buffers on the page.
935 * Also, because we may have set pages under writeback, we have to make
936 * sure we run IO completion to mark the error state of the IO
937 * appropriately, so we can't cancel the ioend directly here. That means
938 * we have to mark this page as under writeback if we included any
939 * buffers from it in the ioend chain so that completion treats it
940 * correctly.
941 *
942 * If we didn't include the page in the ioend, the on error we can
943 * simply discard and unlock it as there are no other users of the page
944 * or it's buffers right now. The caller will still need to trigger
945 * submission of outstanding ioends on the writepage context so they are
946 * treated correctly on error.
947 */
948 if (count) {
949 xfs_start_page_writeback(page, !error);
950
951 /*
952 * Preserve the original error if there was one, otherwise catch
953 * submission errors here and propagate into subsequent ioend
954 * submissions.
955 */
956 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
957 int error2;
958
959 list_del_init(&ioend->io_list);
960 error2 = xfs_submit_ioend(wbc, ioend, error);
961 if (error2 && !error)
962 error = error2;
963 }
964 } else if (error) {
965 xfs_aops_discard_page(page);
966 ClearPageUptodate(page);
967 unlock_page(page);
968 } else {
969 /*
970 * We can end up here with no error and nothing to write if we
971 * race with a partial page truncate on a sub-page block sized
972 * filesystem. In that case we need to mark the page clean.
973 */
974 xfs_start_page_writeback(page, 1);
975 end_page_writeback(page);
976 }
977
978 mapping_set_error(page->mapping, error);
979 return error;
980 }
981
982 /*
983 * Write out a dirty page.
984 *
985 * For delalloc space on the page we need to allocate space and flush it.
986 * For unwritten space on the page we need to start the conversion to
987 * regular allocated space.
988 * For any other dirty buffer heads on the page we should flush them.
989 */
990 STATIC int
991 xfs_do_writepage(
992 struct page *page,
993 struct writeback_control *wbc,
994 void *data)
995 {
996 struct xfs_writepage_ctx *wpc = data;
997 struct inode *inode = page->mapping->host;
998 loff_t offset;
999 __uint64_t end_offset;
1000 pgoff_t end_index;
1001
1002 trace_xfs_writepage(inode, page, 0, 0);
1003
1004 ASSERT(page_has_buffers(page));
1005
1006 /*
1007 * Refuse to write the page out if we are called from reclaim context.
1008 *
1009 * This avoids stack overflows when called from deeply used stacks in
1010 * random callers for direct reclaim or memcg reclaim. We explicitly
1011 * allow reclaim from kswapd as the stack usage there is relatively low.
1012 *
1013 * This should never happen except in the case of a VM regression so
1014 * warn about it.
1015 */
1016 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 PF_MEMALLOC))
1018 goto redirty;
1019
1020 /*
1021 * Given that we do not allow direct reclaim to call us, we should
1022 * never be called while in a filesystem transaction.
1023 */
1024 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1025 goto redirty;
1026
1027 /*
1028 * Is this page beyond the end of the file?
1029 *
1030 * The page index is less than the end_index, adjust the end_offset
1031 * to the highest offset that this page should represent.
1032 * -----------------------------------------------------
1033 * | file mapping | <EOF> |
1034 * -----------------------------------------------------
1035 * | Page ... | Page N-2 | Page N-1 | Page N | |
1036 * ^--------------------------------^----------|--------
1037 * | desired writeback range | see else |
1038 * ---------------------------------^------------------|
1039 */
1040 offset = i_size_read(inode);
1041 end_index = offset >> PAGE_SHIFT;
1042 if (page->index < end_index)
1043 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1044 else {
1045 /*
1046 * Check whether the page to write out is beyond or straddles
1047 * i_size or not.
1048 * -------------------------------------------------------
1049 * | file mapping | <EOF> |
1050 * -------------------------------------------------------
1051 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1052 * ^--------------------------------^-----------|---------
1053 * | | Straddles |
1054 * ---------------------------------^-----------|--------|
1055 */
1056 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1057
1058 /*
1059 * Skip the page if it is fully outside i_size, e.g. due to a
1060 * truncate operation that is in progress. We must redirty the
1061 * page so that reclaim stops reclaiming it. Otherwise
1062 * xfs_vm_releasepage() is called on it and gets confused.
1063 *
1064 * Note that the end_index is unsigned long, it would overflow
1065 * if the given offset is greater than 16TB on 32-bit system
1066 * and if we do check the page is fully outside i_size or not
1067 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 * will be evaluated to 0. Hence this page will be redirtied
1069 * and be written out repeatedly which would result in an
1070 * infinite loop, the user program that perform this operation
1071 * will hang. Instead, we can verify this situation by checking
1072 * if the page to write is totally beyond the i_size or if it's
1073 * offset is just equal to the EOF.
1074 */
1075 if (page->index > end_index ||
1076 (page->index == end_index && offset_into_page == 0))
1077 goto redirty;
1078
1079 /*
1080 * The page straddles i_size. It must be zeroed out on each
1081 * and every writepage invocation because it may be mmapped.
1082 * "A file is mapped in multiples of the page size. For a file
1083 * that is not a multiple of the page size, the remaining
1084 * memory is zeroed when mapped, and writes to that region are
1085 * not written out to the file."
1086 */
1087 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1088
1089 /* Adjust the end_offset to the end of file */
1090 end_offset = offset;
1091 }
1092
1093 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1094
1095 redirty:
1096 redirty_page_for_writepage(wbc, page);
1097 unlock_page(page);
1098 return 0;
1099 }
1100
1101 STATIC int
1102 xfs_vm_writepage(
1103 struct page *page,
1104 struct writeback_control *wbc)
1105 {
1106 struct xfs_writepage_ctx wpc = {
1107 .io_type = XFS_IO_INVALID,
1108 };
1109 int ret;
1110
1111 ret = xfs_do_writepage(page, wbc, &wpc);
1112 if (wpc.ioend)
1113 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1114 return ret;
1115 }
1116
1117 STATIC int
1118 xfs_vm_writepages(
1119 struct address_space *mapping,
1120 struct writeback_control *wbc)
1121 {
1122 struct xfs_writepage_ctx wpc = {
1123 .io_type = XFS_IO_INVALID,
1124 };
1125 int ret;
1126
1127 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1128 if (dax_mapping(mapping))
1129 return dax_writeback_mapping_range(mapping,
1130 xfs_find_bdev_for_inode(mapping->host), wbc);
1131
1132 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1133 if (wpc.ioend)
1134 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 return ret;
1136 }
1137
1138 /*
1139 * Called to move a page into cleanable state - and from there
1140 * to be released. The page should already be clean. We always
1141 * have buffer heads in this call.
1142 *
1143 * Returns 1 if the page is ok to release, 0 otherwise.
1144 */
1145 STATIC int
1146 xfs_vm_releasepage(
1147 struct page *page,
1148 gfp_t gfp_mask)
1149 {
1150 int delalloc, unwritten;
1151
1152 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1153
1154 /*
1155 * mm accommodates an old ext3 case where clean pages might not have had
1156 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 * ->releasepage() via shrink_active_list(). Conversely,
1158 * block_invalidatepage() can send pages that are still marked dirty
1159 * but otherwise have invalidated buffers.
1160 *
1161 * We've historically freed buffers on the latter. Instead, quietly
1162 * filter out all dirty pages to avoid spurious buffer state warnings.
1163 * This can likely be removed once shrink_active_list() is fixed.
1164 */
1165 if (PageDirty(page))
1166 return 0;
1167
1168 xfs_count_page_state(page, &delalloc, &unwritten);
1169
1170 if (WARN_ON_ONCE(delalloc))
1171 return 0;
1172 if (WARN_ON_ONCE(unwritten))
1173 return 0;
1174
1175 return try_to_free_buffers(page);
1176 }
1177
1178 /*
1179 * When we map a DIO buffer, we may need to pass flags to
1180 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1181 *
1182 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1183 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1184 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1185 * extending the file size. We won't know for sure until IO completion is run
1186 * and the actual max write offset is communicated to the IO completion
1187 * routine.
1188 */
1189 static void
1190 xfs_map_direct(
1191 struct inode *inode,
1192 struct buffer_head *bh_result,
1193 struct xfs_bmbt_irec *imap,
1194 xfs_off_t offset,
1195 bool is_cow)
1196 {
1197 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1198 xfs_off_t size = bh_result->b_size;
1199
1200 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1201 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1202 XFS_IO_OVERWRITE, imap);
1203
1204 if (ISUNWRITTEN(imap)) {
1205 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1206 set_buffer_defer_completion(bh_result);
1207 } else if (is_cow) {
1208 *flags |= XFS_DIO_FLAG_COW;
1209 set_buffer_defer_completion(bh_result);
1210 }
1211 if (offset + size > i_size_read(inode) || offset + size < 0) {
1212 *flags |= XFS_DIO_FLAG_APPEND;
1213 set_buffer_defer_completion(bh_result);
1214 }
1215 }
1216
1217 /*
1218 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1219 * is, so that we can avoid repeated get_blocks calls.
1220 *
1221 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1222 * for blocks beyond EOF must be marked new so that sub block regions can be
1223 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1224 * was just allocated or is unwritten, otherwise the callers would overwrite
1225 * existing data with zeros. Hence we have to split the mapping into a range up
1226 * to and including EOF, and a second mapping for beyond EOF.
1227 */
1228 static void
1229 xfs_map_trim_size(
1230 struct inode *inode,
1231 sector_t iblock,
1232 struct buffer_head *bh_result,
1233 struct xfs_bmbt_irec *imap,
1234 xfs_off_t offset,
1235 ssize_t size)
1236 {
1237 xfs_off_t mapping_size;
1238
1239 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1240 mapping_size <<= inode->i_blkbits;
1241
1242 ASSERT(mapping_size > 0);
1243 if (mapping_size > size)
1244 mapping_size = size;
1245 if (offset < i_size_read(inode) &&
1246 offset + mapping_size >= i_size_read(inode)) {
1247 /* limit mapping to block that spans EOF */
1248 mapping_size = roundup_64(i_size_read(inode) - offset,
1249 1 << inode->i_blkbits);
1250 }
1251 if (mapping_size > LONG_MAX)
1252 mapping_size = LONG_MAX;
1253
1254 bh_result->b_size = mapping_size;
1255 }
1256
1257 /* Bounce unaligned directio writes to the page cache. */
1258 static int
1259 xfs_bounce_unaligned_dio_write(
1260 struct xfs_inode *ip,
1261 xfs_fileoff_t offset_fsb,
1262 struct xfs_bmbt_irec *imap)
1263 {
1264 struct xfs_bmbt_irec irec;
1265 xfs_fileoff_t delta;
1266 bool shared;
1267 bool x;
1268 int error;
1269
1270 irec = *imap;
1271 if (offset_fsb > irec.br_startoff) {
1272 delta = offset_fsb - irec.br_startoff;
1273 irec.br_blockcount -= delta;
1274 irec.br_startblock += delta;
1275 irec.br_startoff = offset_fsb;
1276 }
1277 error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x);
1278 if (error)
1279 return error;
1280
1281 /*
1282 * We're here because we're trying to do a directio write to a
1283 * region that isn't aligned to a filesystem block. If any part
1284 * of the extent is shared, fall back to buffered mode to handle
1285 * the RMW. This is done by returning -EREMCHG ("remote addr
1286 * changed"), which is caught further up the call stack.
1287 */
1288 if (shared) {
1289 trace_xfs_reflink_bounce_dio_write(ip, imap);
1290 return -EREMCHG;
1291 }
1292 return 0;
1293 }
1294
1295 STATIC int
1296 __xfs_get_blocks(
1297 struct inode *inode,
1298 sector_t iblock,
1299 struct buffer_head *bh_result,
1300 int create,
1301 bool direct)
1302 {
1303 struct xfs_inode *ip = XFS_I(inode);
1304 struct xfs_mount *mp = ip->i_mount;
1305 xfs_fileoff_t offset_fsb, end_fsb;
1306 int error = 0;
1307 int lockmode = 0;
1308 struct xfs_bmbt_irec imap;
1309 int nimaps = 1;
1310 xfs_off_t offset;
1311 ssize_t size;
1312 int new = 0;
1313 bool is_cow = false;
1314 bool need_alloc = false;
1315
1316 BUG_ON(create && !direct);
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1323 size = bh_result->b_size;
1324
1325 if (!create && offset >= i_size_read(inode))
1326 return 0;
1327
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
1330 * a block mapping without an exclusive lock first.
1331 */
1332 lockmode = xfs_ilock_data_map_shared(ip);
1333
1334 ASSERT(offset <= mp->m_super->s_maxbytes);
1335 if (offset + size > mp->m_super->s_maxbytes)
1336 size = mp->m_super->s_maxbytes - offset;
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340 if (create && direct && xfs_is_reflink_inode(ip))
1341 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1342 &need_alloc);
1343 if (!is_cow) {
1344 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1345 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1346 /*
1347 * Truncate an overwrite extent if there's a pending CoW
1348 * reservation before the end of this extent. This
1349 * forces us to come back to get_blocks to take care of
1350 * the CoW.
1351 */
1352 if (create && direct && nimaps &&
1353 imap.br_startblock != HOLESTARTBLOCK &&
1354 imap.br_startblock != DELAYSTARTBLOCK &&
1355 !ISUNWRITTEN(&imap))
1356 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1357 &imap);
1358 }
1359 ASSERT(!need_alloc);
1360 if (error)
1361 goto out_unlock;
1362
1363 /*
1364 * The only time we can ever safely find delalloc blocks on direct I/O
1365 * is a dio write to post-eof speculative preallocation. All other
1366 * scenarios are indicative of a problem or misuse (such as mixing
1367 * direct and mapped I/O).
1368 *
1369 * The file may be unmapped by the time we get here so we cannot
1370 * reliably fail the I/O based on mapping. Instead, fail the I/O if this
1371 * is a read or a write within eof. Otherwise, carry on but warn as a
1372 * precuation if the file happens to be mapped.
1373 */
1374 if (direct && imap.br_startblock == DELAYSTARTBLOCK) {
1375 if (!create || offset < i_size_read(VFS_I(ip))) {
1376 WARN_ON_ONCE(1);
1377 error = -EIO;
1378 goto out_unlock;
1379 }
1380 WARN_ON_ONCE(mapping_mapped(VFS_I(ip)->i_mapping));
1381 }
1382
1383 /* for DAX, we convert unwritten extents directly */
1384 if (create &&
1385 (!nimaps ||
1386 (imap.br_startblock == HOLESTARTBLOCK ||
1387 imap.br_startblock == DELAYSTARTBLOCK) ||
1388 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1389 /*
1390 * xfs_iomap_write_direct() expects the shared lock. It
1391 * is unlocked on return.
1392 */
1393 if (lockmode == XFS_ILOCK_EXCL)
1394 xfs_ilock_demote(ip, lockmode);
1395
1396 error = xfs_iomap_write_direct(ip, offset, size,
1397 &imap, nimaps);
1398 if (error)
1399 return error;
1400 new = 1;
1401
1402 trace_xfs_get_blocks_alloc(ip, offset, size,
1403 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1404 : XFS_IO_DELALLOC, &imap);
1405 } else if (nimaps) {
1406 trace_xfs_get_blocks_found(ip, offset, size,
1407 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1408 : XFS_IO_OVERWRITE, &imap);
1409 xfs_iunlock(ip, lockmode);
1410 } else {
1411 trace_xfs_get_blocks_notfound(ip, offset, size);
1412 goto out_unlock;
1413 }
1414
1415 if (IS_DAX(inode) && create) {
1416 ASSERT(!ISUNWRITTEN(&imap));
1417 /* zeroing is not needed at a higher layer */
1418 new = 0;
1419 }
1420
1421 /* trim mapping down to size requested */
1422 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1423
1424 /*
1425 * For unwritten extents do not report a disk address in the buffered
1426 * read case (treat as if we're reading into a hole).
1427 */
1428 if (imap.br_startblock != HOLESTARTBLOCK &&
1429 imap.br_startblock != DELAYSTARTBLOCK &&
1430 (create || !ISUNWRITTEN(&imap))) {
1431 if (create && direct && !is_cow) {
1432 error = xfs_bounce_unaligned_dio_write(ip, offset_fsb,
1433 &imap);
1434 if (error)
1435 return error;
1436 }
1437
1438 xfs_map_buffer(inode, bh_result, &imap, offset);
1439 if (ISUNWRITTEN(&imap))
1440 set_buffer_unwritten(bh_result);
1441 /* direct IO needs special help */
1442 if (create)
1443 xfs_map_direct(inode, bh_result, &imap, offset, is_cow);
1444 }
1445
1446 /*
1447 * If this is a realtime file, data may be on a different device.
1448 * to that pointed to from the buffer_head b_bdev currently.
1449 */
1450 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1451
1452 /*
1453 * If we previously allocated a block out beyond eof and we are now
1454 * coming back to use it then we will need to flag it as new even if it
1455 * has a disk address.
1456 *
1457 * With sub-block writes into unwritten extents we also need to mark
1458 * the buffer as new so that the unwritten parts of the buffer gets
1459 * correctly zeroed.
1460 */
1461 if (create &&
1462 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1463 (offset >= i_size_read(inode)) ||
1464 (new || ISUNWRITTEN(&imap))))
1465 set_buffer_new(bh_result);
1466
1467 return 0;
1468
1469 out_unlock:
1470 xfs_iunlock(ip, lockmode);
1471 return error;
1472 }
1473
1474 int
1475 xfs_get_blocks(
1476 struct inode *inode,
1477 sector_t iblock,
1478 struct buffer_head *bh_result,
1479 int create)
1480 {
1481 return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1482 }
1483
1484 int
1485 xfs_get_blocks_direct(
1486 struct inode *inode,
1487 sector_t iblock,
1488 struct buffer_head *bh_result,
1489 int create)
1490 {
1491 return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1492 }
1493
1494 /*
1495 * Complete a direct I/O write request.
1496 *
1497 * xfs_map_direct passes us some flags in the private data to tell us what to
1498 * do. If no flags are set, then the write IO is an overwrite wholly within
1499 * the existing allocated file size and so there is nothing for us to do.
1500 *
1501 * Note that in this case the completion can be called in interrupt context,
1502 * whereas if we have flags set we will always be called in task context
1503 * (i.e. from a workqueue).
1504 */
1505 int
1506 xfs_end_io_direct_write(
1507 struct kiocb *iocb,
1508 loff_t offset,
1509 ssize_t size,
1510 void *private)
1511 {
1512 struct inode *inode = file_inode(iocb->ki_filp);
1513 struct xfs_inode *ip = XFS_I(inode);
1514 uintptr_t flags = (uintptr_t)private;
1515 int error = 0;
1516
1517 trace_xfs_end_io_direct_write(ip, offset, size);
1518
1519 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1520 return -EIO;
1521
1522 if (size <= 0)
1523 return size;
1524
1525 /*
1526 * The flags tell us whether we are doing unwritten extent conversions
1527 * or an append transaction that updates the on-disk file size. These
1528 * cases are the only cases where we should *potentially* be needing
1529 * to update the VFS inode size.
1530 */
1531 if (flags == 0) {
1532 ASSERT(offset + size <= i_size_read(inode));
1533 return 0;
1534 }
1535
1536 /*
1537 * We need to update the in-core inode size here so that we don't end up
1538 * with the on-disk inode size being outside the in-core inode size. We
1539 * have no other method of updating EOF for AIO, so always do it here
1540 * if necessary.
1541 *
1542 * We need to lock the test/set EOF update as we can be racing with
1543 * other IO completions here to update the EOF. Failing to serialise
1544 * here can result in EOF moving backwards and Bad Things Happen when
1545 * that occurs.
1546 */
1547 spin_lock(&ip->i_flags_lock);
1548 if (offset + size > i_size_read(inode))
1549 i_size_write(inode, offset + size);
1550 spin_unlock(&ip->i_flags_lock);
1551
1552 if (flags & XFS_DIO_FLAG_COW)
1553 error = xfs_reflink_end_cow(ip, offset, size);
1554 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1555 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1556
1557 error = xfs_iomap_write_unwritten(ip, offset, size);
1558 }
1559 if (flags & XFS_DIO_FLAG_APPEND) {
1560 trace_xfs_end_io_direct_write_append(ip, offset, size);
1561
1562 error = xfs_setfilesize(ip, offset, size);
1563 }
1564
1565 return error;
1566 }
1567
1568 STATIC ssize_t
1569 xfs_vm_direct_IO(
1570 struct kiocb *iocb,
1571 struct iov_iter *iter)
1572 {
1573 /*
1574 * We just need the method present so that open/fcntl allow direct I/O.
1575 */
1576 return -EINVAL;
1577 }
1578
1579 STATIC sector_t
1580 xfs_vm_bmap(
1581 struct address_space *mapping,
1582 sector_t block)
1583 {
1584 struct inode *inode = (struct inode *)mapping->host;
1585 struct xfs_inode *ip = XFS_I(inode);
1586
1587 trace_xfs_vm_bmap(XFS_I(inode));
1588 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1589
1590 /*
1591 * The swap code (ab-)uses ->bmap to get a block mapping and then
1592 * bypasseѕ the file system for actual I/O. We really can't allow
1593 * that on reflinks inodes, so we have to skip out here. And yes,
1594 * 0 is the magic code for a bmap error..
1595 */
1596 if (xfs_is_reflink_inode(ip)) {
1597 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1598 return 0;
1599 }
1600 filemap_write_and_wait(mapping);
1601 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1602 return generic_block_bmap(mapping, block, xfs_get_blocks);
1603 }
1604
1605 STATIC int
1606 xfs_vm_readpage(
1607 struct file *unused,
1608 struct page *page)
1609 {
1610 trace_xfs_vm_readpage(page->mapping->host, 1);
1611 return mpage_readpage(page, xfs_get_blocks);
1612 }
1613
1614 STATIC int
1615 xfs_vm_readpages(
1616 struct file *unused,
1617 struct address_space *mapping,
1618 struct list_head *pages,
1619 unsigned nr_pages)
1620 {
1621 trace_xfs_vm_readpages(mapping->host, nr_pages);
1622 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1623 }
1624
1625 /*
1626 * This is basically a copy of __set_page_dirty_buffers() with one
1627 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1628 * dirty, we'll never be able to clean them because we don't write buffers
1629 * beyond EOF, and that means we can't invalidate pages that span EOF
1630 * that have been marked dirty. Further, the dirty state can leak into
1631 * the file interior if the file is extended, resulting in all sorts of
1632 * bad things happening as the state does not match the underlying data.
1633 *
1634 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1635 * this only exist because of bufferheads and how the generic code manages them.
1636 */
1637 STATIC int
1638 xfs_vm_set_page_dirty(
1639 struct page *page)
1640 {
1641 struct address_space *mapping = page->mapping;
1642 struct inode *inode = mapping->host;
1643 loff_t end_offset;
1644 loff_t offset;
1645 int newly_dirty;
1646
1647 if (unlikely(!mapping))
1648 return !TestSetPageDirty(page);
1649
1650 end_offset = i_size_read(inode);
1651 offset = page_offset(page);
1652
1653 spin_lock(&mapping->private_lock);
1654 if (page_has_buffers(page)) {
1655 struct buffer_head *head = page_buffers(page);
1656 struct buffer_head *bh = head;
1657
1658 do {
1659 if (offset < end_offset)
1660 set_buffer_dirty(bh);
1661 bh = bh->b_this_page;
1662 offset += 1 << inode->i_blkbits;
1663 } while (bh != head);
1664 }
1665 /*
1666 * Lock out page->mem_cgroup migration to keep PageDirty
1667 * synchronized with per-memcg dirty page counters.
1668 */
1669 lock_page_memcg(page);
1670 newly_dirty = !TestSetPageDirty(page);
1671 spin_unlock(&mapping->private_lock);
1672
1673 if (newly_dirty) {
1674 /* sigh - __set_page_dirty() is static, so copy it here, too */
1675 unsigned long flags;
1676
1677 spin_lock_irqsave(&mapping->tree_lock, flags);
1678 if (page->mapping) { /* Race with truncate? */
1679 WARN_ON_ONCE(!PageUptodate(page));
1680 account_page_dirtied(page, mapping);
1681 radix_tree_tag_set(&mapping->page_tree,
1682 page_index(page), PAGECACHE_TAG_DIRTY);
1683 }
1684 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1685 }
1686 unlock_page_memcg(page);
1687 if (newly_dirty)
1688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1689 return newly_dirty;
1690 }
1691
1692 const struct address_space_operations xfs_address_space_operations = {
1693 .readpage = xfs_vm_readpage,
1694 .readpages = xfs_vm_readpages,
1695 .writepage = xfs_vm_writepage,
1696 .writepages = xfs_vm_writepages,
1697 .set_page_dirty = xfs_vm_set_page_dirty,
1698 .releasepage = xfs_vm_releasepage,
1699 .invalidatepage = xfs_vm_invalidatepage,
1700 .bmap = xfs_vm_bmap,
1701 .direct_IO = xfs_vm_direct_IO,
1702 .migratepage = buffer_migrate_page,
1703 .is_partially_uptodate = block_is_partially_uptodate,
1704 .error_remove_page = generic_error_remove_page,
1705 };