]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_aops.c
Merge branch 'sb_writers_pcpu_rwsem' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 void
40 xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
43 int *unwritten)
44 {
45 struct buffer_head *bh, *head;
46
47 *delalloc = *unwritten = 0;
48
49 bh = head = page_buffers(page);
50 do {
51 if (buffer_unwritten(bh))
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56 }
57
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 struct inode *inode)
61 {
62 struct xfs_inode *ip = XFS_I(inode);
63 struct xfs_mount *mp = ip->i_mount;
64
65 if (XFS_IS_REALTIME_INODE(ip))
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69 }
70
71 /*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
77 STATIC void
78 xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80 {
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
85 bh->b_end_io(bh, !ioend->io_error);
86 }
87
88 mempool_free(ioend, xfs_ioend_pool);
89 }
90
91 /*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103 {
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 if (error) {
112 xfs_trans_cancel(tp);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
118 /*
119 * We may pass freeze protection with a transaction. So tell lockdep
120 * we released it.
121 */
122 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
123 /*
124 * We hand off the transaction to the completion thread now, so
125 * clear the flag here.
126 */
127 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 return 0;
129 }
130
131 /*
132 * Update on-disk file size now that data has been written to disk.
133 */
134 STATIC int
135 xfs_setfilesize(
136 struct xfs_inode *ip,
137 struct xfs_trans *tp,
138 xfs_off_t offset,
139 size_t size)
140 {
141 xfs_fsize_t isize;
142
143 xfs_ilock(ip, XFS_ILOCK_EXCL);
144 isize = xfs_new_eof(ip, offset + size);
145 if (!isize) {
146 xfs_iunlock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_cancel(tp);
148 return 0;
149 }
150
151 trace_xfs_setfilesize(ip, offset, size);
152
153 ip->i_d.di_size = isize;
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156
157 return xfs_trans_commit(tp);
158 }
159
160 STATIC int
161 xfs_setfilesize_ioend(
162 struct xfs_ioend *ioend)
163 {
164 struct xfs_inode *ip = XFS_I(ioend->io_inode);
165 struct xfs_trans *tp = ioend->io_append_trans;
166
167 /*
168 * The transaction may have been allocated in the I/O submission thread,
169 * thus we need to mark ourselves as being in a transaction manually.
170 * Similarly for freeze protection.
171 */
172 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
173 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
174
175 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
176 }
177
178 /*
179 * Schedule IO completion handling on the final put of an ioend.
180 *
181 * If there is no work to do we might as well call it a day and free the
182 * ioend right now.
183 */
184 STATIC void
185 xfs_finish_ioend(
186 struct xfs_ioend *ioend)
187 {
188 if (atomic_dec_and_test(&ioend->io_remaining)) {
189 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
190
191 if (ioend->io_type == XFS_IO_UNWRITTEN)
192 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
193 else if (ioend->io_append_trans)
194 queue_work(mp->m_data_workqueue, &ioend->io_work);
195 else
196 xfs_destroy_ioend(ioend);
197 }
198 }
199
200 /*
201 * IO write completion.
202 */
203 STATIC void
204 xfs_end_io(
205 struct work_struct *work)
206 {
207 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
208 struct xfs_inode *ip = XFS_I(ioend->io_inode);
209 int error = 0;
210
211 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
212 ioend->io_error = -EIO;
213 goto done;
214 }
215 if (ioend->io_error)
216 goto done;
217
218 /*
219 * For unwritten extents we need to issue transactions to convert a
220 * range to normal written extens after the data I/O has finished.
221 */
222 if (ioend->io_type == XFS_IO_UNWRITTEN) {
223 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
224 ioend->io_size);
225 } else if (ioend->io_append_trans) {
226 error = xfs_setfilesize_ioend(ioend);
227 } else {
228 ASSERT(!xfs_ioend_is_append(ioend));
229 }
230
231 done:
232 if (error)
233 ioend->io_error = error;
234 xfs_destroy_ioend(ioend);
235 }
236
237 /*
238 * Allocate and initialise an IO completion structure.
239 * We need to track unwritten extent write completion here initially.
240 * We'll need to extend this for updating the ondisk inode size later
241 * (vs. incore size).
242 */
243 STATIC xfs_ioend_t *
244 xfs_alloc_ioend(
245 struct inode *inode,
246 unsigned int type)
247 {
248 xfs_ioend_t *ioend;
249
250 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
251
252 /*
253 * Set the count to 1 initially, which will prevent an I/O
254 * completion callback from happening before we have started
255 * all the I/O from calling the completion routine too early.
256 */
257 atomic_set(&ioend->io_remaining, 1);
258 ioend->io_error = 0;
259 ioend->io_list = NULL;
260 ioend->io_type = type;
261 ioend->io_inode = inode;
262 ioend->io_buffer_head = NULL;
263 ioend->io_buffer_tail = NULL;
264 ioend->io_offset = 0;
265 ioend->io_size = 0;
266 ioend->io_append_trans = NULL;
267
268 INIT_WORK(&ioend->io_work, xfs_end_io);
269 return ioend;
270 }
271
272 STATIC int
273 xfs_map_blocks(
274 struct inode *inode,
275 loff_t offset,
276 struct xfs_bmbt_irec *imap,
277 int type,
278 int nonblocking)
279 {
280 struct xfs_inode *ip = XFS_I(inode);
281 struct xfs_mount *mp = ip->i_mount;
282 ssize_t count = 1 << inode->i_blkbits;
283 xfs_fileoff_t offset_fsb, end_fsb;
284 int error = 0;
285 int bmapi_flags = XFS_BMAPI_ENTIRE;
286 int nimaps = 1;
287
288 if (XFS_FORCED_SHUTDOWN(mp))
289 return -EIO;
290
291 if (type == XFS_IO_UNWRITTEN)
292 bmapi_flags |= XFS_BMAPI_IGSTATE;
293
294 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
295 if (nonblocking)
296 return -EAGAIN;
297 xfs_ilock(ip, XFS_ILOCK_SHARED);
298 }
299
300 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
301 (ip->i_df.if_flags & XFS_IFEXTENTS));
302 ASSERT(offset <= mp->m_super->s_maxbytes);
303
304 if (offset + count > mp->m_super->s_maxbytes)
305 count = mp->m_super->s_maxbytes - offset;
306 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
307 offset_fsb = XFS_B_TO_FSBT(mp, offset);
308 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
309 imap, &nimaps, bmapi_flags);
310 xfs_iunlock(ip, XFS_ILOCK_SHARED);
311
312 if (error)
313 return error;
314
315 if (type == XFS_IO_DELALLOC &&
316 (!nimaps || isnullstartblock(imap->br_startblock))) {
317 error = xfs_iomap_write_allocate(ip, offset, imap);
318 if (!error)
319 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
320 return error;
321 }
322
323 #ifdef DEBUG
324 if (type == XFS_IO_UNWRITTEN) {
325 ASSERT(nimaps);
326 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
327 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
328 }
329 #endif
330 if (nimaps)
331 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
332 return 0;
333 }
334
335 STATIC int
336 xfs_imap_valid(
337 struct inode *inode,
338 struct xfs_bmbt_irec *imap,
339 xfs_off_t offset)
340 {
341 offset >>= inode->i_blkbits;
342
343 return offset >= imap->br_startoff &&
344 offset < imap->br_startoff + imap->br_blockcount;
345 }
346
347 /*
348 * BIO completion handler for buffered IO.
349 */
350 STATIC void
351 xfs_end_bio(
352 struct bio *bio,
353 int error)
354 {
355 xfs_ioend_t *ioend = bio->bi_private;
356
357 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
358
359 /* Toss bio and pass work off to an xfsdatad thread */
360 bio->bi_private = NULL;
361 bio->bi_end_io = NULL;
362 bio_put(bio);
363
364 xfs_finish_ioend(ioend);
365 }
366
367 STATIC void
368 xfs_submit_ioend_bio(
369 struct writeback_control *wbc,
370 xfs_ioend_t *ioend,
371 struct bio *bio)
372 {
373 atomic_inc(&ioend->io_remaining);
374 bio->bi_private = ioend;
375 bio->bi_end_io = xfs_end_bio;
376 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
377 }
378
379 STATIC struct bio *
380 xfs_alloc_ioend_bio(
381 struct buffer_head *bh)
382 {
383 int nvecs = bio_get_nr_vecs(bh->b_bdev);
384 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
385
386 ASSERT(bio->bi_private == NULL);
387 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
388 bio->bi_bdev = bh->b_bdev;
389 return bio;
390 }
391
392 STATIC void
393 xfs_start_buffer_writeback(
394 struct buffer_head *bh)
395 {
396 ASSERT(buffer_mapped(bh));
397 ASSERT(buffer_locked(bh));
398 ASSERT(!buffer_delay(bh));
399 ASSERT(!buffer_unwritten(bh));
400
401 mark_buffer_async_write(bh);
402 set_buffer_uptodate(bh);
403 clear_buffer_dirty(bh);
404 }
405
406 STATIC void
407 xfs_start_page_writeback(
408 struct page *page,
409 int clear_dirty,
410 int buffers)
411 {
412 ASSERT(PageLocked(page));
413 ASSERT(!PageWriteback(page));
414
415 /*
416 * if the page was not fully cleaned, we need to ensure that the higher
417 * layers come back to it correctly. That means we need to keep the page
418 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
419 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
420 * write this page in this writeback sweep will be made.
421 */
422 if (clear_dirty) {
423 clear_page_dirty_for_io(page);
424 set_page_writeback(page);
425 } else
426 set_page_writeback_keepwrite(page);
427
428 unlock_page(page);
429
430 /* If no buffers on the page are to be written, finish it here */
431 if (!buffers)
432 end_page_writeback(page);
433 }
434
435 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
436 {
437 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
438 }
439
440 /*
441 * Submit all of the bios for all of the ioends we have saved up, covering the
442 * initial writepage page and also any probed pages.
443 *
444 * Because we may have multiple ioends spanning a page, we need to start
445 * writeback on all the buffers before we submit them for I/O. If we mark the
446 * buffers as we got, then we can end up with a page that only has buffers
447 * marked async write and I/O complete on can occur before we mark the other
448 * buffers async write.
449 *
450 * The end result of this is that we trip a bug in end_page_writeback() because
451 * we call it twice for the one page as the code in end_buffer_async_write()
452 * assumes that all buffers on the page are started at the same time.
453 *
454 * The fix is two passes across the ioend list - one to start writeback on the
455 * buffer_heads, and then submit them for I/O on the second pass.
456 *
457 * If @fail is non-zero, it means that we have a situation where some part of
458 * the submission process has failed after we have marked paged for writeback
459 * and unlocked them. In this situation, we need to fail the ioend chain rather
460 * than submit it to IO. This typically only happens on a filesystem shutdown.
461 */
462 STATIC void
463 xfs_submit_ioend(
464 struct writeback_control *wbc,
465 xfs_ioend_t *ioend,
466 int fail)
467 {
468 xfs_ioend_t *head = ioend;
469 xfs_ioend_t *next;
470 struct buffer_head *bh;
471 struct bio *bio;
472 sector_t lastblock = 0;
473
474 /* Pass 1 - start writeback */
475 do {
476 next = ioend->io_list;
477 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
478 xfs_start_buffer_writeback(bh);
479 } while ((ioend = next) != NULL);
480
481 /* Pass 2 - submit I/O */
482 ioend = head;
483 do {
484 next = ioend->io_list;
485 bio = NULL;
486
487 /*
488 * If we are failing the IO now, just mark the ioend with an
489 * error and finish it. This will run IO completion immediately
490 * as there is only one reference to the ioend at this point in
491 * time.
492 */
493 if (fail) {
494 ioend->io_error = fail;
495 xfs_finish_ioend(ioend);
496 continue;
497 }
498
499 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
500
501 if (!bio) {
502 retry:
503 bio = xfs_alloc_ioend_bio(bh);
504 } else if (bh->b_blocknr != lastblock + 1) {
505 xfs_submit_ioend_bio(wbc, ioend, bio);
506 goto retry;
507 }
508
509 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
510 xfs_submit_ioend_bio(wbc, ioend, bio);
511 goto retry;
512 }
513
514 lastblock = bh->b_blocknr;
515 }
516 if (bio)
517 xfs_submit_ioend_bio(wbc, ioend, bio);
518 xfs_finish_ioend(ioend);
519 } while ((ioend = next) != NULL);
520 }
521
522 /*
523 * Cancel submission of all buffer_heads so far in this endio.
524 * Toss the endio too. Only ever called for the initial page
525 * in a writepage request, so only ever one page.
526 */
527 STATIC void
528 xfs_cancel_ioend(
529 xfs_ioend_t *ioend)
530 {
531 xfs_ioend_t *next;
532 struct buffer_head *bh, *next_bh;
533
534 do {
535 next = ioend->io_list;
536 bh = ioend->io_buffer_head;
537 do {
538 next_bh = bh->b_private;
539 clear_buffer_async_write(bh);
540 /*
541 * The unwritten flag is cleared when added to the
542 * ioend. We're not submitting for I/O so mark the
543 * buffer unwritten again for next time around.
544 */
545 if (ioend->io_type == XFS_IO_UNWRITTEN)
546 set_buffer_unwritten(bh);
547 unlock_buffer(bh);
548 } while ((bh = next_bh) != NULL);
549
550 mempool_free(ioend, xfs_ioend_pool);
551 } while ((ioend = next) != NULL);
552 }
553
554 /*
555 * Test to see if we've been building up a completion structure for
556 * earlier buffers -- if so, we try to append to this ioend if we
557 * can, otherwise we finish off any current ioend and start another.
558 * Return true if we've finished the given ioend.
559 */
560 STATIC void
561 xfs_add_to_ioend(
562 struct inode *inode,
563 struct buffer_head *bh,
564 xfs_off_t offset,
565 unsigned int type,
566 xfs_ioend_t **result,
567 int need_ioend)
568 {
569 xfs_ioend_t *ioend = *result;
570
571 if (!ioend || need_ioend || type != ioend->io_type) {
572 xfs_ioend_t *previous = *result;
573
574 ioend = xfs_alloc_ioend(inode, type);
575 ioend->io_offset = offset;
576 ioend->io_buffer_head = bh;
577 ioend->io_buffer_tail = bh;
578 if (previous)
579 previous->io_list = ioend;
580 *result = ioend;
581 } else {
582 ioend->io_buffer_tail->b_private = bh;
583 ioend->io_buffer_tail = bh;
584 }
585
586 bh->b_private = NULL;
587 ioend->io_size += bh->b_size;
588 }
589
590 STATIC void
591 xfs_map_buffer(
592 struct inode *inode,
593 struct buffer_head *bh,
594 struct xfs_bmbt_irec *imap,
595 xfs_off_t offset)
596 {
597 sector_t bn;
598 struct xfs_mount *m = XFS_I(inode)->i_mount;
599 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
600 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
601
602 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
603 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
604
605 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
606 ((offset - iomap_offset) >> inode->i_blkbits);
607
608 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
609
610 bh->b_blocknr = bn;
611 set_buffer_mapped(bh);
612 }
613
614 STATIC void
615 xfs_map_at_offset(
616 struct inode *inode,
617 struct buffer_head *bh,
618 struct xfs_bmbt_irec *imap,
619 xfs_off_t offset)
620 {
621 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
622 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
623
624 xfs_map_buffer(inode, bh, imap, offset);
625 set_buffer_mapped(bh);
626 clear_buffer_delay(bh);
627 clear_buffer_unwritten(bh);
628 }
629
630 /*
631 * Test if a given page contains at least one buffer of a given @type.
632 * If @check_all_buffers is true, then we walk all the buffers in the page to
633 * try to find one of the type passed in. If it is not set, then the caller only
634 * needs to check the first buffer on the page for a match.
635 */
636 STATIC bool
637 xfs_check_page_type(
638 struct page *page,
639 unsigned int type,
640 bool check_all_buffers)
641 {
642 struct buffer_head *bh;
643 struct buffer_head *head;
644
645 if (PageWriteback(page))
646 return false;
647 if (!page->mapping)
648 return false;
649 if (!page_has_buffers(page))
650 return false;
651
652 bh = head = page_buffers(page);
653 do {
654 if (buffer_unwritten(bh)) {
655 if (type == XFS_IO_UNWRITTEN)
656 return true;
657 } else if (buffer_delay(bh)) {
658 if (type == XFS_IO_DELALLOC)
659 return true;
660 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
661 if (type == XFS_IO_OVERWRITE)
662 return true;
663 }
664
665 /* If we are only checking the first buffer, we are done now. */
666 if (!check_all_buffers)
667 break;
668 } while ((bh = bh->b_this_page) != head);
669
670 return false;
671 }
672
673 /*
674 * Allocate & map buffers for page given the extent map. Write it out.
675 * except for the original page of a writepage, this is called on
676 * delalloc/unwritten pages only, for the original page it is possible
677 * that the page has no mapping at all.
678 */
679 STATIC int
680 xfs_convert_page(
681 struct inode *inode,
682 struct page *page,
683 loff_t tindex,
684 struct xfs_bmbt_irec *imap,
685 xfs_ioend_t **ioendp,
686 struct writeback_control *wbc)
687 {
688 struct buffer_head *bh, *head;
689 xfs_off_t end_offset;
690 unsigned long p_offset;
691 unsigned int type;
692 int len, page_dirty;
693 int count = 0, done = 0, uptodate = 1;
694 xfs_off_t offset = page_offset(page);
695
696 if (page->index != tindex)
697 goto fail;
698 if (!trylock_page(page))
699 goto fail;
700 if (PageWriteback(page))
701 goto fail_unlock_page;
702 if (page->mapping != inode->i_mapping)
703 goto fail_unlock_page;
704 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
705 goto fail_unlock_page;
706
707 /*
708 * page_dirty is initially a count of buffers on the page before
709 * EOF and is decremented as we move each into a cleanable state.
710 *
711 * Derivation:
712 *
713 * End offset is the highest offset that this page should represent.
714 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
715 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
716 * hence give us the correct page_dirty count. On any other page,
717 * it will be zero and in that case we need page_dirty to be the
718 * count of buffers on the page.
719 */
720 end_offset = min_t(unsigned long long,
721 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
722 i_size_read(inode));
723
724 /*
725 * If the current map does not span the entire page we are about to try
726 * to write, then give up. The only way we can write a page that spans
727 * multiple mappings in a single writeback iteration is via the
728 * xfs_vm_writepage() function. Data integrity writeback requires the
729 * entire page to be written in a single attempt, otherwise the part of
730 * the page we don't write here doesn't get written as part of the data
731 * integrity sync.
732 *
733 * For normal writeback, we also don't attempt to write partial pages
734 * here as it simply means that write_cache_pages() will see it under
735 * writeback and ignore the page until some point in the future, at
736 * which time this will be the only page in the file that needs
737 * writeback. Hence for more optimal IO patterns, we should always
738 * avoid partial page writeback due to multiple mappings on a page here.
739 */
740 if (!xfs_imap_valid(inode, imap, end_offset))
741 goto fail_unlock_page;
742
743 len = 1 << inode->i_blkbits;
744 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
745 PAGE_CACHE_SIZE);
746 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
747 page_dirty = p_offset / len;
748
749 /*
750 * The moment we find a buffer that doesn't match our current type
751 * specification or can't be written, abort the loop and start
752 * writeback. As per the above xfs_imap_valid() check, only
753 * xfs_vm_writepage() can handle partial page writeback fully - we are
754 * limited here to the buffers that are contiguous with the current
755 * ioend, and hence a buffer we can't write breaks that contiguity and
756 * we have to defer the rest of the IO to xfs_vm_writepage().
757 */
758 bh = head = page_buffers(page);
759 do {
760 if (offset >= end_offset)
761 break;
762 if (!buffer_uptodate(bh))
763 uptodate = 0;
764 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
765 done = 1;
766 break;
767 }
768
769 if (buffer_unwritten(bh) || buffer_delay(bh) ||
770 buffer_mapped(bh)) {
771 if (buffer_unwritten(bh))
772 type = XFS_IO_UNWRITTEN;
773 else if (buffer_delay(bh))
774 type = XFS_IO_DELALLOC;
775 else
776 type = XFS_IO_OVERWRITE;
777
778 /*
779 * imap should always be valid because of the above
780 * partial page end_offset check on the imap.
781 */
782 ASSERT(xfs_imap_valid(inode, imap, offset));
783
784 lock_buffer(bh);
785 if (type != XFS_IO_OVERWRITE)
786 xfs_map_at_offset(inode, bh, imap, offset);
787 xfs_add_to_ioend(inode, bh, offset, type,
788 ioendp, done);
789
790 page_dirty--;
791 count++;
792 } else {
793 done = 1;
794 break;
795 }
796 } while (offset += len, (bh = bh->b_this_page) != head);
797
798 if (uptodate && bh == head)
799 SetPageUptodate(page);
800
801 if (count) {
802 if (--wbc->nr_to_write <= 0 &&
803 wbc->sync_mode == WB_SYNC_NONE)
804 done = 1;
805 }
806 xfs_start_page_writeback(page, !page_dirty, count);
807
808 return done;
809 fail_unlock_page:
810 unlock_page(page);
811 fail:
812 return 1;
813 }
814
815 /*
816 * Convert & write out a cluster of pages in the same extent as defined
817 * by mp and following the start page.
818 */
819 STATIC void
820 xfs_cluster_write(
821 struct inode *inode,
822 pgoff_t tindex,
823 struct xfs_bmbt_irec *imap,
824 xfs_ioend_t **ioendp,
825 struct writeback_control *wbc,
826 pgoff_t tlast)
827 {
828 struct pagevec pvec;
829 int done = 0, i;
830
831 pagevec_init(&pvec, 0);
832 while (!done && tindex <= tlast) {
833 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
834
835 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
836 break;
837
838 for (i = 0; i < pagevec_count(&pvec); i++) {
839 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
840 imap, ioendp, wbc);
841 if (done)
842 break;
843 }
844
845 pagevec_release(&pvec);
846 cond_resched();
847 }
848 }
849
850 STATIC void
851 xfs_vm_invalidatepage(
852 struct page *page,
853 unsigned int offset,
854 unsigned int length)
855 {
856 trace_xfs_invalidatepage(page->mapping->host, page, offset,
857 length);
858 block_invalidatepage(page, offset, length);
859 }
860
861 /*
862 * If the page has delalloc buffers on it, we need to punch them out before we
863 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
864 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
865 * is done on that same region - the delalloc extent is returned when none is
866 * supposed to be there.
867 *
868 * We prevent this by truncating away the delalloc regions on the page before
869 * invalidating it. Because they are delalloc, we can do this without needing a
870 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
871 * truncation without a transaction as there is no space left for block
872 * reservation (typically why we see a ENOSPC in writeback).
873 *
874 * This is not a performance critical path, so for now just do the punching a
875 * buffer head at a time.
876 */
877 STATIC void
878 xfs_aops_discard_page(
879 struct page *page)
880 {
881 struct inode *inode = page->mapping->host;
882 struct xfs_inode *ip = XFS_I(inode);
883 struct buffer_head *bh, *head;
884 loff_t offset = page_offset(page);
885
886 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
887 goto out_invalidate;
888
889 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
890 goto out_invalidate;
891
892 xfs_alert(ip->i_mount,
893 "page discard on page %p, inode 0x%llx, offset %llu.",
894 page, ip->i_ino, offset);
895
896 xfs_ilock(ip, XFS_ILOCK_EXCL);
897 bh = head = page_buffers(page);
898 do {
899 int error;
900 xfs_fileoff_t start_fsb;
901
902 if (!buffer_delay(bh))
903 goto next_buffer;
904
905 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
906 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
907 if (error) {
908 /* something screwed, just bail */
909 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
910 xfs_alert(ip->i_mount,
911 "page discard unable to remove delalloc mapping.");
912 }
913 break;
914 }
915 next_buffer:
916 offset += 1 << inode->i_blkbits;
917
918 } while ((bh = bh->b_this_page) != head);
919
920 xfs_iunlock(ip, XFS_ILOCK_EXCL);
921 out_invalidate:
922 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
923 return;
924 }
925
926 /*
927 * Write out a dirty page.
928 *
929 * For delalloc space on the page we need to allocate space and flush it.
930 * For unwritten space on the page we need to start the conversion to
931 * regular allocated space.
932 * For any other dirty buffer heads on the page we should flush them.
933 */
934 STATIC int
935 xfs_vm_writepage(
936 struct page *page,
937 struct writeback_control *wbc)
938 {
939 struct inode *inode = page->mapping->host;
940 struct buffer_head *bh, *head;
941 struct xfs_bmbt_irec imap;
942 xfs_ioend_t *ioend = NULL, *iohead = NULL;
943 loff_t offset;
944 unsigned int type;
945 __uint64_t end_offset;
946 pgoff_t end_index, last_index;
947 ssize_t len;
948 int err, imap_valid = 0, uptodate = 1;
949 int count = 0;
950 int nonblocking = 0;
951
952 trace_xfs_writepage(inode, page, 0, 0);
953
954 ASSERT(page_has_buffers(page));
955
956 /*
957 * Refuse to write the page out if we are called from reclaim context.
958 *
959 * This avoids stack overflows when called from deeply used stacks in
960 * random callers for direct reclaim or memcg reclaim. We explicitly
961 * allow reclaim from kswapd as the stack usage there is relatively low.
962 *
963 * This should never happen except in the case of a VM regression so
964 * warn about it.
965 */
966 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
967 PF_MEMALLOC))
968 goto redirty;
969
970 /*
971 * Given that we do not allow direct reclaim to call us, we should
972 * never be called while in a filesystem transaction.
973 */
974 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
975 goto redirty;
976
977 /* Is this page beyond the end of the file? */
978 offset = i_size_read(inode);
979 end_index = offset >> PAGE_CACHE_SHIFT;
980 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
981
982 /*
983 * The page index is less than the end_index, adjust the end_offset
984 * to the highest offset that this page should represent.
985 * -----------------------------------------------------
986 * | file mapping | <EOF> |
987 * -----------------------------------------------------
988 * | Page ... | Page N-2 | Page N-1 | Page N | |
989 * ^--------------------------------^----------|--------
990 * | desired writeback range | see else |
991 * ---------------------------------^------------------|
992 */
993 if (page->index < end_index)
994 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
995 else {
996 /*
997 * Check whether the page to write out is beyond or straddles
998 * i_size or not.
999 * -------------------------------------------------------
1000 * | file mapping | <EOF> |
1001 * -------------------------------------------------------
1002 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1003 * ^--------------------------------^-----------|---------
1004 * | | Straddles |
1005 * ---------------------------------^-----------|--------|
1006 */
1007 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1008
1009 /*
1010 * Skip the page if it is fully outside i_size, e.g. due to a
1011 * truncate operation that is in progress. We must redirty the
1012 * page so that reclaim stops reclaiming it. Otherwise
1013 * xfs_vm_releasepage() is called on it and gets confused.
1014 *
1015 * Note that the end_index is unsigned long, it would overflow
1016 * if the given offset is greater than 16TB on 32-bit system
1017 * and if we do check the page is fully outside i_size or not
1018 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1019 * will be evaluated to 0. Hence this page will be redirtied
1020 * and be written out repeatedly which would result in an
1021 * infinite loop, the user program that perform this operation
1022 * will hang. Instead, we can verify this situation by checking
1023 * if the page to write is totally beyond the i_size or if it's
1024 * offset is just equal to the EOF.
1025 */
1026 if (page->index > end_index ||
1027 (page->index == end_index && offset_into_page == 0))
1028 goto redirty;
1029
1030 /*
1031 * The page straddles i_size. It must be zeroed out on each
1032 * and every writepage invocation because it may be mmapped.
1033 * "A file is mapped in multiples of the page size. For a file
1034 * that is not a multiple of the page size, the remaining
1035 * memory is zeroed when mapped, and writes to that region are
1036 * not written out to the file."
1037 */
1038 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1039
1040 /* Adjust the end_offset to the end of file */
1041 end_offset = offset;
1042 }
1043
1044 len = 1 << inode->i_blkbits;
1045
1046 bh = head = page_buffers(page);
1047 offset = page_offset(page);
1048 type = XFS_IO_OVERWRITE;
1049
1050 if (wbc->sync_mode == WB_SYNC_NONE)
1051 nonblocking = 1;
1052
1053 do {
1054 int new_ioend = 0;
1055
1056 if (offset >= end_offset)
1057 break;
1058 if (!buffer_uptodate(bh))
1059 uptodate = 0;
1060
1061 /*
1062 * set_page_dirty dirties all buffers in a page, independent
1063 * of their state. The dirty state however is entirely
1064 * meaningless for holes (!mapped && uptodate), so skip
1065 * buffers covering holes here.
1066 */
1067 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1068 imap_valid = 0;
1069 continue;
1070 }
1071
1072 if (buffer_unwritten(bh)) {
1073 if (type != XFS_IO_UNWRITTEN) {
1074 type = XFS_IO_UNWRITTEN;
1075 imap_valid = 0;
1076 }
1077 } else if (buffer_delay(bh)) {
1078 if (type != XFS_IO_DELALLOC) {
1079 type = XFS_IO_DELALLOC;
1080 imap_valid = 0;
1081 }
1082 } else if (buffer_uptodate(bh)) {
1083 if (type != XFS_IO_OVERWRITE) {
1084 type = XFS_IO_OVERWRITE;
1085 imap_valid = 0;
1086 }
1087 } else {
1088 if (PageUptodate(page))
1089 ASSERT(buffer_mapped(bh));
1090 /*
1091 * This buffer is not uptodate and will not be
1092 * written to disk. Ensure that we will put any
1093 * subsequent writeable buffers into a new
1094 * ioend.
1095 */
1096 imap_valid = 0;
1097 continue;
1098 }
1099
1100 if (imap_valid)
1101 imap_valid = xfs_imap_valid(inode, &imap, offset);
1102 if (!imap_valid) {
1103 /*
1104 * If we didn't have a valid mapping then we need to
1105 * put the new mapping into a separate ioend structure.
1106 * This ensures non-contiguous extents always have
1107 * separate ioends, which is particularly important
1108 * for unwritten extent conversion at I/O completion
1109 * time.
1110 */
1111 new_ioend = 1;
1112 err = xfs_map_blocks(inode, offset, &imap, type,
1113 nonblocking);
1114 if (err)
1115 goto error;
1116 imap_valid = xfs_imap_valid(inode, &imap, offset);
1117 }
1118 if (imap_valid) {
1119 lock_buffer(bh);
1120 if (type != XFS_IO_OVERWRITE)
1121 xfs_map_at_offset(inode, bh, &imap, offset);
1122 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1123 new_ioend);
1124 count++;
1125 }
1126
1127 if (!iohead)
1128 iohead = ioend;
1129
1130 } while (offset += len, ((bh = bh->b_this_page) != head));
1131
1132 if (uptodate && bh == head)
1133 SetPageUptodate(page);
1134
1135 xfs_start_page_writeback(page, 1, count);
1136
1137 /* if there is no IO to be submitted for this page, we are done */
1138 if (!ioend)
1139 return 0;
1140
1141 ASSERT(iohead);
1142
1143 /*
1144 * Any errors from this point onwards need tobe reported through the IO
1145 * completion path as we have marked the initial page as under writeback
1146 * and unlocked it.
1147 */
1148 if (imap_valid) {
1149 xfs_off_t end_index;
1150
1151 end_index = imap.br_startoff + imap.br_blockcount;
1152
1153 /* to bytes */
1154 end_index <<= inode->i_blkbits;
1155
1156 /* to pages */
1157 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1158
1159 /* check against file size */
1160 if (end_index > last_index)
1161 end_index = last_index;
1162
1163 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1164 wbc, end_index);
1165 }
1166
1167
1168 /*
1169 * Reserve log space if we might write beyond the on-disk inode size.
1170 */
1171 err = 0;
1172 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1173 err = xfs_setfilesize_trans_alloc(ioend);
1174
1175 xfs_submit_ioend(wbc, iohead, err);
1176
1177 return 0;
1178
1179 error:
1180 if (iohead)
1181 xfs_cancel_ioend(iohead);
1182
1183 if (err == -EAGAIN)
1184 goto redirty;
1185
1186 xfs_aops_discard_page(page);
1187 ClearPageUptodate(page);
1188 unlock_page(page);
1189 return err;
1190
1191 redirty:
1192 redirty_page_for_writepage(wbc, page);
1193 unlock_page(page);
1194 return 0;
1195 }
1196
1197 STATIC int
1198 xfs_vm_writepages(
1199 struct address_space *mapping,
1200 struct writeback_control *wbc)
1201 {
1202 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1203 return generic_writepages(mapping, wbc);
1204 }
1205
1206 /*
1207 * Called to move a page into cleanable state - and from there
1208 * to be released. The page should already be clean. We always
1209 * have buffer heads in this call.
1210 *
1211 * Returns 1 if the page is ok to release, 0 otherwise.
1212 */
1213 STATIC int
1214 xfs_vm_releasepage(
1215 struct page *page,
1216 gfp_t gfp_mask)
1217 {
1218 int delalloc, unwritten;
1219
1220 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1221
1222 xfs_count_page_state(page, &delalloc, &unwritten);
1223
1224 if (WARN_ON_ONCE(delalloc))
1225 return 0;
1226 if (WARN_ON_ONCE(unwritten))
1227 return 0;
1228
1229 return try_to_free_buffers(page);
1230 }
1231
1232 /*
1233 * When we map a DIO buffer, we may need to attach an ioend that describes the
1234 * type of write IO we are doing. This passes to the completion function the
1235 * operations it needs to perform. If the mapping is for an overwrite wholly
1236 * within the EOF then we don't need an ioend and so we don't allocate one.
1237 * This avoids the unnecessary overhead of allocating and freeing ioends for
1238 * workloads that don't require transactions on IO completion.
1239 *
1240 * If we get multiple mappings in a single IO, we might be mapping different
1241 * types. But because the direct IO can only have a single private pointer, we
1242 * need to ensure that:
1243 *
1244 * a) i) the ioend spans the entire region of unwritten mappings; or
1245 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
1246 * b) if it contains unwritten extents, it is *permanently* marked as such
1247 *
1248 * We could do this by chaining ioends like buffered IO does, but we only
1249 * actually get one IO completion callback from the direct IO, and that spans
1250 * the entire IO regardless of how many mappings and IOs are needed to complete
1251 * the DIO. There is only going to be one reference to the ioend and its life
1252 * cycle is constrained by the DIO completion code. hence we don't need
1253 * reference counting here.
1254 */
1255 static void
1256 xfs_map_direct(
1257 struct inode *inode,
1258 struct buffer_head *bh_result,
1259 struct xfs_bmbt_irec *imap,
1260 xfs_off_t offset)
1261 {
1262 struct xfs_ioend *ioend;
1263 xfs_off_t size = bh_result->b_size;
1264 int type;
1265
1266 if (ISUNWRITTEN(imap))
1267 type = XFS_IO_UNWRITTEN;
1268 else
1269 type = XFS_IO_OVERWRITE;
1270
1271 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1272
1273 if (bh_result->b_private) {
1274 ioend = bh_result->b_private;
1275 ASSERT(ioend->io_size > 0);
1276 ASSERT(offset >= ioend->io_offset);
1277 if (offset + size > ioend->io_offset + ioend->io_size)
1278 ioend->io_size = offset - ioend->io_offset + size;
1279
1280 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1281 ioend->io_type = XFS_IO_UNWRITTEN;
1282
1283 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1284 ioend->io_size, ioend->io_type,
1285 imap);
1286 } else if (type == XFS_IO_UNWRITTEN ||
1287 offset + size > i_size_read(inode)) {
1288 ioend = xfs_alloc_ioend(inode, type);
1289 ioend->io_offset = offset;
1290 ioend->io_size = size;
1291
1292 bh_result->b_private = ioend;
1293 set_buffer_defer_completion(bh_result);
1294
1295 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1296 imap);
1297 } else {
1298 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1299 imap);
1300 }
1301 }
1302
1303 /*
1304 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1305 * is, so that we can avoid repeated get_blocks calls.
1306 *
1307 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1308 * for blocks beyond EOF must be marked new so that sub block regions can be
1309 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1310 * was just allocated or is unwritten, otherwise the callers would overwrite
1311 * existing data with zeros. Hence we have to split the mapping into a range up
1312 * to and including EOF, and a second mapping for beyond EOF.
1313 */
1314 static void
1315 xfs_map_trim_size(
1316 struct inode *inode,
1317 sector_t iblock,
1318 struct buffer_head *bh_result,
1319 struct xfs_bmbt_irec *imap,
1320 xfs_off_t offset,
1321 ssize_t size)
1322 {
1323 xfs_off_t mapping_size;
1324
1325 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1326 mapping_size <<= inode->i_blkbits;
1327
1328 ASSERT(mapping_size > 0);
1329 if (mapping_size > size)
1330 mapping_size = size;
1331 if (offset < i_size_read(inode) &&
1332 offset + mapping_size >= i_size_read(inode)) {
1333 /* limit mapping to block that spans EOF */
1334 mapping_size = roundup_64(i_size_read(inode) - offset,
1335 1 << inode->i_blkbits);
1336 }
1337 if (mapping_size > LONG_MAX)
1338 mapping_size = LONG_MAX;
1339
1340 bh_result->b_size = mapping_size;
1341 }
1342
1343 STATIC int
1344 __xfs_get_blocks(
1345 struct inode *inode,
1346 sector_t iblock,
1347 struct buffer_head *bh_result,
1348 int create,
1349 bool direct)
1350 {
1351 struct xfs_inode *ip = XFS_I(inode);
1352 struct xfs_mount *mp = ip->i_mount;
1353 xfs_fileoff_t offset_fsb, end_fsb;
1354 int error = 0;
1355 int lockmode = 0;
1356 struct xfs_bmbt_irec imap;
1357 int nimaps = 1;
1358 xfs_off_t offset;
1359 ssize_t size;
1360 int new = 0;
1361
1362 if (XFS_FORCED_SHUTDOWN(mp))
1363 return -EIO;
1364
1365 offset = (xfs_off_t)iblock << inode->i_blkbits;
1366 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1367 size = bh_result->b_size;
1368
1369 if (!create && direct && offset >= i_size_read(inode))
1370 return 0;
1371
1372 /*
1373 * Direct I/O is usually done on preallocated files, so try getting
1374 * a block mapping without an exclusive lock first. For buffered
1375 * writes we already have the exclusive iolock anyway, so avoiding
1376 * a lock roundtrip here by taking the ilock exclusive from the
1377 * beginning is a useful micro optimization.
1378 */
1379 if (create && !direct) {
1380 lockmode = XFS_ILOCK_EXCL;
1381 xfs_ilock(ip, lockmode);
1382 } else {
1383 lockmode = xfs_ilock_data_map_shared(ip);
1384 }
1385
1386 ASSERT(offset <= mp->m_super->s_maxbytes);
1387 if (offset + size > mp->m_super->s_maxbytes)
1388 size = mp->m_super->s_maxbytes - offset;
1389 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1390 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1391
1392 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1393 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1394 if (error)
1395 goto out_unlock;
1396
1397 if (create &&
1398 (!nimaps ||
1399 (imap.br_startblock == HOLESTARTBLOCK ||
1400 imap.br_startblock == DELAYSTARTBLOCK))) {
1401 if (direct || xfs_get_extsz_hint(ip)) {
1402 /*
1403 * Drop the ilock in preparation for starting the block
1404 * allocation transaction. It will be retaken
1405 * exclusively inside xfs_iomap_write_direct for the
1406 * actual allocation.
1407 */
1408 xfs_iunlock(ip, lockmode);
1409 error = xfs_iomap_write_direct(ip, offset, size,
1410 &imap, nimaps);
1411 if (error)
1412 return error;
1413 new = 1;
1414
1415 } else {
1416 /*
1417 * Delalloc reservations do not require a transaction,
1418 * we can go on without dropping the lock here. If we
1419 * are allocating a new delalloc block, make sure that
1420 * we set the new flag so that we mark the buffer new so
1421 * that we know that it is newly allocated if the write
1422 * fails.
1423 */
1424 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1425 new = 1;
1426 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1427 if (error)
1428 goto out_unlock;
1429
1430 xfs_iunlock(ip, lockmode);
1431 }
1432 trace_xfs_get_blocks_alloc(ip, offset, size,
1433 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1434 : XFS_IO_DELALLOC, &imap);
1435 } else if (nimaps) {
1436 trace_xfs_get_blocks_found(ip, offset, size,
1437 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1438 : XFS_IO_OVERWRITE, &imap);
1439 xfs_iunlock(ip, lockmode);
1440 } else {
1441 trace_xfs_get_blocks_notfound(ip, offset, size);
1442 goto out_unlock;
1443 }
1444
1445 /* trim mapping down to size requested */
1446 if (direct || size > (1 << inode->i_blkbits))
1447 xfs_map_trim_size(inode, iblock, bh_result,
1448 &imap, offset, size);
1449
1450 /*
1451 * For unwritten extents do not report a disk address in the buffered
1452 * read case (treat as if we're reading into a hole).
1453 */
1454 if (imap.br_startblock != HOLESTARTBLOCK &&
1455 imap.br_startblock != DELAYSTARTBLOCK &&
1456 (create || !ISUNWRITTEN(&imap))) {
1457 xfs_map_buffer(inode, bh_result, &imap, offset);
1458 if (ISUNWRITTEN(&imap))
1459 set_buffer_unwritten(bh_result);
1460 /* direct IO needs special help */
1461 if (create && direct)
1462 xfs_map_direct(inode, bh_result, &imap, offset);
1463 }
1464
1465 /*
1466 * If this is a realtime file, data may be on a different device.
1467 * to that pointed to from the buffer_head b_bdev currently.
1468 */
1469 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1470
1471 /*
1472 * If we previously allocated a block out beyond eof and we are now
1473 * coming back to use it then we will need to flag it as new even if it
1474 * has a disk address.
1475 *
1476 * With sub-block writes into unwritten extents we also need to mark
1477 * the buffer as new so that the unwritten parts of the buffer gets
1478 * correctly zeroed.
1479 */
1480 if (create &&
1481 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1482 (offset >= i_size_read(inode)) ||
1483 (new || ISUNWRITTEN(&imap))))
1484 set_buffer_new(bh_result);
1485
1486 if (imap.br_startblock == DELAYSTARTBLOCK) {
1487 BUG_ON(direct);
1488 if (create) {
1489 set_buffer_uptodate(bh_result);
1490 set_buffer_mapped(bh_result);
1491 set_buffer_delay(bh_result);
1492 }
1493 }
1494
1495 return 0;
1496
1497 out_unlock:
1498 xfs_iunlock(ip, lockmode);
1499 return error;
1500 }
1501
1502 int
1503 xfs_get_blocks(
1504 struct inode *inode,
1505 sector_t iblock,
1506 struct buffer_head *bh_result,
1507 int create)
1508 {
1509 return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1510 }
1511
1512 int
1513 xfs_get_blocks_direct(
1514 struct inode *inode,
1515 sector_t iblock,
1516 struct buffer_head *bh_result,
1517 int create)
1518 {
1519 return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1520 }
1521
1522 static void
1523 __xfs_end_io_direct_write(
1524 struct inode *inode,
1525 struct xfs_ioend *ioend,
1526 loff_t offset,
1527 ssize_t size)
1528 {
1529 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1530
1531 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1532 goto out_end_io;
1533
1534 /*
1535 * dio completion end_io functions are only called on writes if more
1536 * than 0 bytes was written.
1537 */
1538 ASSERT(size > 0);
1539
1540 /*
1541 * The ioend only maps whole blocks, while the IO may be sector aligned.
1542 * Hence the ioend offset/size may not match the IO offset/size exactly.
1543 * Because we don't map overwrites within EOF into the ioend, the offset
1544 * may not match, but only if the endio spans EOF. Either way, write
1545 * the IO sizes into the ioend so that completion processing does the
1546 * right thing.
1547 */
1548 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1549 ioend->io_size = size;
1550 ioend->io_offset = offset;
1551
1552 /*
1553 * The ioend tells us whether we are doing unwritten extent conversion
1554 * or an append transaction that updates the on-disk file size. These
1555 * cases are the only cases where we should *potentially* be needing
1556 * to update the VFS inode size.
1557 *
1558 * We need to update the in-core inode size here so that we don't end up
1559 * with the on-disk inode size being outside the in-core inode size. We
1560 * have no other method of updating EOF for AIO, so always do it here
1561 * if necessary.
1562 *
1563 * We need to lock the test/set EOF update as we can be racing with
1564 * other IO completions here to update the EOF. Failing to serialise
1565 * here can result in EOF moving backwards and Bad Things Happen when
1566 * that occurs.
1567 */
1568 spin_lock(&XFS_I(inode)->i_flags_lock);
1569 if (offset + size > i_size_read(inode))
1570 i_size_write(inode, offset + size);
1571 spin_unlock(&XFS_I(inode)->i_flags_lock);
1572
1573 /*
1574 * If we are doing an append IO that needs to update the EOF on disk,
1575 * do the transaction reserve now so we can use common end io
1576 * processing. Stashing the error (if there is one) in the ioend will
1577 * result in the ioend processing passing on the error if it is
1578 * possible as we can't return it from here.
1579 */
1580 if (ioend->io_type == XFS_IO_OVERWRITE)
1581 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1582
1583 out_end_io:
1584 xfs_end_io(&ioend->io_work);
1585 return;
1586 }
1587
1588 /*
1589 * Complete a direct I/O write request.
1590 *
1591 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1592 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1593 * wholly within the EOF and so there is nothing for us to do. Note that in this
1594 * case the completion can be called in interrupt context, whereas if we have an
1595 * ioend we will always be called in task context (i.e. from a workqueue).
1596 */
1597 STATIC void
1598 xfs_end_io_direct_write(
1599 struct kiocb *iocb,
1600 loff_t offset,
1601 ssize_t size,
1602 void *private)
1603 {
1604 struct inode *inode = file_inode(iocb->ki_filp);
1605 struct xfs_ioend *ioend = private;
1606
1607 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1608 ioend ? ioend->io_type : 0, NULL);
1609
1610 if (!ioend) {
1611 ASSERT(offset + size <= i_size_read(inode));
1612 return;
1613 }
1614
1615 __xfs_end_io_direct_write(inode, ioend, offset, size);
1616 }
1617
1618 /*
1619 * For DAX we need a mapping buffer callback for unwritten extent conversion
1620 * when page faults allocate blocks and then zero them. Note that in this
1621 * case the mapping indicated by the ioend may extend beyond EOF. We most
1622 * definitely do not want to extend EOF here, so we trim back the ioend size to
1623 * EOF.
1624 */
1625 #ifdef CONFIG_FS_DAX
1626 void
1627 xfs_end_io_dax_write(
1628 struct buffer_head *bh,
1629 int uptodate)
1630 {
1631 struct xfs_ioend *ioend = bh->b_private;
1632 struct inode *inode = ioend->io_inode;
1633 ssize_t size = ioend->io_size;
1634
1635 ASSERT(IS_DAX(ioend->io_inode));
1636
1637 /* if there was an error zeroing, then don't convert it */
1638 if (!uptodate)
1639 ioend->io_error = -EIO;
1640
1641 /*
1642 * Trim update to EOF, so we don't extend EOF during unwritten extent
1643 * conversion of partial EOF blocks.
1644 */
1645 spin_lock(&XFS_I(inode)->i_flags_lock);
1646 if (ioend->io_offset + size > i_size_read(inode))
1647 size = i_size_read(inode) - ioend->io_offset;
1648 spin_unlock(&XFS_I(inode)->i_flags_lock);
1649
1650 __xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1651
1652 }
1653 #else
1654 void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1655 #endif
1656
1657 static inline ssize_t
1658 xfs_vm_do_dio(
1659 struct inode *inode,
1660 struct kiocb *iocb,
1661 struct iov_iter *iter,
1662 loff_t offset,
1663 void (*endio)(struct kiocb *iocb,
1664 loff_t offset,
1665 ssize_t size,
1666 void *private),
1667 int flags)
1668 {
1669 struct block_device *bdev;
1670
1671 if (IS_DAX(inode))
1672 return dax_do_io(iocb, inode, iter, offset,
1673 xfs_get_blocks_direct, endio, 0);
1674
1675 bdev = xfs_find_bdev_for_inode(inode);
1676 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1677 xfs_get_blocks_direct, endio, NULL, flags);
1678 }
1679
1680 STATIC ssize_t
1681 xfs_vm_direct_IO(
1682 struct kiocb *iocb,
1683 struct iov_iter *iter,
1684 loff_t offset)
1685 {
1686 struct inode *inode = iocb->ki_filp->f_mapping->host;
1687
1688 if (iov_iter_rw(iter) == WRITE)
1689 return xfs_vm_do_dio(inode, iocb, iter, offset,
1690 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1691 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1692 }
1693
1694 /*
1695 * Punch out the delalloc blocks we have already allocated.
1696 *
1697 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1698 * as the page is still locked at this point.
1699 */
1700 STATIC void
1701 xfs_vm_kill_delalloc_range(
1702 struct inode *inode,
1703 loff_t start,
1704 loff_t end)
1705 {
1706 struct xfs_inode *ip = XFS_I(inode);
1707 xfs_fileoff_t start_fsb;
1708 xfs_fileoff_t end_fsb;
1709 int error;
1710
1711 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1712 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1713 if (end_fsb <= start_fsb)
1714 return;
1715
1716 xfs_ilock(ip, XFS_ILOCK_EXCL);
1717 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1718 end_fsb - start_fsb);
1719 if (error) {
1720 /* something screwed, just bail */
1721 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1722 xfs_alert(ip->i_mount,
1723 "xfs_vm_write_failed: unable to clean up ino %lld",
1724 ip->i_ino);
1725 }
1726 }
1727 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1728 }
1729
1730 STATIC void
1731 xfs_vm_write_failed(
1732 struct inode *inode,
1733 struct page *page,
1734 loff_t pos,
1735 unsigned len)
1736 {
1737 loff_t block_offset;
1738 loff_t block_start;
1739 loff_t block_end;
1740 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1741 loff_t to = from + len;
1742 struct buffer_head *bh, *head;
1743
1744 /*
1745 * The request pos offset might be 32 or 64 bit, this is all fine
1746 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1747 * platform, the high 32-bit will be masked off if we evaluate the
1748 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1749 * 0xfffff000 as an unsigned long, hence the result is incorrect
1750 * which could cause the following ASSERT failed in most cases.
1751 * In order to avoid this, we can evaluate the block_offset of the
1752 * start of the page by using shifts rather than masks the mismatch
1753 * problem.
1754 */
1755 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1756
1757 ASSERT(block_offset + from == pos);
1758
1759 head = page_buffers(page);
1760 block_start = 0;
1761 for (bh = head; bh != head || !block_start;
1762 bh = bh->b_this_page, block_start = block_end,
1763 block_offset += bh->b_size) {
1764 block_end = block_start + bh->b_size;
1765
1766 /* skip buffers before the write */
1767 if (block_end <= from)
1768 continue;
1769
1770 /* if the buffer is after the write, we're done */
1771 if (block_start >= to)
1772 break;
1773
1774 if (!buffer_delay(bh))
1775 continue;
1776
1777 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1778 continue;
1779
1780 xfs_vm_kill_delalloc_range(inode, block_offset,
1781 block_offset + bh->b_size);
1782
1783 /*
1784 * This buffer does not contain data anymore. make sure anyone
1785 * who finds it knows that for certain.
1786 */
1787 clear_buffer_delay(bh);
1788 clear_buffer_uptodate(bh);
1789 clear_buffer_mapped(bh);
1790 clear_buffer_new(bh);
1791 clear_buffer_dirty(bh);
1792 }
1793
1794 }
1795
1796 /*
1797 * This used to call block_write_begin(), but it unlocks and releases the page
1798 * on error, and we need that page to be able to punch stale delalloc blocks out
1799 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1800 * the appropriate point.
1801 */
1802 STATIC int
1803 xfs_vm_write_begin(
1804 struct file *file,
1805 struct address_space *mapping,
1806 loff_t pos,
1807 unsigned len,
1808 unsigned flags,
1809 struct page **pagep,
1810 void **fsdata)
1811 {
1812 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1813 struct page *page;
1814 int status;
1815
1816 ASSERT(len <= PAGE_CACHE_SIZE);
1817
1818 page = grab_cache_page_write_begin(mapping, index, flags);
1819 if (!page)
1820 return -ENOMEM;
1821
1822 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1823 if (unlikely(status)) {
1824 struct inode *inode = mapping->host;
1825 size_t isize = i_size_read(inode);
1826
1827 xfs_vm_write_failed(inode, page, pos, len);
1828 unlock_page(page);
1829
1830 /*
1831 * If the write is beyond EOF, we only want to kill blocks
1832 * allocated in this write, not blocks that were previously
1833 * written successfully.
1834 */
1835 if (pos + len > isize) {
1836 ssize_t start = max_t(ssize_t, pos, isize);
1837
1838 truncate_pagecache_range(inode, start, pos + len);
1839 }
1840
1841 page_cache_release(page);
1842 page = NULL;
1843 }
1844
1845 *pagep = page;
1846 return status;
1847 }
1848
1849 /*
1850 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1851 * this specific write because they will never be written. Previous writes
1852 * beyond EOF where block allocation succeeded do not need to be trashed, so
1853 * only new blocks from this write should be trashed. For blocks within
1854 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1855 * written with all the other valid data.
1856 */
1857 STATIC int
1858 xfs_vm_write_end(
1859 struct file *file,
1860 struct address_space *mapping,
1861 loff_t pos,
1862 unsigned len,
1863 unsigned copied,
1864 struct page *page,
1865 void *fsdata)
1866 {
1867 int ret;
1868
1869 ASSERT(len <= PAGE_CACHE_SIZE);
1870
1871 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1872 if (unlikely(ret < len)) {
1873 struct inode *inode = mapping->host;
1874 size_t isize = i_size_read(inode);
1875 loff_t to = pos + len;
1876
1877 if (to > isize) {
1878 /* only kill blocks in this write beyond EOF */
1879 if (pos > isize)
1880 isize = pos;
1881 xfs_vm_kill_delalloc_range(inode, isize, to);
1882 truncate_pagecache_range(inode, isize, to);
1883 }
1884 }
1885 return ret;
1886 }
1887
1888 STATIC sector_t
1889 xfs_vm_bmap(
1890 struct address_space *mapping,
1891 sector_t block)
1892 {
1893 struct inode *inode = (struct inode *)mapping->host;
1894 struct xfs_inode *ip = XFS_I(inode);
1895
1896 trace_xfs_vm_bmap(XFS_I(inode));
1897 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1898 filemap_write_and_wait(mapping);
1899 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1900 return generic_block_bmap(mapping, block, xfs_get_blocks);
1901 }
1902
1903 STATIC int
1904 xfs_vm_readpage(
1905 struct file *unused,
1906 struct page *page)
1907 {
1908 return mpage_readpage(page, xfs_get_blocks);
1909 }
1910
1911 STATIC int
1912 xfs_vm_readpages(
1913 struct file *unused,
1914 struct address_space *mapping,
1915 struct list_head *pages,
1916 unsigned nr_pages)
1917 {
1918 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1919 }
1920
1921 /*
1922 * This is basically a copy of __set_page_dirty_buffers() with one
1923 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1924 * dirty, we'll never be able to clean them because we don't write buffers
1925 * beyond EOF, and that means we can't invalidate pages that span EOF
1926 * that have been marked dirty. Further, the dirty state can leak into
1927 * the file interior if the file is extended, resulting in all sorts of
1928 * bad things happening as the state does not match the underlying data.
1929 *
1930 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1931 * this only exist because of bufferheads and how the generic code manages them.
1932 */
1933 STATIC int
1934 xfs_vm_set_page_dirty(
1935 struct page *page)
1936 {
1937 struct address_space *mapping = page->mapping;
1938 struct inode *inode = mapping->host;
1939 loff_t end_offset;
1940 loff_t offset;
1941 int newly_dirty;
1942 struct mem_cgroup *memcg;
1943
1944 if (unlikely(!mapping))
1945 return !TestSetPageDirty(page);
1946
1947 end_offset = i_size_read(inode);
1948 offset = page_offset(page);
1949
1950 spin_lock(&mapping->private_lock);
1951 if (page_has_buffers(page)) {
1952 struct buffer_head *head = page_buffers(page);
1953 struct buffer_head *bh = head;
1954
1955 do {
1956 if (offset < end_offset)
1957 set_buffer_dirty(bh);
1958 bh = bh->b_this_page;
1959 offset += 1 << inode->i_blkbits;
1960 } while (bh != head);
1961 }
1962 /*
1963 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1964 * per-memcg dirty page counters.
1965 */
1966 memcg = mem_cgroup_begin_page_stat(page);
1967 newly_dirty = !TestSetPageDirty(page);
1968 spin_unlock(&mapping->private_lock);
1969
1970 if (newly_dirty) {
1971 /* sigh - __set_page_dirty() is static, so copy it here, too */
1972 unsigned long flags;
1973
1974 spin_lock_irqsave(&mapping->tree_lock, flags);
1975 if (page->mapping) { /* Race with truncate? */
1976 WARN_ON_ONCE(!PageUptodate(page));
1977 account_page_dirtied(page, mapping, memcg);
1978 radix_tree_tag_set(&mapping->page_tree,
1979 page_index(page), PAGECACHE_TAG_DIRTY);
1980 }
1981 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1982 }
1983 mem_cgroup_end_page_stat(memcg);
1984 if (newly_dirty)
1985 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1986 return newly_dirty;
1987 }
1988
1989 const struct address_space_operations xfs_address_space_operations = {
1990 .readpage = xfs_vm_readpage,
1991 .readpages = xfs_vm_readpages,
1992 .writepage = xfs_vm_writepage,
1993 .writepages = xfs_vm_writepages,
1994 .set_page_dirty = xfs_vm_set_page_dirty,
1995 .releasepage = xfs_vm_releasepage,
1996 .invalidatepage = xfs_vm_invalidatepage,
1997 .write_begin = xfs_vm_write_begin,
1998 .write_end = xfs_vm_write_end,
1999 .bmap = xfs_vm_bmap,
2000 .direct_IO = xfs_vm_direct_IO,
2001 .migratepage = buffer_migrate_page,
2002 .is_partially_uptodate = block_is_partially_uptodate,
2003 .error_remove_page = generic_error_remove_page,
2004 };