2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
42 #define XFS_DIO_FLAG_APPEND (1 << 1)
43 #define XFS_DIO_FLAG_COW (1 << 2)
46 * structure owned by writepages passed to individual writepage calls
48 struct xfs_writepage_ctx
{
49 struct xfs_bmbt_irec imap
;
52 struct xfs_ioend
*ioend
;
62 struct buffer_head
*bh
, *head
;
64 *delalloc
= *unwritten
= 0;
66 bh
= head
= page_buffers(page
);
68 if (buffer_unwritten(bh
))
70 else if (buffer_delay(bh
))
72 } while ((bh
= bh
->b_this_page
) != head
);
76 xfs_find_bdev_for_inode(
79 struct xfs_inode
*ip
= XFS_I(inode
);
80 struct xfs_mount
*mp
= ip
->i_mount
;
82 if (XFS_IS_REALTIME_INODE(ip
))
83 return mp
->m_rtdev_targp
->bt_bdev
;
85 return mp
->m_ddev_targp
->bt_bdev
;
89 * We're now finished for good with this page. Update the page state via the
90 * associated buffer_heads, paying attention to the start and end offsets that
91 * we need to process on the page.
93 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
94 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
95 * the page at all, as we may be racing with memory reclaim and it can free both
96 * the bufferhead chain and the page as it will see the page as clean and
100 xfs_finish_page_writeback(
102 struct bio_vec
*bvec
,
105 unsigned int end
= bvec
->bv_offset
+ bvec
->bv_len
- 1;
106 struct buffer_head
*head
, *bh
, *next
;
107 unsigned int off
= 0;
110 ASSERT(bvec
->bv_offset
< PAGE_SIZE
);
111 ASSERT((bvec
->bv_offset
& ((1 << inode
->i_blkbits
) - 1)) == 0);
112 ASSERT(end
< PAGE_SIZE
);
113 ASSERT((bvec
->bv_len
& ((1 << inode
->i_blkbits
) - 1)) == 0);
115 bh
= head
= page_buffers(bvec
->bv_page
);
119 next
= bh
->b_this_page
;
120 if (off
< bvec
->bv_offset
)
124 bh
->b_end_io(bh
, !error
);
127 } while ((bh
= next
) != head
);
131 * We're now finished for good with this ioend structure. Update the page
132 * state, release holds on bios, and finally free up memory. Do not use the
137 struct xfs_ioend
*ioend
,
140 struct inode
*inode
= ioend
->io_inode
;
141 struct bio
*last
= ioend
->io_bio
;
142 struct bio
*bio
, *next
;
144 for (bio
= &ioend
->io_inline_bio
; bio
; bio
= next
) {
145 struct bio_vec
*bvec
;
149 * For the last bio, bi_private points to the ioend, so we
150 * need to explicitly end the iteration here.
155 next
= bio
->bi_private
;
157 /* walk each page on bio, ending page IO on them */
158 bio_for_each_segment_all(bvec
, bio
, i
)
159 xfs_finish_page_writeback(inode
, bvec
, error
);
166 * Fast and loose check if this write could update the on-disk inode size.
168 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
170 return ioend
->io_offset
+ ioend
->io_size
>
171 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
175 xfs_setfilesize_trans_alloc(
176 struct xfs_ioend
*ioend
)
178 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
179 struct xfs_trans
*tp
;
182 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
186 ioend
->io_append_trans
= tp
;
189 * We may pass freeze protection with a transaction. So tell lockdep
192 __sb_writers_release(ioend
->io_inode
->i_sb
, SB_FREEZE_FS
);
194 * We hand off the transaction to the completion thread now, so
195 * clear the flag here.
197 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
202 * Update on-disk file size now that data has been written to disk.
206 struct xfs_inode
*ip
,
207 struct xfs_trans
*tp
,
213 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
214 isize
= xfs_new_eof(ip
, offset
+ size
);
216 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
217 xfs_trans_cancel(tp
);
221 trace_xfs_setfilesize(ip
, offset
, size
);
223 ip
->i_d
.di_size
= isize
;
224 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
225 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
227 return xfs_trans_commit(tp
);
232 struct xfs_inode
*ip
,
236 struct xfs_mount
*mp
= ip
->i_mount
;
237 struct xfs_trans
*tp
;
240 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
244 return __xfs_setfilesize(ip
, tp
, offset
, size
);
248 xfs_setfilesize_ioend(
249 struct xfs_ioend
*ioend
,
252 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
253 struct xfs_trans
*tp
= ioend
->io_append_trans
;
256 * The transaction may have been allocated in the I/O submission thread,
257 * thus we need to mark ourselves as being in a transaction manually.
258 * Similarly for freeze protection.
260 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
261 __sb_writers_acquired(VFS_I(ip
)->i_sb
, SB_FREEZE_FS
);
263 /* we abort the update if there was an IO error */
265 xfs_trans_cancel(tp
);
269 return __xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
273 * IO write completion.
277 struct work_struct
*work
)
279 struct xfs_ioend
*ioend
=
280 container_of(work
, struct xfs_ioend
, io_work
);
281 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
282 int error
= ioend
->io_bio
->bi_error
;
285 * Set an error if the mount has shut down and proceed with end I/O
286 * processing so it can perform whatever cleanups are necessary.
288 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
292 * For a CoW extent, we need to move the mapping from the CoW fork
293 * to the data fork. If instead an error happened, just dump the
296 if (ioend
->io_type
== XFS_IO_COW
) {
299 if (ioend
->io_bio
->bi_error
) {
300 error
= xfs_reflink_cancel_cow_range(ip
,
301 ioend
->io_offset
, ioend
->io_size
);
304 error
= xfs_reflink_end_cow(ip
, ioend
->io_offset
,
311 * For unwritten extents we need to issue transactions to convert a
312 * range to normal written extens after the data I/O has finished.
313 * Detecting and handling completion IO errors is done individually
314 * for each case as different cleanup operations need to be performed
317 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
320 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
322 } else if (ioend
->io_append_trans
) {
323 error
= xfs_setfilesize_ioend(ioend
, error
);
325 ASSERT(!xfs_ioend_is_append(ioend
) ||
326 ioend
->io_type
== XFS_IO_COW
);
330 xfs_destroy_ioend(ioend
, error
);
337 struct xfs_ioend
*ioend
= bio
->bi_private
;
338 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
340 if (ioend
->io_type
== XFS_IO_UNWRITTEN
|| ioend
->io_type
== XFS_IO_COW
)
341 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
342 else if (ioend
->io_append_trans
)
343 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
345 xfs_destroy_ioend(ioend
, bio
->bi_error
);
352 struct xfs_bmbt_irec
*imap
,
355 struct xfs_inode
*ip
= XFS_I(inode
);
356 struct xfs_mount
*mp
= ip
->i_mount
;
357 ssize_t count
= 1 << inode
->i_blkbits
;
358 xfs_fileoff_t offset_fsb
, end_fsb
;
360 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
363 if (XFS_FORCED_SHUTDOWN(mp
))
366 ASSERT(type
!= XFS_IO_COW
);
367 if (type
== XFS_IO_UNWRITTEN
)
368 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
370 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
371 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
372 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
373 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
375 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
376 count
= mp
->m_super
->s_maxbytes
- offset
;
377 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
378 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
379 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
380 imap
, &nimaps
, bmapi_flags
);
382 * Truncate an overwrite extent if there's a pending CoW
383 * reservation before the end of this extent. This forces us
384 * to come back to writepage to take care of the CoW.
386 if (nimaps
&& type
== XFS_IO_OVERWRITE
)
387 xfs_reflink_trim_irec_to_next_cow(ip
, offset_fsb
, imap
);
388 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
393 if (type
== XFS_IO_DELALLOC
&&
394 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
395 error
= xfs_iomap_write_allocate(ip
, XFS_DATA_FORK
, offset
,
398 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
403 if (type
== XFS_IO_UNWRITTEN
) {
405 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
406 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
410 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
417 struct xfs_bmbt_irec
*imap
,
420 offset
>>= inode
->i_blkbits
;
422 return offset
>= imap
->br_startoff
&&
423 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
427 xfs_start_buffer_writeback(
428 struct buffer_head
*bh
)
430 ASSERT(buffer_mapped(bh
));
431 ASSERT(buffer_locked(bh
));
432 ASSERT(!buffer_delay(bh
));
433 ASSERT(!buffer_unwritten(bh
));
435 mark_buffer_async_write(bh
);
436 set_buffer_uptodate(bh
);
437 clear_buffer_dirty(bh
);
441 xfs_start_page_writeback(
445 ASSERT(PageLocked(page
));
446 ASSERT(!PageWriteback(page
));
449 * if the page was not fully cleaned, we need to ensure that the higher
450 * layers come back to it correctly. That means we need to keep the page
451 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
452 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
453 * write this page in this writeback sweep will be made.
456 clear_page_dirty_for_io(page
);
457 set_page_writeback(page
);
459 set_page_writeback_keepwrite(page
);
464 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
466 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
470 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
471 * it, and we submit that bio. The ioend may be used for multiple bio
472 * submissions, so we only want to allocate an append transaction for the ioend
473 * once. In the case of multiple bio submission, each bio will take an IO
474 * reference to the ioend to ensure that the ioend completion is only done once
475 * all bios have been submitted and the ioend is really done.
477 * If @fail is non-zero, it means that we have a situation where some part of
478 * the submission process has failed after we have marked paged for writeback
479 * and unlocked them. In this situation, we need to fail the bio and ioend
480 * rather than submit it to IO. This typically only happens on a filesystem
485 struct writeback_control
*wbc
,
486 struct xfs_ioend
*ioend
,
489 /* Reserve log space if we might write beyond the on-disk inode size. */
491 ioend
->io_type
!= XFS_IO_UNWRITTEN
&&
492 xfs_ioend_is_append(ioend
) &&
493 !ioend
->io_append_trans
)
494 status
= xfs_setfilesize_trans_alloc(ioend
);
496 ioend
->io_bio
->bi_private
= ioend
;
497 ioend
->io_bio
->bi_end_io
= xfs_end_bio
;
498 bio_set_op_attrs(ioend
->io_bio
, REQ_OP_WRITE
,
499 (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: 0);
501 * If we are failing the IO now, just mark the ioend with an
502 * error and finish it. This will run IO completion immediately
503 * as there is only one reference to the ioend at this point in
507 ioend
->io_bio
->bi_error
= status
;
508 bio_endio(ioend
->io_bio
);
512 submit_bio(ioend
->io_bio
);
517 xfs_init_bio_from_bh(
519 struct buffer_head
*bh
)
521 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
522 bio
->bi_bdev
= bh
->b_bdev
;
525 static struct xfs_ioend
*
530 struct buffer_head
*bh
)
532 struct xfs_ioend
*ioend
;
535 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, xfs_ioend_bioset
);
536 xfs_init_bio_from_bh(bio
, bh
);
538 ioend
= container_of(bio
, struct xfs_ioend
, io_inline_bio
);
539 INIT_LIST_HEAD(&ioend
->io_list
);
540 ioend
->io_type
= type
;
541 ioend
->io_inode
= inode
;
543 ioend
->io_offset
= offset
;
544 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
545 ioend
->io_append_trans
= NULL
;
551 * Allocate a new bio, and chain the old bio to the new one.
553 * Note that we have to do perform the chaining in this unintuitive order
554 * so that the bi_private linkage is set up in the right direction for the
555 * traversal in xfs_destroy_ioend().
559 struct xfs_ioend
*ioend
,
560 struct writeback_control
*wbc
,
561 struct buffer_head
*bh
)
565 new = bio_alloc(GFP_NOFS
, BIO_MAX_PAGES
);
566 xfs_init_bio_from_bh(new, bh
);
568 bio_chain(ioend
->io_bio
, new);
569 bio_get(ioend
->io_bio
); /* for xfs_destroy_ioend */
570 bio_set_op_attrs(ioend
->io_bio
, REQ_OP_WRITE
,
571 (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: 0);
572 submit_bio(ioend
->io_bio
);
577 * Test to see if we've been building up a completion structure for
578 * earlier buffers -- if so, we try to append to this ioend if we
579 * can, otherwise we finish off any current ioend and start another.
580 * Return the ioend we finished off so that the caller can submit it
581 * once it has finished processing the dirty page.
586 struct buffer_head
*bh
,
588 struct xfs_writepage_ctx
*wpc
,
589 struct writeback_control
*wbc
,
590 struct list_head
*iolist
)
592 if (!wpc
->ioend
|| wpc
->io_type
!= wpc
->ioend
->io_type
||
593 bh
->b_blocknr
!= wpc
->last_block
+ 1 ||
594 offset
!= wpc
->ioend
->io_offset
+ wpc
->ioend
->io_size
) {
596 list_add(&wpc
->ioend
->io_list
, iolist
);
597 wpc
->ioend
= xfs_alloc_ioend(inode
, wpc
->io_type
, offset
, bh
);
601 * If the buffer doesn't fit into the bio we need to allocate a new
602 * one. This shouldn't happen more than once for a given buffer.
604 while (xfs_bio_add_buffer(wpc
->ioend
->io_bio
, bh
) != bh
->b_size
)
605 xfs_chain_bio(wpc
->ioend
, wbc
, bh
);
607 wpc
->ioend
->io_size
+= bh
->b_size
;
608 wpc
->last_block
= bh
->b_blocknr
;
609 xfs_start_buffer_writeback(bh
);
615 struct buffer_head
*bh
,
616 struct xfs_bmbt_irec
*imap
,
620 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
621 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
622 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
624 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
625 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
627 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
628 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
630 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
633 set_buffer_mapped(bh
);
639 struct buffer_head
*bh
,
640 struct xfs_bmbt_irec
*imap
,
643 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
644 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
646 xfs_map_buffer(inode
, bh
, imap
, offset
);
647 set_buffer_mapped(bh
);
648 clear_buffer_delay(bh
);
649 clear_buffer_unwritten(bh
);
653 * Test if a given page contains at least one buffer of a given @type.
654 * If @check_all_buffers is true, then we walk all the buffers in the page to
655 * try to find one of the type passed in. If it is not set, then the caller only
656 * needs to check the first buffer on the page for a match.
662 bool check_all_buffers
)
664 struct buffer_head
*bh
;
665 struct buffer_head
*head
;
667 if (PageWriteback(page
))
671 if (!page_has_buffers(page
))
674 bh
= head
= page_buffers(page
);
676 if (buffer_unwritten(bh
)) {
677 if (type
== XFS_IO_UNWRITTEN
)
679 } else if (buffer_delay(bh
)) {
680 if (type
== XFS_IO_DELALLOC
)
682 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
683 if (type
== XFS_IO_OVERWRITE
)
687 /* If we are only checking the first buffer, we are done now. */
688 if (!check_all_buffers
)
690 } while ((bh
= bh
->b_this_page
) != head
);
696 xfs_vm_invalidatepage(
701 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
703 block_invalidatepage(page
, offset
, length
);
707 * If the page has delalloc buffers on it, we need to punch them out before we
708 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710 * is done on that same region - the delalloc extent is returned when none is
711 * supposed to be there.
713 * We prevent this by truncating away the delalloc regions on the page before
714 * invalidating it. Because they are delalloc, we can do this without needing a
715 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716 * truncation without a transaction as there is no space left for block
717 * reservation (typically why we see a ENOSPC in writeback).
719 * This is not a performance critical path, so for now just do the punching a
720 * buffer head at a time.
723 xfs_aops_discard_page(
726 struct inode
*inode
= page
->mapping
->host
;
727 struct xfs_inode
*ip
= XFS_I(inode
);
728 struct buffer_head
*bh
, *head
;
729 loff_t offset
= page_offset(page
);
731 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
734 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
737 xfs_alert(ip
->i_mount
,
738 "page discard on page %p, inode 0x%llx, offset %llu.",
739 page
, ip
->i_ino
, offset
);
741 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
742 bh
= head
= page_buffers(page
);
745 xfs_fileoff_t start_fsb
;
747 if (!buffer_delay(bh
))
750 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
751 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
753 /* something screwed, just bail */
754 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
755 xfs_alert(ip
->i_mount
,
756 "page discard unable to remove delalloc mapping.");
761 offset
+= 1 << inode
->i_blkbits
;
763 } while ((bh
= bh
->b_this_page
) != head
);
765 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
767 xfs_vm_invalidatepage(page
, 0, PAGE_SIZE
);
773 struct xfs_writepage_ctx
*wpc
,
776 unsigned int *new_type
)
778 struct xfs_inode
*ip
= XFS_I(inode
);
779 struct xfs_bmbt_irec imap
;
780 bool is_cow
= false, need_alloc
= false;
784 * If we already have a valid COW mapping keep using it.
786 if (wpc
->io_type
== XFS_IO_COW
) {
787 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
, offset
);
788 if (wpc
->imap_valid
) {
789 *new_type
= XFS_IO_COW
;
795 * Else we need to check if there is a COW mapping at this offset.
797 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
798 is_cow
= xfs_reflink_find_cow_mapping(ip
, offset
, &imap
, &need_alloc
);
799 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
805 * And if the COW mapping has a delayed extent here we need to
806 * allocate real space for it now.
809 error
= xfs_iomap_write_allocate(ip
, XFS_COW_FORK
, offset
,
815 wpc
->io_type
= *new_type
= XFS_IO_COW
;
816 wpc
->imap_valid
= true;
822 * We implement an immediate ioend submission policy here to avoid needing to
823 * chain multiple ioends and hence nest mempool allocations which can violate
824 * forward progress guarantees we need to provide. The current ioend we are
825 * adding buffers to is cached on the writepage context, and if the new buffer
826 * does not append to the cached ioend it will create a new ioend and cache that
829 * If a new ioend is created and cached, the old ioend is returned and queued
830 * locally for submission once the entire page is processed or an error has been
831 * detected. While ioends are submitted immediately after they are completed,
832 * batching optimisations are provided by higher level block plugging.
834 * At the end of a writeback pass, there will be a cached ioend remaining on the
835 * writepage context that the caller will need to submit.
839 struct xfs_writepage_ctx
*wpc
,
840 struct writeback_control
*wbc
,
844 __uint64_t end_offset
)
846 LIST_HEAD(submit_list
);
847 struct xfs_ioend
*ioend
, *next
;
848 struct buffer_head
*bh
, *head
;
849 ssize_t len
= 1 << inode
->i_blkbits
;
853 unsigned int new_type
;
855 bh
= head
= page_buffers(page
);
856 offset
= page_offset(page
);
858 if (offset
>= end_offset
)
860 if (!buffer_uptodate(bh
))
864 * set_page_dirty dirties all buffers in a page, independent
865 * of their state. The dirty state however is entirely
866 * meaningless for holes (!mapped && uptodate), so skip
867 * buffers covering holes here.
869 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
870 wpc
->imap_valid
= false;
874 if (buffer_unwritten(bh
))
875 new_type
= XFS_IO_UNWRITTEN
;
876 else if (buffer_delay(bh
))
877 new_type
= XFS_IO_DELALLOC
;
878 else if (buffer_uptodate(bh
))
879 new_type
= XFS_IO_OVERWRITE
;
881 if (PageUptodate(page
))
882 ASSERT(buffer_mapped(bh
));
884 * This buffer is not uptodate and will not be
885 * written to disk. Ensure that we will put any
886 * subsequent writeable buffers into a new
889 wpc
->imap_valid
= false;
893 if (xfs_is_reflink_inode(XFS_I(inode
))) {
894 error
= xfs_map_cow(wpc
, inode
, offset
, &new_type
);
899 if (wpc
->io_type
!= new_type
) {
900 wpc
->io_type
= new_type
;
901 wpc
->imap_valid
= false;
905 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
907 if (!wpc
->imap_valid
) {
908 error
= xfs_map_blocks(inode
, offset
, &wpc
->imap
,
912 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
915 if (wpc
->imap_valid
) {
917 if (wpc
->io_type
!= XFS_IO_OVERWRITE
)
918 xfs_map_at_offset(inode
, bh
, &wpc
->imap
, offset
);
919 xfs_add_to_ioend(inode
, bh
, offset
, wpc
, wbc
, &submit_list
);
923 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
925 if (uptodate
&& bh
== head
)
926 SetPageUptodate(page
);
928 ASSERT(wpc
->ioend
|| list_empty(&submit_list
));
932 * On error, we have to fail the ioend here because we have locked
933 * buffers in the ioend. If we don't do this, we'll deadlock
934 * invalidating the page as that tries to lock the buffers on the page.
935 * Also, because we may have set pages under writeback, we have to make
936 * sure we run IO completion to mark the error state of the IO
937 * appropriately, so we can't cancel the ioend directly here. That means
938 * we have to mark this page as under writeback if we included any
939 * buffers from it in the ioend chain so that completion treats it
942 * If we didn't include the page in the ioend, the on error we can
943 * simply discard and unlock it as there are no other users of the page
944 * or it's buffers right now. The caller will still need to trigger
945 * submission of outstanding ioends on the writepage context so they are
946 * treated correctly on error.
949 xfs_start_page_writeback(page
, !error
);
952 * Preserve the original error if there was one, otherwise catch
953 * submission errors here and propagate into subsequent ioend
956 list_for_each_entry_safe(ioend
, next
, &submit_list
, io_list
) {
959 list_del_init(&ioend
->io_list
);
960 error2
= xfs_submit_ioend(wbc
, ioend
, error
);
961 if (error2
&& !error
)
965 xfs_aops_discard_page(page
);
966 ClearPageUptodate(page
);
970 * We can end up here with no error and nothing to write if we
971 * race with a partial page truncate on a sub-page block sized
972 * filesystem. In that case we need to mark the page clean.
974 xfs_start_page_writeback(page
, 1);
975 end_page_writeback(page
);
978 mapping_set_error(page
->mapping
, error
);
983 * Write out a dirty page.
985 * For delalloc space on the page we need to allocate space and flush it.
986 * For unwritten space on the page we need to start the conversion to
987 * regular allocated space.
988 * For any other dirty buffer heads on the page we should flush them.
993 struct writeback_control
*wbc
,
996 struct xfs_writepage_ctx
*wpc
= data
;
997 struct inode
*inode
= page
->mapping
->host
;
999 __uint64_t end_offset
;
1002 trace_xfs_writepage(inode
, page
, 0, 0);
1004 ASSERT(page_has_buffers(page
));
1007 * Refuse to write the page out if we are called from reclaim context.
1009 * This avoids stack overflows when called from deeply used stacks in
1010 * random callers for direct reclaim or memcg reclaim. We explicitly
1011 * allow reclaim from kswapd as the stack usage there is relatively low.
1013 * This should never happen except in the case of a VM regression so
1016 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
1021 * Given that we do not allow direct reclaim to call us, we should
1022 * never be called while in a filesystem transaction.
1024 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
1028 * Is this page beyond the end of the file?
1030 * The page index is less than the end_index, adjust the end_offset
1031 * to the highest offset that this page should represent.
1032 * -----------------------------------------------------
1033 * | file mapping | <EOF> |
1034 * -----------------------------------------------------
1035 * | Page ... | Page N-2 | Page N-1 | Page N | |
1036 * ^--------------------------------^----------|--------
1037 * | desired writeback range | see else |
1038 * ---------------------------------^------------------|
1040 offset
= i_size_read(inode
);
1041 end_index
= offset
>> PAGE_SHIFT
;
1042 if (page
->index
< end_index
)
1043 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_SHIFT
;
1046 * Check whether the page to write out is beyond or straddles
1048 * -------------------------------------------------------
1049 * | file mapping | <EOF> |
1050 * -------------------------------------------------------
1051 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1052 * ^--------------------------------^-----------|---------
1054 * ---------------------------------^-----------|--------|
1056 unsigned offset_into_page
= offset
& (PAGE_SIZE
- 1);
1059 * Skip the page if it is fully outside i_size, e.g. due to a
1060 * truncate operation that is in progress. We must redirty the
1061 * page so that reclaim stops reclaiming it. Otherwise
1062 * xfs_vm_releasepage() is called on it and gets confused.
1064 * Note that the end_index is unsigned long, it would overflow
1065 * if the given offset is greater than 16TB on 32-bit system
1066 * and if we do check the page is fully outside i_size or not
1067 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 * will be evaluated to 0. Hence this page will be redirtied
1069 * and be written out repeatedly which would result in an
1070 * infinite loop, the user program that perform this operation
1071 * will hang. Instead, we can verify this situation by checking
1072 * if the page to write is totally beyond the i_size or if it's
1073 * offset is just equal to the EOF.
1075 if (page
->index
> end_index
||
1076 (page
->index
== end_index
&& offset_into_page
== 0))
1080 * The page straddles i_size. It must be zeroed out on each
1081 * and every writepage invocation because it may be mmapped.
1082 * "A file is mapped in multiples of the page size. For a file
1083 * that is not a multiple of the page size, the remaining
1084 * memory is zeroed when mapped, and writes to that region are
1085 * not written out to the file."
1087 zero_user_segment(page
, offset_into_page
, PAGE_SIZE
);
1089 /* Adjust the end_offset to the end of file */
1090 end_offset
= offset
;
1093 return xfs_writepage_map(wpc
, wbc
, inode
, page
, offset
, end_offset
);
1096 redirty_page_for_writepage(wbc
, page
);
1104 struct writeback_control
*wbc
)
1106 struct xfs_writepage_ctx wpc
= {
1107 .io_type
= XFS_IO_INVALID
,
1111 ret
= xfs_do_writepage(page
, wbc
, &wpc
);
1113 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1119 struct address_space
*mapping
,
1120 struct writeback_control
*wbc
)
1122 struct xfs_writepage_ctx wpc
= {
1123 .io_type
= XFS_IO_INVALID
,
1127 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1128 if (dax_mapping(mapping
))
1129 return dax_writeback_mapping_range(mapping
,
1130 xfs_find_bdev_for_inode(mapping
->host
), wbc
);
1132 ret
= write_cache_pages(mapping
, wbc
, xfs_do_writepage
, &wpc
);
1134 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1139 * Called to move a page into cleanable state - and from there
1140 * to be released. The page should already be clean. We always
1141 * have buffer heads in this call.
1143 * Returns 1 if the page is ok to release, 0 otherwise.
1150 int delalloc
, unwritten
;
1152 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1155 * mm accommodates an old ext3 case where clean pages might not have had
1156 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 * ->releasepage() via shrink_active_list(). Conversely,
1158 * block_invalidatepage() can send pages that are still marked dirty
1159 * but otherwise have invalidated buffers.
1161 * We've historically freed buffers on the latter. Instead, quietly
1162 * filter out all dirty pages to avoid spurious buffer state warnings.
1163 * This can likely be removed once shrink_active_list() is fixed.
1165 if (PageDirty(page
))
1168 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1170 if (WARN_ON_ONCE(delalloc
))
1172 if (WARN_ON_ONCE(unwritten
))
1175 return try_to_free_buffers(page
);
1179 * When we map a DIO buffer, we may need to pass flags to
1180 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1182 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1183 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1184 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1185 * extending the file size. We won't know for sure until IO completion is run
1186 * and the actual max write offset is communicated to the IO completion
1191 struct inode
*inode
,
1192 struct buffer_head
*bh_result
,
1193 struct xfs_bmbt_irec
*imap
,
1197 uintptr_t *flags
= (uintptr_t *)&bh_result
->b_private
;
1198 xfs_off_t size
= bh_result
->b_size
;
1200 trace_xfs_get_blocks_map_direct(XFS_I(inode
), offset
, size
,
1201 ISUNWRITTEN(imap
) ? XFS_IO_UNWRITTEN
: is_cow
? XFS_IO_COW
:
1202 XFS_IO_OVERWRITE
, imap
);
1204 if (ISUNWRITTEN(imap
)) {
1205 *flags
|= XFS_DIO_FLAG_UNWRITTEN
;
1206 set_buffer_defer_completion(bh_result
);
1207 } else if (is_cow
) {
1208 *flags
|= XFS_DIO_FLAG_COW
;
1209 set_buffer_defer_completion(bh_result
);
1211 if (offset
+ size
> i_size_read(inode
) || offset
+ size
< 0) {
1212 *flags
|= XFS_DIO_FLAG_APPEND
;
1213 set_buffer_defer_completion(bh_result
);
1218 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1219 * is, so that we can avoid repeated get_blocks calls.
1221 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1222 * for blocks beyond EOF must be marked new so that sub block regions can be
1223 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1224 * was just allocated or is unwritten, otherwise the callers would overwrite
1225 * existing data with zeros. Hence we have to split the mapping into a range up
1226 * to and including EOF, and a second mapping for beyond EOF.
1230 struct inode
*inode
,
1232 struct buffer_head
*bh_result
,
1233 struct xfs_bmbt_irec
*imap
,
1237 xfs_off_t mapping_size
;
1239 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1240 mapping_size
<<= inode
->i_blkbits
;
1242 ASSERT(mapping_size
> 0);
1243 if (mapping_size
> size
)
1244 mapping_size
= size
;
1245 if (offset
< i_size_read(inode
) &&
1246 offset
+ mapping_size
>= i_size_read(inode
)) {
1247 /* limit mapping to block that spans EOF */
1248 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1249 1 << inode
->i_blkbits
);
1251 if (mapping_size
> LONG_MAX
)
1252 mapping_size
= LONG_MAX
;
1254 bh_result
->b_size
= mapping_size
;
1257 /* Bounce unaligned directio writes to the page cache. */
1259 xfs_bounce_unaligned_dio_write(
1260 struct xfs_inode
*ip
,
1261 xfs_fileoff_t offset_fsb
,
1262 struct xfs_bmbt_irec
*imap
)
1264 struct xfs_bmbt_irec irec
;
1265 xfs_fileoff_t delta
;
1271 if (offset_fsb
> irec
.br_startoff
) {
1272 delta
= offset_fsb
- irec
.br_startoff
;
1273 irec
.br_blockcount
-= delta
;
1274 irec
.br_startblock
+= delta
;
1275 irec
.br_startoff
= offset_fsb
;
1277 error
= xfs_reflink_trim_around_shared(ip
, &irec
, &shared
, &x
);
1282 * We're here because we're trying to do a directio write to a
1283 * region that isn't aligned to a filesystem block. If any part
1284 * of the extent is shared, fall back to buffered mode to handle
1285 * the RMW. This is done by returning -EREMCHG ("remote addr
1286 * changed"), which is caught further up the call stack.
1289 trace_xfs_reflink_bounce_dio_write(ip
, imap
);
1297 struct inode
*inode
,
1299 struct buffer_head
*bh_result
,
1304 struct xfs_inode
*ip
= XFS_I(inode
);
1305 struct xfs_mount
*mp
= ip
->i_mount
;
1306 xfs_fileoff_t offset_fsb
, end_fsb
;
1309 struct xfs_bmbt_irec imap
;
1314 bool is_cow
= false;
1315 bool need_alloc
= false;
1317 BUG_ON(create
&& !direct
);
1319 if (XFS_FORCED_SHUTDOWN(mp
))
1322 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1323 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1324 size
= bh_result
->b_size
;
1326 if (!create
&& offset
>= i_size_read(inode
))
1330 * Direct I/O is usually done on preallocated files, so try getting
1331 * a block mapping without an exclusive lock first.
1333 lockmode
= xfs_ilock_data_map_shared(ip
);
1335 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1336 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1337 size
= mp
->m_super
->s_maxbytes
- offset
;
1338 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1339 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1341 if (create
&& direct
&& xfs_is_reflink_inode(ip
))
1342 is_cow
= xfs_reflink_find_cow_mapping(ip
, offset
, &imap
,
1345 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1346 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1348 * Truncate an overwrite extent if there's a pending CoW
1349 * reservation before the end of this extent. This
1350 * forces us to come back to get_blocks to take care of
1353 if (create
&& direct
&& nimaps
&&
1354 imap
.br_startblock
!= HOLESTARTBLOCK
&&
1355 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1356 !ISUNWRITTEN(&imap
))
1357 xfs_reflink_trim_irec_to_next_cow(ip
, offset_fsb
,
1360 ASSERT(!need_alloc
);
1364 /* for DAX, we convert unwritten extents directly */
1367 (imap
.br_startblock
== HOLESTARTBLOCK
||
1368 imap
.br_startblock
== DELAYSTARTBLOCK
) ||
1369 (IS_DAX(inode
) && ISUNWRITTEN(&imap
)))) {
1371 * xfs_iomap_write_direct() expects the shared lock. It
1372 * is unlocked on return.
1374 if (lockmode
== XFS_ILOCK_EXCL
)
1375 xfs_ilock_demote(ip
, lockmode
);
1377 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1383 trace_xfs_get_blocks_alloc(ip
, offset
, size
,
1384 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1385 : XFS_IO_DELALLOC
, &imap
);
1386 } else if (nimaps
) {
1387 trace_xfs_get_blocks_found(ip
, offset
, size
,
1388 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1389 : XFS_IO_OVERWRITE
, &imap
);
1390 xfs_iunlock(ip
, lockmode
);
1392 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1396 if (IS_DAX(inode
) && create
) {
1397 ASSERT(!ISUNWRITTEN(&imap
));
1398 /* zeroing is not needed at a higher layer */
1402 /* trim mapping down to size requested */
1403 xfs_map_trim_size(inode
, iblock
, bh_result
, &imap
, offset
, size
);
1406 * For unwritten extents do not report a disk address in the buffered
1407 * read case (treat as if we're reading into a hole).
1409 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1410 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1411 (create
|| !ISUNWRITTEN(&imap
))) {
1412 if (create
&& direct
&& !is_cow
) {
1413 error
= xfs_bounce_unaligned_dio_write(ip
, offset_fsb
,
1419 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1420 if (ISUNWRITTEN(&imap
))
1421 set_buffer_unwritten(bh_result
);
1422 /* direct IO needs special help */
1425 ASSERT(!ISUNWRITTEN(&imap
));
1427 xfs_map_direct(inode
, bh_result
, &imap
, offset
,
1433 * If this is a realtime file, data may be on a different device.
1434 * to that pointed to from the buffer_head b_bdev currently.
1436 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1439 * If we previously allocated a block out beyond eof and we are now
1440 * coming back to use it then we will need to flag it as new even if it
1441 * has a disk address.
1443 * With sub-block writes into unwritten extents we also need to mark
1444 * the buffer as new so that the unwritten parts of the buffer gets
1448 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1449 (offset
>= i_size_read(inode
)) ||
1450 (new || ISUNWRITTEN(&imap
))))
1451 set_buffer_new(bh_result
);
1453 BUG_ON(direct
&& imap
.br_startblock
== DELAYSTARTBLOCK
);
1458 xfs_iunlock(ip
, lockmode
);
1464 struct inode
*inode
,
1466 struct buffer_head
*bh_result
,
1469 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, false, false);
1473 xfs_get_blocks_direct(
1474 struct inode
*inode
,
1476 struct buffer_head
*bh_result
,
1479 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, false);
1483 xfs_get_blocks_dax_fault(
1484 struct inode
*inode
,
1486 struct buffer_head
*bh_result
,
1489 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, true);
1493 * Complete a direct I/O write request.
1495 * xfs_map_direct passes us some flags in the private data to tell us what to
1496 * do. If no flags are set, then the write IO is an overwrite wholly within
1497 * the existing allocated file size and so there is nothing for us to do.
1499 * Note that in this case the completion can be called in interrupt context,
1500 * whereas if we have flags set we will always be called in task context
1501 * (i.e. from a workqueue).
1504 xfs_end_io_direct_write(
1510 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1511 struct xfs_inode
*ip
= XFS_I(inode
);
1512 uintptr_t flags
= (uintptr_t)private;
1515 trace_xfs_end_io_direct_write(ip
, offset
, size
);
1517 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
1524 * The flags tell us whether we are doing unwritten extent conversions
1525 * or an append transaction that updates the on-disk file size. These
1526 * cases are the only cases where we should *potentially* be needing
1527 * to update the VFS inode size.
1530 ASSERT(offset
+ size
<= i_size_read(inode
));
1535 * We need to update the in-core inode size here so that we don't end up
1536 * with the on-disk inode size being outside the in-core inode size. We
1537 * have no other method of updating EOF for AIO, so always do it here
1540 * We need to lock the test/set EOF update as we can be racing with
1541 * other IO completions here to update the EOF. Failing to serialise
1542 * here can result in EOF moving backwards and Bad Things Happen when
1545 spin_lock(&ip
->i_flags_lock
);
1546 if (offset
+ size
> i_size_read(inode
))
1547 i_size_write(inode
, offset
+ size
);
1548 spin_unlock(&ip
->i_flags_lock
);
1550 if (flags
& XFS_DIO_FLAG_COW
)
1551 error
= xfs_reflink_end_cow(ip
, offset
, size
);
1552 if (flags
& XFS_DIO_FLAG_UNWRITTEN
) {
1553 trace_xfs_end_io_direct_write_unwritten(ip
, offset
, size
);
1555 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
1557 if (flags
& XFS_DIO_FLAG_APPEND
) {
1558 trace_xfs_end_io_direct_write_append(ip
, offset
, size
);
1560 error
= xfs_setfilesize(ip
, offset
, size
);
1569 struct iov_iter
*iter
)
1572 * We just need the method present so that open/fcntl allow direct I/O.
1579 struct address_space
*mapping
,
1582 struct inode
*inode
= (struct inode
*)mapping
->host
;
1583 struct xfs_inode
*ip
= XFS_I(inode
);
1585 trace_xfs_vm_bmap(XFS_I(inode
));
1586 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1589 * The swap code (ab-)uses ->bmap to get a block mapping and then
1590 * bypasseѕ the file system for actual I/O. We really can't allow
1591 * that on reflinks inodes, so we have to skip out here. And yes,
1592 * 0 is the magic code for a bmap error..
1594 if (xfs_is_reflink_inode(ip
)) {
1595 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1598 filemap_write_and_wait(mapping
);
1599 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1600 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1605 struct file
*unused
,
1608 trace_xfs_vm_readpage(page
->mapping
->host
, 1);
1609 return mpage_readpage(page
, xfs_get_blocks
);
1614 struct file
*unused
,
1615 struct address_space
*mapping
,
1616 struct list_head
*pages
,
1619 trace_xfs_vm_readpages(mapping
->host
, nr_pages
);
1620 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1624 * This is basically a copy of __set_page_dirty_buffers() with one
1625 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1626 * dirty, we'll never be able to clean them because we don't write buffers
1627 * beyond EOF, and that means we can't invalidate pages that span EOF
1628 * that have been marked dirty. Further, the dirty state can leak into
1629 * the file interior if the file is extended, resulting in all sorts of
1630 * bad things happening as the state does not match the underlying data.
1632 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1633 * this only exist because of bufferheads and how the generic code manages them.
1636 xfs_vm_set_page_dirty(
1639 struct address_space
*mapping
= page
->mapping
;
1640 struct inode
*inode
= mapping
->host
;
1645 if (unlikely(!mapping
))
1646 return !TestSetPageDirty(page
);
1648 end_offset
= i_size_read(inode
);
1649 offset
= page_offset(page
);
1651 spin_lock(&mapping
->private_lock
);
1652 if (page_has_buffers(page
)) {
1653 struct buffer_head
*head
= page_buffers(page
);
1654 struct buffer_head
*bh
= head
;
1657 if (offset
< end_offset
)
1658 set_buffer_dirty(bh
);
1659 bh
= bh
->b_this_page
;
1660 offset
+= 1 << inode
->i_blkbits
;
1661 } while (bh
!= head
);
1664 * Lock out page->mem_cgroup migration to keep PageDirty
1665 * synchronized with per-memcg dirty page counters.
1667 lock_page_memcg(page
);
1668 newly_dirty
= !TestSetPageDirty(page
);
1669 spin_unlock(&mapping
->private_lock
);
1672 /* sigh - __set_page_dirty() is static, so copy it here, too */
1673 unsigned long flags
;
1675 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1676 if (page
->mapping
) { /* Race with truncate? */
1677 WARN_ON_ONCE(!PageUptodate(page
));
1678 account_page_dirtied(page
, mapping
);
1679 radix_tree_tag_set(&mapping
->page_tree
,
1680 page_index(page
), PAGECACHE_TAG_DIRTY
);
1682 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1684 unlock_page_memcg(page
);
1686 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1690 const struct address_space_operations xfs_address_space_operations
= {
1691 .readpage
= xfs_vm_readpage
,
1692 .readpages
= xfs_vm_readpages
,
1693 .writepage
= xfs_vm_writepage
,
1694 .writepages
= xfs_vm_writepages
,
1695 .set_page_dirty
= xfs_vm_set_page_dirty
,
1696 .releasepage
= xfs_vm_releasepage
,
1697 .invalidatepage
= xfs_vm_invalidatepage
,
1698 .bmap
= xfs_vm_bmap
,
1699 .direct_IO
= xfs_vm_direct_IO
,
1700 .migratepage
= buffer_migrate_page
,
1701 .is_partially_uptodate
= block_is_partially_uptodate
,
1702 .error_remove_page
= generic_error_remove_page
,