]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_aops.c
xfs: bufferhead chains are invalid after end_page_writeback
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
42
43 /*
44 * structure owned by writepages passed to individual writepage calls
45 */
46 struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52 };
53
54 void
55 xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
58 int *unwritten)
59 {
60 struct buffer_head *bh, *head;
61
62 *delalloc = *unwritten = 0;
63
64 bh = head = page_buffers(page);
65 do {
66 if (buffer_unwritten(bh))
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71 }
72
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 struct inode *inode)
76 {
77 struct xfs_inode *ip = XFS_I(inode);
78 struct xfs_mount *mp = ip->i_mount;
79
80 if (XFS_IS_REALTIME_INODE(ip))
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84 }
85
86 /*
87 * We're now finished for good with this page. Update the page state via the
88 * associated buffer_heads, paying attention to the start and end offsets that
89 * we need to process on the page.
90 *
91 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
92 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
93 * the page at all, as we may be racing with memory reclaim and it can free both
94 * the bufferhead chain and the page as it will see the page as clean and
95 * unused.
96 */
97 static void
98 xfs_finish_page_writeback(
99 struct inode *inode,
100 struct bio_vec *bvec,
101 int error)
102 {
103 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
104 struct buffer_head *head, *bh, *next;
105 unsigned int off = 0;
106 unsigned int bsize;
107
108 ASSERT(bvec->bv_offset < PAGE_SIZE);
109 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
110 ASSERT(end < PAGE_SIZE);
111 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
112
113 bh = head = page_buffers(bvec->bv_page);
114
115 bsize = bh->b_size;
116 do {
117 next = bh->b_this_page;
118 if (off < bvec->bv_offset)
119 goto next_bh;
120 if (off > end)
121 break;
122 bh->b_end_io(bh, !error);
123 next_bh:
124 off += bsize;
125 } while ((bh = next) != head);
126 }
127
128 /*
129 * We're now finished for good with this ioend structure. Update the page
130 * state, release holds on bios, and finally free up memory. Do not use the
131 * ioend after this.
132 */
133 STATIC void
134 xfs_destroy_ioend(
135 struct xfs_ioend *ioend,
136 int error)
137 {
138 struct inode *inode = ioend->io_inode;
139 struct bio *last = ioend->io_bio;
140 struct bio *bio, *next;
141
142 for (bio = &ioend->io_inline_bio; bio; bio = next) {
143 struct bio_vec *bvec;
144 int i;
145
146 /*
147 * For the last bio, bi_private points to the ioend, so we
148 * need to explicitly end the iteration here.
149 */
150 if (bio == last)
151 next = NULL;
152 else
153 next = bio->bi_private;
154
155 /* walk each page on bio, ending page IO on them */
156 bio_for_each_segment_all(bvec, bio, i)
157 xfs_finish_page_writeback(inode, bvec, error);
158
159 bio_put(bio);
160 }
161 }
162
163 /*
164 * Fast and loose check if this write could update the on-disk inode size.
165 */
166 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
167 {
168 return ioend->io_offset + ioend->io_size >
169 XFS_I(ioend->io_inode)->i_d.di_size;
170 }
171
172 STATIC int
173 xfs_setfilesize_trans_alloc(
174 struct xfs_ioend *ioend)
175 {
176 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
177 struct xfs_trans *tp;
178 int error;
179
180 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
181 if (error)
182 return error;
183
184 ioend->io_append_trans = tp;
185
186 /*
187 * We may pass freeze protection with a transaction. So tell lockdep
188 * we released it.
189 */
190 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
191 /*
192 * We hand off the transaction to the completion thread now, so
193 * clear the flag here.
194 */
195 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
196 return 0;
197 }
198
199 /*
200 * Update on-disk file size now that data has been written to disk.
201 */
202 STATIC int
203 xfs_setfilesize(
204 struct xfs_inode *ip,
205 struct xfs_trans *tp,
206 xfs_off_t offset,
207 size_t size)
208 {
209 xfs_fsize_t isize;
210
211 xfs_ilock(ip, XFS_ILOCK_EXCL);
212 isize = xfs_new_eof(ip, offset + size);
213 if (!isize) {
214 xfs_iunlock(ip, XFS_ILOCK_EXCL);
215 xfs_trans_cancel(tp);
216 return 0;
217 }
218
219 trace_xfs_setfilesize(ip, offset, size);
220
221 ip->i_d.di_size = isize;
222 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
223 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
224
225 return xfs_trans_commit(tp);
226 }
227
228 STATIC int
229 xfs_setfilesize_ioend(
230 struct xfs_ioend *ioend,
231 int error)
232 {
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
234 struct xfs_trans *tp = ioend->io_append_trans;
235
236 /*
237 * The transaction may have been allocated in the I/O submission thread,
238 * thus we need to mark ourselves as being in a transaction manually.
239 * Similarly for freeze protection.
240 */
241 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
242 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
243
244 /* we abort the update if there was an IO error */
245 if (error) {
246 xfs_trans_cancel(tp);
247 return error;
248 }
249
250 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
251 }
252
253 /*
254 * IO write completion.
255 */
256 STATIC void
257 xfs_end_io(
258 struct work_struct *work)
259 {
260 struct xfs_ioend *ioend =
261 container_of(work, struct xfs_ioend, io_work);
262 struct xfs_inode *ip = XFS_I(ioend->io_inode);
263 int error = ioend->io_bio->bi_error;
264
265 /*
266 * Set an error if the mount has shut down and proceed with end I/O
267 * processing so it can perform whatever cleanups are necessary.
268 */
269 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
270 error = -EIO;
271
272 /*
273 * For unwritten extents we need to issue transactions to convert a
274 * range to normal written extens after the data I/O has finished.
275 * Detecting and handling completion IO errors is done individually
276 * for each case as different cleanup operations need to be performed
277 * on error.
278 */
279 if (ioend->io_type == XFS_IO_UNWRITTEN) {
280 if (error)
281 goto done;
282 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
283 ioend->io_size);
284 } else if (ioend->io_append_trans) {
285 error = xfs_setfilesize_ioend(ioend, error);
286 } else {
287 ASSERT(!xfs_ioend_is_append(ioend));
288 }
289
290 done:
291 xfs_destroy_ioend(ioend, error);
292 }
293
294 STATIC void
295 xfs_end_bio(
296 struct bio *bio)
297 {
298 struct xfs_ioend *ioend = bio->bi_private;
299 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
300
301 if (ioend->io_type == XFS_IO_UNWRITTEN)
302 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
303 else if (ioend->io_append_trans)
304 queue_work(mp->m_data_workqueue, &ioend->io_work);
305 else
306 xfs_destroy_ioend(ioend, bio->bi_error);
307 }
308
309 STATIC int
310 xfs_map_blocks(
311 struct inode *inode,
312 loff_t offset,
313 struct xfs_bmbt_irec *imap,
314 int type)
315 {
316 struct xfs_inode *ip = XFS_I(inode);
317 struct xfs_mount *mp = ip->i_mount;
318 ssize_t count = 1 << inode->i_blkbits;
319 xfs_fileoff_t offset_fsb, end_fsb;
320 int error = 0;
321 int bmapi_flags = XFS_BMAPI_ENTIRE;
322 int nimaps = 1;
323
324 if (XFS_FORCED_SHUTDOWN(mp))
325 return -EIO;
326
327 if (type == XFS_IO_UNWRITTEN)
328 bmapi_flags |= XFS_BMAPI_IGSTATE;
329
330 xfs_ilock(ip, XFS_ILOCK_SHARED);
331 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
332 (ip->i_df.if_flags & XFS_IFEXTENTS));
333 ASSERT(offset <= mp->m_super->s_maxbytes);
334
335 if (offset + count > mp->m_super->s_maxbytes)
336 count = mp->m_super->s_maxbytes - offset;
337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
339 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
340 imap, &nimaps, bmapi_flags);
341 xfs_iunlock(ip, XFS_ILOCK_SHARED);
342
343 if (error)
344 return error;
345
346 if (type == XFS_IO_DELALLOC &&
347 (!nimaps || isnullstartblock(imap->br_startblock))) {
348 error = xfs_iomap_write_allocate(ip, offset, imap);
349 if (!error)
350 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
351 return error;
352 }
353
354 #ifdef DEBUG
355 if (type == XFS_IO_UNWRITTEN) {
356 ASSERT(nimaps);
357 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
358 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
359 }
360 #endif
361 if (nimaps)
362 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
363 return 0;
364 }
365
366 STATIC bool
367 xfs_imap_valid(
368 struct inode *inode,
369 struct xfs_bmbt_irec *imap,
370 xfs_off_t offset)
371 {
372 offset >>= inode->i_blkbits;
373
374 return offset >= imap->br_startoff &&
375 offset < imap->br_startoff + imap->br_blockcount;
376 }
377
378 STATIC void
379 xfs_start_buffer_writeback(
380 struct buffer_head *bh)
381 {
382 ASSERT(buffer_mapped(bh));
383 ASSERT(buffer_locked(bh));
384 ASSERT(!buffer_delay(bh));
385 ASSERT(!buffer_unwritten(bh));
386
387 mark_buffer_async_write(bh);
388 set_buffer_uptodate(bh);
389 clear_buffer_dirty(bh);
390 }
391
392 STATIC void
393 xfs_start_page_writeback(
394 struct page *page,
395 int clear_dirty)
396 {
397 ASSERT(PageLocked(page));
398 ASSERT(!PageWriteback(page));
399
400 /*
401 * if the page was not fully cleaned, we need to ensure that the higher
402 * layers come back to it correctly. That means we need to keep the page
403 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
404 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
405 * write this page in this writeback sweep will be made.
406 */
407 if (clear_dirty) {
408 clear_page_dirty_for_io(page);
409 set_page_writeback(page);
410 } else
411 set_page_writeback_keepwrite(page);
412
413 unlock_page(page);
414 }
415
416 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
417 {
418 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
419 }
420
421 /*
422 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
423 * it, and we submit that bio. The ioend may be used for multiple bio
424 * submissions, so we only want to allocate an append transaction for the ioend
425 * once. In the case of multiple bio submission, each bio will take an IO
426 * reference to the ioend to ensure that the ioend completion is only done once
427 * all bios have been submitted and the ioend is really done.
428 *
429 * If @fail is non-zero, it means that we have a situation where some part of
430 * the submission process has failed after we have marked paged for writeback
431 * and unlocked them. In this situation, we need to fail the bio and ioend
432 * rather than submit it to IO. This typically only happens on a filesystem
433 * shutdown.
434 */
435 STATIC int
436 xfs_submit_ioend(
437 struct writeback_control *wbc,
438 struct xfs_ioend *ioend,
439 int status)
440 {
441 /* Reserve log space if we might write beyond the on-disk inode size. */
442 if (!status &&
443 ioend->io_type != XFS_IO_UNWRITTEN &&
444 xfs_ioend_is_append(ioend) &&
445 !ioend->io_append_trans)
446 status = xfs_setfilesize_trans_alloc(ioend);
447
448 ioend->io_bio->bi_private = ioend;
449 ioend->io_bio->bi_end_io = xfs_end_bio;
450
451 /*
452 * If we are failing the IO now, just mark the ioend with an
453 * error and finish it. This will run IO completion immediately
454 * as there is only one reference to the ioend at this point in
455 * time.
456 */
457 if (status) {
458 ioend->io_bio->bi_error = status;
459 bio_endio(ioend->io_bio);
460 return status;
461 }
462
463 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
464 ioend->io_bio);
465 return 0;
466 }
467
468 static void
469 xfs_init_bio_from_bh(
470 struct bio *bio,
471 struct buffer_head *bh)
472 {
473 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
474 bio->bi_bdev = bh->b_bdev;
475 }
476
477 static struct xfs_ioend *
478 xfs_alloc_ioend(
479 struct inode *inode,
480 unsigned int type,
481 xfs_off_t offset,
482 struct buffer_head *bh)
483 {
484 struct xfs_ioend *ioend;
485 struct bio *bio;
486
487 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
488 xfs_init_bio_from_bh(bio, bh);
489
490 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
491 INIT_LIST_HEAD(&ioend->io_list);
492 ioend->io_type = type;
493 ioend->io_inode = inode;
494 ioend->io_size = 0;
495 ioend->io_offset = offset;
496 INIT_WORK(&ioend->io_work, xfs_end_io);
497 ioend->io_append_trans = NULL;
498 ioend->io_bio = bio;
499 return ioend;
500 }
501
502 /*
503 * Allocate a new bio, and chain the old bio to the new one.
504 *
505 * Note that we have to do perform the chaining in this unintuitive order
506 * so that the bi_private linkage is set up in the right direction for the
507 * traversal in xfs_destroy_ioend().
508 */
509 static void
510 xfs_chain_bio(
511 struct xfs_ioend *ioend,
512 struct writeback_control *wbc,
513 struct buffer_head *bh)
514 {
515 struct bio *new;
516
517 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
518 xfs_init_bio_from_bh(new, bh);
519
520 bio_chain(ioend->io_bio, new);
521 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
522 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
523 ioend->io_bio);
524 ioend->io_bio = new;
525 }
526
527 /*
528 * Test to see if we've been building up a completion structure for
529 * earlier buffers -- if so, we try to append to this ioend if we
530 * can, otherwise we finish off any current ioend and start another.
531 * Return the ioend we finished off so that the caller can submit it
532 * once it has finished processing the dirty page.
533 */
534 STATIC void
535 xfs_add_to_ioend(
536 struct inode *inode,
537 struct buffer_head *bh,
538 xfs_off_t offset,
539 struct xfs_writepage_ctx *wpc,
540 struct writeback_control *wbc,
541 struct list_head *iolist)
542 {
543 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
544 bh->b_blocknr != wpc->last_block + 1 ||
545 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
546 if (wpc->ioend)
547 list_add(&wpc->ioend->io_list, iolist);
548 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
549 }
550
551 /*
552 * If the buffer doesn't fit into the bio we need to allocate a new
553 * one. This shouldn't happen more than once for a given buffer.
554 */
555 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
556 xfs_chain_bio(wpc->ioend, wbc, bh);
557
558 wpc->ioend->io_size += bh->b_size;
559 wpc->last_block = bh->b_blocknr;
560 xfs_start_buffer_writeback(bh);
561 }
562
563 STATIC void
564 xfs_map_buffer(
565 struct inode *inode,
566 struct buffer_head *bh,
567 struct xfs_bmbt_irec *imap,
568 xfs_off_t offset)
569 {
570 sector_t bn;
571 struct xfs_mount *m = XFS_I(inode)->i_mount;
572 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
573 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
574
575 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
576 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
577
578 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
579 ((offset - iomap_offset) >> inode->i_blkbits);
580
581 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
582
583 bh->b_blocknr = bn;
584 set_buffer_mapped(bh);
585 }
586
587 STATIC void
588 xfs_map_at_offset(
589 struct inode *inode,
590 struct buffer_head *bh,
591 struct xfs_bmbt_irec *imap,
592 xfs_off_t offset)
593 {
594 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
595 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
596
597 xfs_map_buffer(inode, bh, imap, offset);
598 set_buffer_mapped(bh);
599 clear_buffer_delay(bh);
600 clear_buffer_unwritten(bh);
601 }
602
603 /*
604 * Test if a given page contains at least one buffer of a given @type.
605 * If @check_all_buffers is true, then we walk all the buffers in the page to
606 * try to find one of the type passed in. If it is not set, then the caller only
607 * needs to check the first buffer on the page for a match.
608 */
609 STATIC bool
610 xfs_check_page_type(
611 struct page *page,
612 unsigned int type,
613 bool check_all_buffers)
614 {
615 struct buffer_head *bh;
616 struct buffer_head *head;
617
618 if (PageWriteback(page))
619 return false;
620 if (!page->mapping)
621 return false;
622 if (!page_has_buffers(page))
623 return false;
624
625 bh = head = page_buffers(page);
626 do {
627 if (buffer_unwritten(bh)) {
628 if (type == XFS_IO_UNWRITTEN)
629 return true;
630 } else if (buffer_delay(bh)) {
631 if (type == XFS_IO_DELALLOC)
632 return true;
633 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
634 if (type == XFS_IO_OVERWRITE)
635 return true;
636 }
637
638 /* If we are only checking the first buffer, we are done now. */
639 if (!check_all_buffers)
640 break;
641 } while ((bh = bh->b_this_page) != head);
642
643 return false;
644 }
645
646 STATIC void
647 xfs_vm_invalidatepage(
648 struct page *page,
649 unsigned int offset,
650 unsigned int length)
651 {
652 trace_xfs_invalidatepage(page->mapping->host, page, offset,
653 length);
654 block_invalidatepage(page, offset, length);
655 }
656
657 /*
658 * If the page has delalloc buffers on it, we need to punch them out before we
659 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
660 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
661 * is done on that same region - the delalloc extent is returned when none is
662 * supposed to be there.
663 *
664 * We prevent this by truncating away the delalloc regions on the page before
665 * invalidating it. Because they are delalloc, we can do this without needing a
666 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
667 * truncation without a transaction as there is no space left for block
668 * reservation (typically why we see a ENOSPC in writeback).
669 *
670 * This is not a performance critical path, so for now just do the punching a
671 * buffer head at a time.
672 */
673 STATIC void
674 xfs_aops_discard_page(
675 struct page *page)
676 {
677 struct inode *inode = page->mapping->host;
678 struct xfs_inode *ip = XFS_I(inode);
679 struct buffer_head *bh, *head;
680 loff_t offset = page_offset(page);
681
682 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
683 goto out_invalidate;
684
685 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
686 goto out_invalidate;
687
688 xfs_alert(ip->i_mount,
689 "page discard on page %p, inode 0x%llx, offset %llu.",
690 page, ip->i_ino, offset);
691
692 xfs_ilock(ip, XFS_ILOCK_EXCL);
693 bh = head = page_buffers(page);
694 do {
695 int error;
696 xfs_fileoff_t start_fsb;
697
698 if (!buffer_delay(bh))
699 goto next_buffer;
700
701 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
702 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
703 if (error) {
704 /* something screwed, just bail */
705 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
706 xfs_alert(ip->i_mount,
707 "page discard unable to remove delalloc mapping.");
708 }
709 break;
710 }
711 next_buffer:
712 offset += 1 << inode->i_blkbits;
713
714 } while ((bh = bh->b_this_page) != head);
715
716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
717 out_invalidate:
718 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
719 return;
720 }
721
722 /*
723 * We implement an immediate ioend submission policy here to avoid needing to
724 * chain multiple ioends and hence nest mempool allocations which can violate
725 * forward progress guarantees we need to provide. The current ioend we are
726 * adding buffers to is cached on the writepage context, and if the new buffer
727 * does not append to the cached ioend it will create a new ioend and cache that
728 * instead.
729 *
730 * If a new ioend is created and cached, the old ioend is returned and queued
731 * locally for submission once the entire page is processed or an error has been
732 * detected. While ioends are submitted immediately after they are completed,
733 * batching optimisations are provided by higher level block plugging.
734 *
735 * At the end of a writeback pass, there will be a cached ioend remaining on the
736 * writepage context that the caller will need to submit.
737 */
738 static int
739 xfs_writepage_map(
740 struct xfs_writepage_ctx *wpc,
741 struct writeback_control *wbc,
742 struct inode *inode,
743 struct page *page,
744 loff_t offset,
745 __uint64_t end_offset)
746 {
747 LIST_HEAD(submit_list);
748 struct xfs_ioend *ioend, *next;
749 struct buffer_head *bh, *head;
750 ssize_t len = 1 << inode->i_blkbits;
751 int error = 0;
752 int count = 0;
753 int uptodate = 1;
754
755 bh = head = page_buffers(page);
756 offset = page_offset(page);
757 do {
758 if (offset >= end_offset)
759 break;
760 if (!buffer_uptodate(bh))
761 uptodate = 0;
762
763 /*
764 * set_page_dirty dirties all buffers in a page, independent
765 * of their state. The dirty state however is entirely
766 * meaningless for holes (!mapped && uptodate), so skip
767 * buffers covering holes here.
768 */
769 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
770 wpc->imap_valid = false;
771 continue;
772 }
773
774 if (buffer_unwritten(bh)) {
775 if (wpc->io_type != XFS_IO_UNWRITTEN) {
776 wpc->io_type = XFS_IO_UNWRITTEN;
777 wpc->imap_valid = false;
778 }
779 } else if (buffer_delay(bh)) {
780 if (wpc->io_type != XFS_IO_DELALLOC) {
781 wpc->io_type = XFS_IO_DELALLOC;
782 wpc->imap_valid = false;
783 }
784 } else if (buffer_uptodate(bh)) {
785 if (wpc->io_type != XFS_IO_OVERWRITE) {
786 wpc->io_type = XFS_IO_OVERWRITE;
787 wpc->imap_valid = false;
788 }
789 } else {
790 if (PageUptodate(page))
791 ASSERT(buffer_mapped(bh));
792 /*
793 * This buffer is not uptodate and will not be
794 * written to disk. Ensure that we will put any
795 * subsequent writeable buffers into a new
796 * ioend.
797 */
798 wpc->imap_valid = false;
799 continue;
800 }
801
802 if (wpc->imap_valid)
803 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
804 offset);
805 if (!wpc->imap_valid) {
806 error = xfs_map_blocks(inode, offset, &wpc->imap,
807 wpc->io_type);
808 if (error)
809 goto out;
810 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
811 offset);
812 }
813 if (wpc->imap_valid) {
814 lock_buffer(bh);
815 if (wpc->io_type != XFS_IO_OVERWRITE)
816 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
817 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
818 count++;
819 }
820
821 } while (offset += len, ((bh = bh->b_this_page) != head));
822
823 if (uptodate && bh == head)
824 SetPageUptodate(page);
825
826 ASSERT(wpc->ioend || list_empty(&submit_list));
827
828 out:
829 /*
830 * On error, we have to fail the ioend here because we have locked
831 * buffers in the ioend. If we don't do this, we'll deadlock
832 * invalidating the page as that tries to lock the buffers on the page.
833 * Also, because we may have set pages under writeback, we have to make
834 * sure we run IO completion to mark the error state of the IO
835 * appropriately, so we can't cancel the ioend directly here. That means
836 * we have to mark this page as under writeback if we included any
837 * buffers from it in the ioend chain so that completion treats it
838 * correctly.
839 *
840 * If we didn't include the page in the ioend, the on error we can
841 * simply discard and unlock it as there are no other users of the page
842 * or it's buffers right now. The caller will still need to trigger
843 * submission of outstanding ioends on the writepage context so they are
844 * treated correctly on error.
845 */
846 if (count) {
847 xfs_start_page_writeback(page, !error);
848
849 /*
850 * Preserve the original error if there was one, otherwise catch
851 * submission errors here and propagate into subsequent ioend
852 * submissions.
853 */
854 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
855 int error2;
856
857 list_del_init(&ioend->io_list);
858 error2 = xfs_submit_ioend(wbc, ioend, error);
859 if (error2 && !error)
860 error = error2;
861 }
862 } else if (error) {
863 xfs_aops_discard_page(page);
864 ClearPageUptodate(page);
865 unlock_page(page);
866 } else {
867 /*
868 * We can end up here with no error and nothing to write if we
869 * race with a partial page truncate on a sub-page block sized
870 * filesystem. In that case we need to mark the page clean.
871 */
872 xfs_start_page_writeback(page, 1);
873 end_page_writeback(page);
874 }
875
876 mapping_set_error(page->mapping, error);
877 return error;
878 }
879
880 /*
881 * Write out a dirty page.
882 *
883 * For delalloc space on the page we need to allocate space and flush it.
884 * For unwritten space on the page we need to start the conversion to
885 * regular allocated space.
886 * For any other dirty buffer heads on the page we should flush them.
887 */
888 STATIC int
889 xfs_do_writepage(
890 struct page *page,
891 struct writeback_control *wbc,
892 void *data)
893 {
894 struct xfs_writepage_ctx *wpc = data;
895 struct inode *inode = page->mapping->host;
896 loff_t offset;
897 __uint64_t end_offset;
898 pgoff_t end_index;
899
900 trace_xfs_writepage(inode, page, 0, 0);
901
902 ASSERT(page_has_buffers(page));
903
904 /*
905 * Refuse to write the page out if we are called from reclaim context.
906 *
907 * This avoids stack overflows when called from deeply used stacks in
908 * random callers for direct reclaim or memcg reclaim. We explicitly
909 * allow reclaim from kswapd as the stack usage there is relatively low.
910 *
911 * This should never happen except in the case of a VM regression so
912 * warn about it.
913 */
914 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
915 PF_MEMALLOC))
916 goto redirty;
917
918 /*
919 * Given that we do not allow direct reclaim to call us, we should
920 * never be called while in a filesystem transaction.
921 */
922 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
923 goto redirty;
924
925 /*
926 * Is this page beyond the end of the file?
927 *
928 * The page index is less than the end_index, adjust the end_offset
929 * to the highest offset that this page should represent.
930 * -----------------------------------------------------
931 * | file mapping | <EOF> |
932 * -----------------------------------------------------
933 * | Page ... | Page N-2 | Page N-1 | Page N | |
934 * ^--------------------------------^----------|--------
935 * | desired writeback range | see else |
936 * ---------------------------------^------------------|
937 */
938 offset = i_size_read(inode);
939 end_index = offset >> PAGE_SHIFT;
940 if (page->index < end_index)
941 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
942 else {
943 /*
944 * Check whether the page to write out is beyond or straddles
945 * i_size or not.
946 * -------------------------------------------------------
947 * | file mapping | <EOF> |
948 * -------------------------------------------------------
949 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
950 * ^--------------------------------^-----------|---------
951 * | | Straddles |
952 * ---------------------------------^-----------|--------|
953 */
954 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
955
956 /*
957 * Skip the page if it is fully outside i_size, e.g. due to a
958 * truncate operation that is in progress. We must redirty the
959 * page so that reclaim stops reclaiming it. Otherwise
960 * xfs_vm_releasepage() is called on it and gets confused.
961 *
962 * Note that the end_index is unsigned long, it would overflow
963 * if the given offset is greater than 16TB on 32-bit system
964 * and if we do check the page is fully outside i_size or not
965 * via "if (page->index >= end_index + 1)" as "end_index + 1"
966 * will be evaluated to 0. Hence this page will be redirtied
967 * and be written out repeatedly which would result in an
968 * infinite loop, the user program that perform this operation
969 * will hang. Instead, we can verify this situation by checking
970 * if the page to write is totally beyond the i_size or if it's
971 * offset is just equal to the EOF.
972 */
973 if (page->index > end_index ||
974 (page->index == end_index && offset_into_page == 0))
975 goto redirty;
976
977 /*
978 * The page straddles i_size. It must be zeroed out on each
979 * and every writepage invocation because it may be mmapped.
980 * "A file is mapped in multiples of the page size. For a file
981 * that is not a multiple of the page size, the remaining
982 * memory is zeroed when mapped, and writes to that region are
983 * not written out to the file."
984 */
985 zero_user_segment(page, offset_into_page, PAGE_SIZE);
986
987 /* Adjust the end_offset to the end of file */
988 end_offset = offset;
989 }
990
991 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
992
993 redirty:
994 redirty_page_for_writepage(wbc, page);
995 unlock_page(page);
996 return 0;
997 }
998
999 STATIC int
1000 xfs_vm_writepage(
1001 struct page *page,
1002 struct writeback_control *wbc)
1003 {
1004 struct xfs_writepage_ctx wpc = {
1005 .io_type = XFS_IO_INVALID,
1006 };
1007 int ret;
1008
1009 ret = xfs_do_writepage(page, wbc, &wpc);
1010 if (wpc.ioend)
1011 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1012 return ret;
1013 }
1014
1015 STATIC int
1016 xfs_vm_writepages(
1017 struct address_space *mapping,
1018 struct writeback_control *wbc)
1019 {
1020 struct xfs_writepage_ctx wpc = {
1021 .io_type = XFS_IO_INVALID,
1022 };
1023 int ret;
1024
1025 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1026 if (dax_mapping(mapping))
1027 return dax_writeback_mapping_range(mapping,
1028 xfs_find_bdev_for_inode(mapping->host), wbc);
1029
1030 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1031 if (wpc.ioend)
1032 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1033 return ret;
1034 }
1035
1036 /*
1037 * Called to move a page into cleanable state - and from there
1038 * to be released. The page should already be clean. We always
1039 * have buffer heads in this call.
1040 *
1041 * Returns 1 if the page is ok to release, 0 otherwise.
1042 */
1043 STATIC int
1044 xfs_vm_releasepage(
1045 struct page *page,
1046 gfp_t gfp_mask)
1047 {
1048 int delalloc, unwritten;
1049
1050 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1051
1052 /*
1053 * mm accommodates an old ext3 case where clean pages might not have had
1054 * the dirty bit cleared. Thus, it can send actual dirty pages to
1055 * ->releasepage() via shrink_active_list(). Conversely,
1056 * block_invalidatepage() can send pages that are still marked dirty
1057 * but otherwise have invalidated buffers.
1058 *
1059 * We've historically freed buffers on the latter. Instead, quietly
1060 * filter out all dirty pages to avoid spurious buffer state warnings.
1061 * This can likely be removed once shrink_active_list() is fixed.
1062 */
1063 if (PageDirty(page))
1064 return 0;
1065
1066 xfs_count_page_state(page, &delalloc, &unwritten);
1067
1068 if (WARN_ON_ONCE(delalloc))
1069 return 0;
1070 if (WARN_ON_ONCE(unwritten))
1071 return 0;
1072
1073 return try_to_free_buffers(page);
1074 }
1075
1076 /*
1077 * When we map a DIO buffer, we may need to pass flags to
1078 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1079 *
1080 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1081 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1082 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1083 * extending the file size. We won't know for sure until IO completion is run
1084 * and the actual max write offset is communicated to the IO completion
1085 * routine.
1086 */
1087 static void
1088 xfs_map_direct(
1089 struct inode *inode,
1090 struct buffer_head *bh_result,
1091 struct xfs_bmbt_irec *imap,
1092 xfs_off_t offset)
1093 {
1094 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1095 xfs_off_t size = bh_result->b_size;
1096
1097 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1098 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1099
1100 if (ISUNWRITTEN(imap)) {
1101 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1102 set_buffer_defer_completion(bh_result);
1103 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1104 *flags |= XFS_DIO_FLAG_APPEND;
1105 set_buffer_defer_completion(bh_result);
1106 }
1107 }
1108
1109 /*
1110 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1111 * is, so that we can avoid repeated get_blocks calls.
1112 *
1113 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1114 * for blocks beyond EOF must be marked new so that sub block regions can be
1115 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1116 * was just allocated or is unwritten, otherwise the callers would overwrite
1117 * existing data with zeros. Hence we have to split the mapping into a range up
1118 * to and including EOF, and a second mapping for beyond EOF.
1119 */
1120 static void
1121 xfs_map_trim_size(
1122 struct inode *inode,
1123 sector_t iblock,
1124 struct buffer_head *bh_result,
1125 struct xfs_bmbt_irec *imap,
1126 xfs_off_t offset,
1127 ssize_t size)
1128 {
1129 xfs_off_t mapping_size;
1130
1131 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1132 mapping_size <<= inode->i_blkbits;
1133
1134 ASSERT(mapping_size > 0);
1135 if (mapping_size > size)
1136 mapping_size = size;
1137 if (offset < i_size_read(inode) &&
1138 offset + mapping_size >= i_size_read(inode)) {
1139 /* limit mapping to block that spans EOF */
1140 mapping_size = roundup_64(i_size_read(inode) - offset,
1141 1 << inode->i_blkbits);
1142 }
1143 if (mapping_size > LONG_MAX)
1144 mapping_size = LONG_MAX;
1145
1146 bh_result->b_size = mapping_size;
1147 }
1148
1149 STATIC int
1150 __xfs_get_blocks(
1151 struct inode *inode,
1152 sector_t iblock,
1153 struct buffer_head *bh_result,
1154 int create,
1155 bool direct,
1156 bool dax_fault)
1157 {
1158 struct xfs_inode *ip = XFS_I(inode);
1159 struct xfs_mount *mp = ip->i_mount;
1160 xfs_fileoff_t offset_fsb, end_fsb;
1161 int error = 0;
1162 int lockmode = 0;
1163 struct xfs_bmbt_irec imap;
1164 int nimaps = 1;
1165 xfs_off_t offset;
1166 ssize_t size;
1167 int new = 0;
1168
1169 if (XFS_FORCED_SHUTDOWN(mp))
1170 return -EIO;
1171
1172 offset = (xfs_off_t)iblock << inode->i_blkbits;
1173 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1174 size = bh_result->b_size;
1175
1176 if (!create && direct && offset >= i_size_read(inode))
1177 return 0;
1178
1179 /*
1180 * Direct I/O is usually done on preallocated files, so try getting
1181 * a block mapping without an exclusive lock first. For buffered
1182 * writes we already have the exclusive iolock anyway, so avoiding
1183 * a lock roundtrip here by taking the ilock exclusive from the
1184 * beginning is a useful micro optimization.
1185 */
1186 if (create && !direct) {
1187 lockmode = XFS_ILOCK_EXCL;
1188 xfs_ilock(ip, lockmode);
1189 } else {
1190 lockmode = xfs_ilock_data_map_shared(ip);
1191 }
1192
1193 ASSERT(offset <= mp->m_super->s_maxbytes);
1194 if (offset + size > mp->m_super->s_maxbytes)
1195 size = mp->m_super->s_maxbytes - offset;
1196 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1197 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1198
1199 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1200 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1201 if (error)
1202 goto out_unlock;
1203
1204 /* for DAX, we convert unwritten extents directly */
1205 if (create &&
1206 (!nimaps ||
1207 (imap.br_startblock == HOLESTARTBLOCK ||
1208 imap.br_startblock == DELAYSTARTBLOCK) ||
1209 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1210 if (direct || xfs_get_extsz_hint(ip)) {
1211 /*
1212 * xfs_iomap_write_direct() expects the shared lock. It
1213 * is unlocked on return.
1214 */
1215 if (lockmode == XFS_ILOCK_EXCL)
1216 xfs_ilock_demote(ip, lockmode);
1217
1218 error = xfs_iomap_write_direct(ip, offset, size,
1219 &imap, nimaps);
1220 if (error)
1221 return error;
1222 new = 1;
1223
1224 } else {
1225 /*
1226 * Delalloc reservations do not require a transaction,
1227 * we can go on without dropping the lock here. If we
1228 * are allocating a new delalloc block, make sure that
1229 * we set the new flag so that we mark the buffer new so
1230 * that we know that it is newly allocated if the write
1231 * fails.
1232 */
1233 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1234 new = 1;
1235 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1236 if (error)
1237 goto out_unlock;
1238
1239 xfs_iunlock(ip, lockmode);
1240 }
1241 trace_xfs_get_blocks_alloc(ip, offset, size,
1242 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1243 : XFS_IO_DELALLOC, &imap);
1244 } else if (nimaps) {
1245 trace_xfs_get_blocks_found(ip, offset, size,
1246 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1247 : XFS_IO_OVERWRITE, &imap);
1248 xfs_iunlock(ip, lockmode);
1249 } else {
1250 trace_xfs_get_blocks_notfound(ip, offset, size);
1251 goto out_unlock;
1252 }
1253
1254 if (IS_DAX(inode) && create) {
1255 ASSERT(!ISUNWRITTEN(&imap));
1256 /* zeroing is not needed at a higher layer */
1257 new = 0;
1258 }
1259
1260 /* trim mapping down to size requested */
1261 if (direct || size > (1 << inode->i_blkbits))
1262 xfs_map_trim_size(inode, iblock, bh_result,
1263 &imap, offset, size);
1264
1265 /*
1266 * For unwritten extents do not report a disk address in the buffered
1267 * read case (treat as if we're reading into a hole).
1268 */
1269 if (imap.br_startblock != HOLESTARTBLOCK &&
1270 imap.br_startblock != DELAYSTARTBLOCK &&
1271 (create || !ISUNWRITTEN(&imap))) {
1272 xfs_map_buffer(inode, bh_result, &imap, offset);
1273 if (ISUNWRITTEN(&imap))
1274 set_buffer_unwritten(bh_result);
1275 /* direct IO needs special help */
1276 if (create && direct) {
1277 if (dax_fault)
1278 ASSERT(!ISUNWRITTEN(&imap));
1279 else
1280 xfs_map_direct(inode, bh_result, &imap, offset);
1281 }
1282 }
1283
1284 /*
1285 * If this is a realtime file, data may be on a different device.
1286 * to that pointed to from the buffer_head b_bdev currently.
1287 */
1288 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1289
1290 /*
1291 * If we previously allocated a block out beyond eof and we are now
1292 * coming back to use it then we will need to flag it as new even if it
1293 * has a disk address.
1294 *
1295 * With sub-block writes into unwritten extents we also need to mark
1296 * the buffer as new so that the unwritten parts of the buffer gets
1297 * correctly zeroed.
1298 */
1299 if (create &&
1300 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1301 (offset >= i_size_read(inode)) ||
1302 (new || ISUNWRITTEN(&imap))))
1303 set_buffer_new(bh_result);
1304
1305 if (imap.br_startblock == DELAYSTARTBLOCK) {
1306 BUG_ON(direct);
1307 if (create) {
1308 set_buffer_uptodate(bh_result);
1309 set_buffer_mapped(bh_result);
1310 set_buffer_delay(bh_result);
1311 }
1312 }
1313
1314 return 0;
1315
1316 out_unlock:
1317 xfs_iunlock(ip, lockmode);
1318 return error;
1319 }
1320
1321 int
1322 xfs_get_blocks(
1323 struct inode *inode,
1324 sector_t iblock,
1325 struct buffer_head *bh_result,
1326 int create)
1327 {
1328 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1329 }
1330
1331 int
1332 xfs_get_blocks_direct(
1333 struct inode *inode,
1334 sector_t iblock,
1335 struct buffer_head *bh_result,
1336 int create)
1337 {
1338 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1339 }
1340
1341 int
1342 xfs_get_blocks_dax_fault(
1343 struct inode *inode,
1344 sector_t iblock,
1345 struct buffer_head *bh_result,
1346 int create)
1347 {
1348 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1349 }
1350
1351 /*
1352 * Complete a direct I/O write request.
1353 *
1354 * xfs_map_direct passes us some flags in the private data to tell us what to
1355 * do. If no flags are set, then the write IO is an overwrite wholly within
1356 * the existing allocated file size and so there is nothing for us to do.
1357 *
1358 * Note that in this case the completion can be called in interrupt context,
1359 * whereas if we have flags set we will always be called in task context
1360 * (i.e. from a workqueue).
1361 */
1362 int
1363 xfs_end_io_direct_write(
1364 struct kiocb *iocb,
1365 loff_t offset,
1366 ssize_t size,
1367 void *private)
1368 {
1369 struct inode *inode = file_inode(iocb->ki_filp);
1370 struct xfs_inode *ip = XFS_I(inode);
1371 struct xfs_mount *mp = ip->i_mount;
1372 uintptr_t flags = (uintptr_t)private;
1373 int error = 0;
1374
1375 trace_xfs_end_io_direct_write(ip, offset, size);
1376
1377 if (XFS_FORCED_SHUTDOWN(mp))
1378 return -EIO;
1379
1380 if (size <= 0)
1381 return size;
1382
1383 /*
1384 * The flags tell us whether we are doing unwritten extent conversions
1385 * or an append transaction that updates the on-disk file size. These
1386 * cases are the only cases where we should *potentially* be needing
1387 * to update the VFS inode size.
1388 */
1389 if (flags == 0) {
1390 ASSERT(offset + size <= i_size_read(inode));
1391 return 0;
1392 }
1393
1394 /*
1395 * We need to update the in-core inode size here so that we don't end up
1396 * with the on-disk inode size being outside the in-core inode size. We
1397 * have no other method of updating EOF for AIO, so always do it here
1398 * if necessary.
1399 *
1400 * We need to lock the test/set EOF update as we can be racing with
1401 * other IO completions here to update the EOF. Failing to serialise
1402 * here can result in EOF moving backwards and Bad Things Happen when
1403 * that occurs.
1404 */
1405 spin_lock(&ip->i_flags_lock);
1406 if (offset + size > i_size_read(inode))
1407 i_size_write(inode, offset + size);
1408 spin_unlock(&ip->i_flags_lock);
1409
1410 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1411 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1412
1413 error = xfs_iomap_write_unwritten(ip, offset, size);
1414 } else if (flags & XFS_DIO_FLAG_APPEND) {
1415 struct xfs_trans *tp;
1416
1417 trace_xfs_end_io_direct_write_append(ip, offset, size);
1418
1419 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0,
1420 &tp);
1421 if (!error)
1422 error = xfs_setfilesize(ip, tp, offset, size);
1423 }
1424
1425 return error;
1426 }
1427
1428 STATIC ssize_t
1429 xfs_vm_direct_IO(
1430 struct kiocb *iocb,
1431 struct iov_iter *iter)
1432 {
1433 /*
1434 * We just need the method present so that open/fcntl allow direct I/O.
1435 */
1436 return -EINVAL;
1437 }
1438
1439 /*
1440 * Punch out the delalloc blocks we have already allocated.
1441 *
1442 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1443 * as the page is still locked at this point.
1444 */
1445 STATIC void
1446 xfs_vm_kill_delalloc_range(
1447 struct inode *inode,
1448 loff_t start,
1449 loff_t end)
1450 {
1451 struct xfs_inode *ip = XFS_I(inode);
1452 xfs_fileoff_t start_fsb;
1453 xfs_fileoff_t end_fsb;
1454 int error;
1455
1456 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1457 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1458 if (end_fsb <= start_fsb)
1459 return;
1460
1461 xfs_ilock(ip, XFS_ILOCK_EXCL);
1462 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1463 end_fsb - start_fsb);
1464 if (error) {
1465 /* something screwed, just bail */
1466 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1467 xfs_alert(ip->i_mount,
1468 "xfs_vm_write_failed: unable to clean up ino %lld",
1469 ip->i_ino);
1470 }
1471 }
1472 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1473 }
1474
1475 STATIC void
1476 xfs_vm_write_failed(
1477 struct inode *inode,
1478 struct page *page,
1479 loff_t pos,
1480 unsigned len)
1481 {
1482 loff_t block_offset;
1483 loff_t block_start;
1484 loff_t block_end;
1485 loff_t from = pos & (PAGE_SIZE - 1);
1486 loff_t to = from + len;
1487 struct buffer_head *bh, *head;
1488 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1489
1490 /*
1491 * The request pos offset might be 32 or 64 bit, this is all fine
1492 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1493 * platform, the high 32-bit will be masked off if we evaluate the
1494 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1495 * 0xfffff000 as an unsigned long, hence the result is incorrect
1496 * which could cause the following ASSERT failed in most cases.
1497 * In order to avoid this, we can evaluate the block_offset of the
1498 * start of the page by using shifts rather than masks the mismatch
1499 * problem.
1500 */
1501 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1502
1503 ASSERT(block_offset + from == pos);
1504
1505 head = page_buffers(page);
1506 block_start = 0;
1507 for (bh = head; bh != head || !block_start;
1508 bh = bh->b_this_page, block_start = block_end,
1509 block_offset += bh->b_size) {
1510 block_end = block_start + bh->b_size;
1511
1512 /* skip buffers before the write */
1513 if (block_end <= from)
1514 continue;
1515
1516 /* if the buffer is after the write, we're done */
1517 if (block_start >= to)
1518 break;
1519
1520 /*
1521 * Process delalloc and unwritten buffers beyond EOF. We can
1522 * encounter unwritten buffers in the event that a file has
1523 * post-EOF unwritten extents and an extending write happens to
1524 * fail (e.g., an unaligned write that also involves a delalloc
1525 * to the same page).
1526 */
1527 if (!buffer_delay(bh) && !buffer_unwritten(bh))
1528 continue;
1529
1530 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1531 block_offset < i_size_read(inode))
1532 continue;
1533
1534 if (buffer_delay(bh))
1535 xfs_vm_kill_delalloc_range(inode, block_offset,
1536 block_offset + bh->b_size);
1537
1538 /*
1539 * This buffer does not contain data anymore. make sure anyone
1540 * who finds it knows that for certain.
1541 */
1542 clear_buffer_delay(bh);
1543 clear_buffer_uptodate(bh);
1544 clear_buffer_mapped(bh);
1545 clear_buffer_new(bh);
1546 clear_buffer_dirty(bh);
1547 clear_buffer_unwritten(bh);
1548 }
1549
1550 }
1551
1552 /*
1553 * This used to call block_write_begin(), but it unlocks and releases the page
1554 * on error, and we need that page to be able to punch stale delalloc blocks out
1555 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1556 * the appropriate point.
1557 */
1558 STATIC int
1559 xfs_vm_write_begin(
1560 struct file *file,
1561 struct address_space *mapping,
1562 loff_t pos,
1563 unsigned len,
1564 unsigned flags,
1565 struct page **pagep,
1566 void **fsdata)
1567 {
1568 pgoff_t index = pos >> PAGE_SHIFT;
1569 struct page *page;
1570 int status;
1571 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
1572
1573 ASSERT(len <= PAGE_SIZE);
1574
1575 page = grab_cache_page_write_begin(mapping, index, flags);
1576 if (!page)
1577 return -ENOMEM;
1578
1579 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1580 if (xfs_mp_fail_writes(mp))
1581 status = -EIO;
1582 if (unlikely(status)) {
1583 struct inode *inode = mapping->host;
1584 size_t isize = i_size_read(inode);
1585
1586 xfs_vm_write_failed(inode, page, pos, len);
1587 unlock_page(page);
1588
1589 /*
1590 * If the write is beyond EOF, we only want to kill blocks
1591 * allocated in this write, not blocks that were previously
1592 * written successfully.
1593 */
1594 if (xfs_mp_fail_writes(mp))
1595 isize = 0;
1596 if (pos + len > isize) {
1597 ssize_t start = max_t(ssize_t, pos, isize);
1598
1599 truncate_pagecache_range(inode, start, pos + len);
1600 }
1601
1602 put_page(page);
1603 page = NULL;
1604 }
1605
1606 *pagep = page;
1607 return status;
1608 }
1609
1610 /*
1611 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1612 * this specific write because they will never be written. Previous writes
1613 * beyond EOF where block allocation succeeded do not need to be trashed, so
1614 * only new blocks from this write should be trashed. For blocks within
1615 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1616 * written with all the other valid data.
1617 */
1618 STATIC int
1619 xfs_vm_write_end(
1620 struct file *file,
1621 struct address_space *mapping,
1622 loff_t pos,
1623 unsigned len,
1624 unsigned copied,
1625 struct page *page,
1626 void *fsdata)
1627 {
1628 int ret;
1629
1630 ASSERT(len <= PAGE_SIZE);
1631
1632 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1633 if (unlikely(ret < len)) {
1634 struct inode *inode = mapping->host;
1635 size_t isize = i_size_read(inode);
1636 loff_t to = pos + len;
1637
1638 if (to > isize) {
1639 /* only kill blocks in this write beyond EOF */
1640 if (pos > isize)
1641 isize = pos;
1642 xfs_vm_kill_delalloc_range(inode, isize, to);
1643 truncate_pagecache_range(inode, isize, to);
1644 }
1645 }
1646 return ret;
1647 }
1648
1649 STATIC sector_t
1650 xfs_vm_bmap(
1651 struct address_space *mapping,
1652 sector_t block)
1653 {
1654 struct inode *inode = (struct inode *)mapping->host;
1655 struct xfs_inode *ip = XFS_I(inode);
1656
1657 trace_xfs_vm_bmap(XFS_I(inode));
1658 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1659 filemap_write_and_wait(mapping);
1660 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1661 return generic_block_bmap(mapping, block, xfs_get_blocks);
1662 }
1663
1664 STATIC int
1665 xfs_vm_readpage(
1666 struct file *unused,
1667 struct page *page)
1668 {
1669 trace_xfs_vm_readpage(page->mapping->host, 1);
1670 return mpage_readpage(page, xfs_get_blocks);
1671 }
1672
1673 STATIC int
1674 xfs_vm_readpages(
1675 struct file *unused,
1676 struct address_space *mapping,
1677 struct list_head *pages,
1678 unsigned nr_pages)
1679 {
1680 trace_xfs_vm_readpages(mapping->host, nr_pages);
1681 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1682 }
1683
1684 /*
1685 * This is basically a copy of __set_page_dirty_buffers() with one
1686 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1687 * dirty, we'll never be able to clean them because we don't write buffers
1688 * beyond EOF, and that means we can't invalidate pages that span EOF
1689 * that have been marked dirty. Further, the dirty state can leak into
1690 * the file interior if the file is extended, resulting in all sorts of
1691 * bad things happening as the state does not match the underlying data.
1692 *
1693 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1694 * this only exist because of bufferheads and how the generic code manages them.
1695 */
1696 STATIC int
1697 xfs_vm_set_page_dirty(
1698 struct page *page)
1699 {
1700 struct address_space *mapping = page->mapping;
1701 struct inode *inode = mapping->host;
1702 loff_t end_offset;
1703 loff_t offset;
1704 int newly_dirty;
1705
1706 if (unlikely(!mapping))
1707 return !TestSetPageDirty(page);
1708
1709 end_offset = i_size_read(inode);
1710 offset = page_offset(page);
1711
1712 spin_lock(&mapping->private_lock);
1713 if (page_has_buffers(page)) {
1714 struct buffer_head *head = page_buffers(page);
1715 struct buffer_head *bh = head;
1716
1717 do {
1718 if (offset < end_offset)
1719 set_buffer_dirty(bh);
1720 bh = bh->b_this_page;
1721 offset += 1 << inode->i_blkbits;
1722 } while (bh != head);
1723 }
1724 /*
1725 * Lock out page->mem_cgroup migration to keep PageDirty
1726 * synchronized with per-memcg dirty page counters.
1727 */
1728 lock_page_memcg(page);
1729 newly_dirty = !TestSetPageDirty(page);
1730 spin_unlock(&mapping->private_lock);
1731
1732 if (newly_dirty) {
1733 /* sigh - __set_page_dirty() is static, so copy it here, too */
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&mapping->tree_lock, flags);
1737 if (page->mapping) { /* Race with truncate? */
1738 WARN_ON_ONCE(!PageUptodate(page));
1739 account_page_dirtied(page, mapping);
1740 radix_tree_tag_set(&mapping->page_tree,
1741 page_index(page), PAGECACHE_TAG_DIRTY);
1742 }
1743 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1744 }
1745 unlock_page_memcg(page);
1746 if (newly_dirty)
1747 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1748 return newly_dirty;
1749 }
1750
1751 const struct address_space_operations xfs_address_space_operations = {
1752 .readpage = xfs_vm_readpage,
1753 .readpages = xfs_vm_readpages,
1754 .writepage = xfs_vm_writepage,
1755 .writepages = xfs_vm_writepages,
1756 .set_page_dirty = xfs_vm_set_page_dirty,
1757 .releasepage = xfs_vm_releasepage,
1758 .invalidatepage = xfs_vm_invalidatepage,
1759 .write_begin = xfs_vm_write_begin,
1760 .write_end = xfs_vm_write_end,
1761 .bmap = xfs_vm_bmap,
1762 .direct_IO = xfs_vm_direct_IO,
1763 .migratepage = buffer_migrate_page,
1764 .is_partially_uptodate = block_is_partially_uptodate,
1765 .error_remove_page = generic_error_remove_page,
1766 };