]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_aops.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw...
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38
39 void
40 xfs_count_page_state(
41 struct page *page,
42 int *delalloc,
43 int *unwritten)
44 {
45 struct buffer_head *bh, *head;
46
47 *delalloc = *unwritten = 0;
48
49 bh = head = page_buffers(page);
50 do {
51 if (buffer_unwritten(bh))
52 (*unwritten) = 1;
53 else if (buffer_delay(bh))
54 (*delalloc) = 1;
55 } while ((bh = bh->b_this_page) != head);
56 }
57
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 struct inode *inode)
61 {
62 struct xfs_inode *ip = XFS_I(inode);
63 struct xfs_mount *mp = ip->i_mount;
64
65 if (XFS_IS_REALTIME_INODE(ip))
66 return mp->m_rtdev_targp->bt_bdev;
67 else
68 return mp->m_ddev_targp->bt_bdev;
69 }
70
71 /*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
76 */
77 STATIC void
78 xfs_destroy_ioend(
79 xfs_ioend_t *ioend)
80 {
81 struct buffer_head *bh, *next;
82
83 for (bh = ioend->io_buffer_head; bh; bh = next) {
84 next = bh->b_private;
85 bh->b_end_io(bh, !ioend->io_error);
86 }
87
88 mempool_free(ioend, xfs_ioend_pool);
89 }
90
91 /*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 return ioend->io_offset + ioend->io_size >
97 XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 struct xfs_ioend *ioend)
103 {
104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
105 struct xfs_trans *tp;
106 int error;
107
108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 if (error) {
112 xfs_trans_cancel(tp);
113 return error;
114 }
115
116 ioend->io_append_trans = tp;
117
118 /*
119 * We may pass freeze protection with a transaction. So tell lockdep
120 * we released it.
121 */
122 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 1, _THIS_IP_);
124 /*
125 * We hand off the transaction to the completion thread now, so
126 * clear the flag here.
127 */
128 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 return 0;
130 }
131
132 /*
133 * Update on-disk file size now that data has been written to disk.
134 */
135 STATIC int
136 xfs_setfilesize(
137 struct xfs_inode *ip,
138 struct xfs_trans *tp,
139 xfs_off_t offset,
140 size_t size)
141 {
142 xfs_fsize_t isize;
143
144 xfs_ilock(ip, XFS_ILOCK_EXCL);
145 isize = xfs_new_eof(ip, offset + size);
146 if (!isize) {
147 xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 xfs_trans_cancel(tp);
149 return 0;
150 }
151
152 trace_xfs_setfilesize(ip, offset, size);
153
154 ip->i_d.di_size = isize;
155 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157
158 return xfs_trans_commit(tp);
159 }
160
161 STATIC int
162 xfs_setfilesize_ioend(
163 struct xfs_ioend *ioend)
164 {
165 struct xfs_inode *ip = XFS_I(ioend->io_inode);
166 struct xfs_trans *tp = ioend->io_append_trans;
167
168 /*
169 * The transaction may have been allocated in the I/O submission thread,
170 * thus we need to mark ourselves as being in a transaction manually.
171 * Similarly for freeze protection.
172 */
173 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 0, 1, _THIS_IP_);
176
177 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178 }
179
180 /*
181 * Schedule IO completion handling on the final put of an ioend.
182 *
183 * If there is no work to do we might as well call it a day and free the
184 * ioend right now.
185 */
186 STATIC void
187 xfs_finish_ioend(
188 struct xfs_ioend *ioend)
189 {
190 if (atomic_dec_and_test(&ioend->io_remaining)) {
191 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
192
193 if (ioend->io_type == XFS_IO_UNWRITTEN)
194 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
195 else if (ioend->io_append_trans)
196 queue_work(mp->m_data_workqueue, &ioend->io_work);
197 else
198 xfs_destroy_ioend(ioend);
199 }
200 }
201
202 /*
203 * IO write completion.
204 */
205 STATIC void
206 xfs_end_io(
207 struct work_struct *work)
208 {
209 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 int error = 0;
212
213 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214 ioend->io_error = -EIO;
215 goto done;
216 }
217 if (ioend->io_error)
218 goto done;
219
220 /*
221 * For unwritten extents we need to issue transactions to convert a
222 * range to normal written extens after the data I/O has finished.
223 */
224 if (ioend->io_type == XFS_IO_UNWRITTEN) {
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
227 } else if (ioend->io_append_trans) {
228 error = xfs_setfilesize_ioend(ioend);
229 } else {
230 ASSERT(!xfs_ioend_is_append(ioend));
231 }
232
233 done:
234 if (error)
235 ioend->io_error = error;
236 xfs_destroy_ioend(ioend);
237 }
238
239 /*
240 * Allocate and initialise an IO completion structure.
241 * We need to track unwritten extent write completion here initially.
242 * We'll need to extend this for updating the ondisk inode size later
243 * (vs. incore size).
244 */
245 STATIC xfs_ioend_t *
246 xfs_alloc_ioend(
247 struct inode *inode,
248 unsigned int type)
249 {
250 xfs_ioend_t *ioend;
251
252 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253
254 /*
255 * Set the count to 1 initially, which will prevent an I/O
256 * completion callback from happening before we have started
257 * all the I/O from calling the completion routine too early.
258 */
259 atomic_set(&ioend->io_remaining, 1);
260 ioend->io_error = 0;
261 ioend->io_list = NULL;
262 ioend->io_type = type;
263 ioend->io_inode = inode;
264 ioend->io_buffer_head = NULL;
265 ioend->io_buffer_tail = NULL;
266 ioend->io_offset = 0;
267 ioend->io_size = 0;
268 ioend->io_append_trans = NULL;
269
270 INIT_WORK(&ioend->io_work, xfs_end_io);
271 return ioend;
272 }
273
274 STATIC int
275 xfs_map_blocks(
276 struct inode *inode,
277 loff_t offset,
278 struct xfs_bmbt_irec *imap,
279 int type,
280 int nonblocking)
281 {
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
284 ssize_t count = 1 << inode->i_blkbits;
285 xfs_fileoff_t offset_fsb, end_fsb;
286 int error = 0;
287 int bmapi_flags = XFS_BMAPI_ENTIRE;
288 int nimaps = 1;
289
290 if (XFS_FORCED_SHUTDOWN(mp))
291 return -EIO;
292
293 if (type == XFS_IO_UNWRITTEN)
294 bmapi_flags |= XFS_BMAPI_IGSTATE;
295
296 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 if (nonblocking)
298 return -EAGAIN;
299 xfs_ilock(ip, XFS_ILOCK_SHARED);
300 }
301
302 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 (ip->i_df.if_flags & XFS_IFEXTENTS));
304 ASSERT(offset <= mp->m_super->s_maxbytes);
305
306 if (offset + count > mp->m_super->s_maxbytes)
307 count = mp->m_super->s_maxbytes - offset;
308 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 offset_fsb = XFS_B_TO_FSBT(mp, offset);
310 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 imap, &nimaps, bmapi_flags);
312 xfs_iunlock(ip, XFS_ILOCK_SHARED);
313
314 if (error)
315 return error;
316
317 if (type == XFS_IO_DELALLOC &&
318 (!nimaps || isnullstartblock(imap->br_startblock))) {
319 error = xfs_iomap_write_allocate(ip, offset, imap);
320 if (!error)
321 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
322 return error;
323 }
324
325 #ifdef DEBUG
326 if (type == XFS_IO_UNWRITTEN) {
327 ASSERT(nimaps);
328 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 }
331 #endif
332 if (nimaps)
333 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 return 0;
335 }
336
337 STATIC int
338 xfs_imap_valid(
339 struct inode *inode,
340 struct xfs_bmbt_irec *imap,
341 xfs_off_t offset)
342 {
343 offset >>= inode->i_blkbits;
344
345 return offset >= imap->br_startoff &&
346 offset < imap->br_startoff + imap->br_blockcount;
347 }
348
349 /*
350 * BIO completion handler for buffered IO.
351 */
352 STATIC void
353 xfs_end_bio(
354 struct bio *bio,
355 int error)
356 {
357 xfs_ioend_t *ioend = bio->bi_private;
358
359 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
360
361 /* Toss bio and pass work off to an xfsdatad thread */
362 bio->bi_private = NULL;
363 bio->bi_end_io = NULL;
364 bio_put(bio);
365
366 xfs_finish_ioend(ioend);
367 }
368
369 STATIC void
370 xfs_submit_ioend_bio(
371 struct writeback_control *wbc,
372 xfs_ioend_t *ioend,
373 struct bio *bio)
374 {
375 atomic_inc(&ioend->io_remaining);
376 bio->bi_private = ioend;
377 bio->bi_end_io = xfs_end_bio;
378 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
379 }
380
381 STATIC struct bio *
382 xfs_alloc_ioend_bio(
383 struct buffer_head *bh)
384 {
385 int nvecs = bio_get_nr_vecs(bh->b_bdev);
386 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
387
388 ASSERT(bio->bi_private == NULL);
389 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
390 bio->bi_bdev = bh->b_bdev;
391 return bio;
392 }
393
394 STATIC void
395 xfs_start_buffer_writeback(
396 struct buffer_head *bh)
397 {
398 ASSERT(buffer_mapped(bh));
399 ASSERT(buffer_locked(bh));
400 ASSERT(!buffer_delay(bh));
401 ASSERT(!buffer_unwritten(bh));
402
403 mark_buffer_async_write(bh);
404 set_buffer_uptodate(bh);
405 clear_buffer_dirty(bh);
406 }
407
408 STATIC void
409 xfs_start_page_writeback(
410 struct page *page,
411 int clear_dirty,
412 int buffers)
413 {
414 ASSERT(PageLocked(page));
415 ASSERT(!PageWriteback(page));
416
417 /*
418 * if the page was not fully cleaned, we need to ensure that the higher
419 * layers come back to it correctly. That means we need to keep the page
420 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 * write this page in this writeback sweep will be made.
423 */
424 if (clear_dirty) {
425 clear_page_dirty_for_io(page);
426 set_page_writeback(page);
427 } else
428 set_page_writeback_keepwrite(page);
429
430 unlock_page(page);
431
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
434 end_page_writeback(page);
435 }
436
437 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438 {
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440 }
441
442 /*
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
457 * buffer_heads, and then submit them for I/O on the second pass.
458 *
459 * If @fail is non-zero, it means that we have a situation where some part of
460 * the submission process has failed after we have marked paged for writeback
461 * and unlocked them. In this situation, we need to fail the ioend chain rather
462 * than submit it to IO. This typically only happens on a filesystem shutdown.
463 */
464 STATIC void
465 xfs_submit_ioend(
466 struct writeback_control *wbc,
467 xfs_ioend_t *ioend,
468 int fail)
469 {
470 xfs_ioend_t *head = ioend;
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
480 xfs_start_buffer_writeback(bh);
481 } while ((ioend = next) != NULL);
482
483 /* Pass 2 - submit I/O */
484 ioend = head;
485 do {
486 next = ioend->io_list;
487 bio = NULL;
488
489 /*
490 * If we are failing the IO now, just mark the ioend with an
491 * error and finish it. This will run IO completion immediately
492 * as there is only one reference to the ioend at this point in
493 * time.
494 */
495 if (fail) {
496 ioend->io_error = fail;
497 xfs_finish_ioend(ioend);
498 continue;
499 }
500
501 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
502
503 if (!bio) {
504 retry:
505 bio = xfs_alloc_ioend_bio(bh);
506 } else if (bh->b_blocknr != lastblock + 1) {
507 xfs_submit_ioend_bio(wbc, ioend, bio);
508 goto retry;
509 }
510
511 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
512 xfs_submit_ioend_bio(wbc, ioend, bio);
513 goto retry;
514 }
515
516 lastblock = bh->b_blocknr;
517 }
518 if (bio)
519 xfs_submit_ioend_bio(wbc, ioend, bio);
520 xfs_finish_ioend(ioend);
521 } while ((ioend = next) != NULL);
522 }
523
524 /*
525 * Cancel submission of all buffer_heads so far in this endio.
526 * Toss the endio too. Only ever called for the initial page
527 * in a writepage request, so only ever one page.
528 */
529 STATIC void
530 xfs_cancel_ioend(
531 xfs_ioend_t *ioend)
532 {
533 xfs_ioend_t *next;
534 struct buffer_head *bh, *next_bh;
535
536 do {
537 next = ioend->io_list;
538 bh = ioend->io_buffer_head;
539 do {
540 next_bh = bh->b_private;
541 clear_buffer_async_write(bh);
542 /*
543 * The unwritten flag is cleared when added to the
544 * ioend. We're not submitting for I/O so mark the
545 * buffer unwritten again for next time around.
546 */
547 if (ioend->io_type == XFS_IO_UNWRITTEN)
548 set_buffer_unwritten(bh);
549 unlock_buffer(bh);
550 } while ((bh = next_bh) != NULL);
551
552 mempool_free(ioend, xfs_ioend_pool);
553 } while ((ioend = next) != NULL);
554 }
555
556 /*
557 * Test to see if we've been building up a completion structure for
558 * earlier buffers -- if so, we try to append to this ioend if we
559 * can, otherwise we finish off any current ioend and start another.
560 * Return true if we've finished the given ioend.
561 */
562 STATIC void
563 xfs_add_to_ioend(
564 struct inode *inode,
565 struct buffer_head *bh,
566 xfs_off_t offset,
567 unsigned int type,
568 xfs_ioend_t **result,
569 int need_ioend)
570 {
571 xfs_ioend_t *ioend = *result;
572
573 if (!ioend || need_ioend || type != ioend->io_type) {
574 xfs_ioend_t *previous = *result;
575
576 ioend = xfs_alloc_ioend(inode, type);
577 ioend->io_offset = offset;
578 ioend->io_buffer_head = bh;
579 ioend->io_buffer_tail = bh;
580 if (previous)
581 previous->io_list = ioend;
582 *result = ioend;
583 } else {
584 ioend->io_buffer_tail->b_private = bh;
585 ioend->io_buffer_tail = bh;
586 }
587
588 bh->b_private = NULL;
589 ioend->io_size += bh->b_size;
590 }
591
592 STATIC void
593 xfs_map_buffer(
594 struct inode *inode,
595 struct buffer_head *bh,
596 struct xfs_bmbt_irec *imap,
597 xfs_off_t offset)
598 {
599 sector_t bn;
600 struct xfs_mount *m = XFS_I(inode)->i_mount;
601 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
602 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
603
604 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
605 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
606
607 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
608 ((offset - iomap_offset) >> inode->i_blkbits);
609
610 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
611
612 bh->b_blocknr = bn;
613 set_buffer_mapped(bh);
614 }
615
616 STATIC void
617 xfs_map_at_offset(
618 struct inode *inode,
619 struct buffer_head *bh,
620 struct xfs_bmbt_irec *imap,
621 xfs_off_t offset)
622 {
623 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625
626 xfs_map_buffer(inode, bh, imap, offset);
627 set_buffer_mapped(bh);
628 clear_buffer_delay(bh);
629 clear_buffer_unwritten(bh);
630 }
631
632 /*
633 * Test if a given page contains at least one buffer of a given @type.
634 * If @check_all_buffers is true, then we walk all the buffers in the page to
635 * try to find one of the type passed in. If it is not set, then the caller only
636 * needs to check the first buffer on the page for a match.
637 */
638 STATIC bool
639 xfs_check_page_type(
640 struct page *page,
641 unsigned int type,
642 bool check_all_buffers)
643 {
644 struct buffer_head *bh;
645 struct buffer_head *head;
646
647 if (PageWriteback(page))
648 return false;
649 if (!page->mapping)
650 return false;
651 if (!page_has_buffers(page))
652 return false;
653
654 bh = head = page_buffers(page);
655 do {
656 if (buffer_unwritten(bh)) {
657 if (type == XFS_IO_UNWRITTEN)
658 return true;
659 } else if (buffer_delay(bh)) {
660 if (type == XFS_IO_DELALLOC)
661 return true;
662 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
663 if (type == XFS_IO_OVERWRITE)
664 return true;
665 }
666
667 /* If we are only checking the first buffer, we are done now. */
668 if (!check_all_buffers)
669 break;
670 } while ((bh = bh->b_this_page) != head);
671
672 return false;
673 }
674
675 /*
676 * Allocate & map buffers for page given the extent map. Write it out.
677 * except for the original page of a writepage, this is called on
678 * delalloc/unwritten pages only, for the original page it is possible
679 * that the page has no mapping at all.
680 */
681 STATIC int
682 xfs_convert_page(
683 struct inode *inode,
684 struct page *page,
685 loff_t tindex,
686 struct xfs_bmbt_irec *imap,
687 xfs_ioend_t **ioendp,
688 struct writeback_control *wbc)
689 {
690 struct buffer_head *bh, *head;
691 xfs_off_t end_offset;
692 unsigned long p_offset;
693 unsigned int type;
694 int len, page_dirty;
695 int count = 0, done = 0, uptodate = 1;
696 xfs_off_t offset = page_offset(page);
697
698 if (page->index != tindex)
699 goto fail;
700 if (!trylock_page(page))
701 goto fail;
702 if (PageWriteback(page))
703 goto fail_unlock_page;
704 if (page->mapping != inode->i_mapping)
705 goto fail_unlock_page;
706 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
707 goto fail_unlock_page;
708
709 /*
710 * page_dirty is initially a count of buffers on the page before
711 * EOF and is decremented as we move each into a cleanable state.
712 *
713 * Derivation:
714 *
715 * End offset is the highest offset that this page should represent.
716 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
717 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
718 * hence give us the correct page_dirty count. On any other page,
719 * it will be zero and in that case we need page_dirty to be the
720 * count of buffers on the page.
721 */
722 end_offset = min_t(unsigned long long,
723 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
724 i_size_read(inode));
725
726 /*
727 * If the current map does not span the entire page we are about to try
728 * to write, then give up. The only way we can write a page that spans
729 * multiple mappings in a single writeback iteration is via the
730 * xfs_vm_writepage() function. Data integrity writeback requires the
731 * entire page to be written in a single attempt, otherwise the part of
732 * the page we don't write here doesn't get written as part of the data
733 * integrity sync.
734 *
735 * For normal writeback, we also don't attempt to write partial pages
736 * here as it simply means that write_cache_pages() will see it under
737 * writeback and ignore the page until some point in the future, at
738 * which time this will be the only page in the file that needs
739 * writeback. Hence for more optimal IO patterns, we should always
740 * avoid partial page writeback due to multiple mappings on a page here.
741 */
742 if (!xfs_imap_valid(inode, imap, end_offset))
743 goto fail_unlock_page;
744
745 len = 1 << inode->i_blkbits;
746 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
747 PAGE_CACHE_SIZE);
748 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
749 page_dirty = p_offset / len;
750
751 /*
752 * The moment we find a buffer that doesn't match our current type
753 * specification or can't be written, abort the loop and start
754 * writeback. As per the above xfs_imap_valid() check, only
755 * xfs_vm_writepage() can handle partial page writeback fully - we are
756 * limited here to the buffers that are contiguous with the current
757 * ioend, and hence a buffer we can't write breaks that contiguity and
758 * we have to defer the rest of the IO to xfs_vm_writepage().
759 */
760 bh = head = page_buffers(page);
761 do {
762 if (offset >= end_offset)
763 break;
764 if (!buffer_uptodate(bh))
765 uptodate = 0;
766 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
767 done = 1;
768 break;
769 }
770
771 if (buffer_unwritten(bh) || buffer_delay(bh) ||
772 buffer_mapped(bh)) {
773 if (buffer_unwritten(bh))
774 type = XFS_IO_UNWRITTEN;
775 else if (buffer_delay(bh))
776 type = XFS_IO_DELALLOC;
777 else
778 type = XFS_IO_OVERWRITE;
779
780 /*
781 * imap should always be valid because of the above
782 * partial page end_offset check on the imap.
783 */
784 ASSERT(xfs_imap_valid(inode, imap, offset));
785
786 lock_buffer(bh);
787 if (type != XFS_IO_OVERWRITE)
788 xfs_map_at_offset(inode, bh, imap, offset);
789 xfs_add_to_ioend(inode, bh, offset, type,
790 ioendp, done);
791
792 page_dirty--;
793 count++;
794 } else {
795 done = 1;
796 break;
797 }
798 } while (offset += len, (bh = bh->b_this_page) != head);
799
800 if (uptodate && bh == head)
801 SetPageUptodate(page);
802
803 if (count) {
804 if (--wbc->nr_to_write <= 0 &&
805 wbc->sync_mode == WB_SYNC_NONE)
806 done = 1;
807 }
808 xfs_start_page_writeback(page, !page_dirty, count);
809
810 return done;
811 fail_unlock_page:
812 unlock_page(page);
813 fail:
814 return 1;
815 }
816
817 /*
818 * Convert & write out a cluster of pages in the same extent as defined
819 * by mp and following the start page.
820 */
821 STATIC void
822 xfs_cluster_write(
823 struct inode *inode,
824 pgoff_t tindex,
825 struct xfs_bmbt_irec *imap,
826 xfs_ioend_t **ioendp,
827 struct writeback_control *wbc,
828 pgoff_t tlast)
829 {
830 struct pagevec pvec;
831 int done = 0, i;
832
833 pagevec_init(&pvec, 0);
834 while (!done && tindex <= tlast) {
835 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
836
837 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
838 break;
839
840 for (i = 0; i < pagevec_count(&pvec); i++) {
841 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
842 imap, ioendp, wbc);
843 if (done)
844 break;
845 }
846
847 pagevec_release(&pvec);
848 cond_resched();
849 }
850 }
851
852 STATIC void
853 xfs_vm_invalidatepage(
854 struct page *page,
855 unsigned int offset,
856 unsigned int length)
857 {
858 trace_xfs_invalidatepage(page->mapping->host, page, offset,
859 length);
860 block_invalidatepage(page, offset, length);
861 }
862
863 /*
864 * If the page has delalloc buffers on it, we need to punch them out before we
865 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
866 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
867 * is done on that same region - the delalloc extent is returned when none is
868 * supposed to be there.
869 *
870 * We prevent this by truncating away the delalloc regions on the page before
871 * invalidating it. Because they are delalloc, we can do this without needing a
872 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
873 * truncation without a transaction as there is no space left for block
874 * reservation (typically why we see a ENOSPC in writeback).
875 *
876 * This is not a performance critical path, so for now just do the punching a
877 * buffer head at a time.
878 */
879 STATIC void
880 xfs_aops_discard_page(
881 struct page *page)
882 {
883 struct inode *inode = page->mapping->host;
884 struct xfs_inode *ip = XFS_I(inode);
885 struct buffer_head *bh, *head;
886 loff_t offset = page_offset(page);
887
888 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
889 goto out_invalidate;
890
891 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
892 goto out_invalidate;
893
894 xfs_alert(ip->i_mount,
895 "page discard on page %p, inode 0x%llx, offset %llu.",
896 page, ip->i_ino, offset);
897
898 xfs_ilock(ip, XFS_ILOCK_EXCL);
899 bh = head = page_buffers(page);
900 do {
901 int error;
902 xfs_fileoff_t start_fsb;
903
904 if (!buffer_delay(bh))
905 goto next_buffer;
906
907 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
908 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
909 if (error) {
910 /* something screwed, just bail */
911 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
912 xfs_alert(ip->i_mount,
913 "page discard unable to remove delalloc mapping.");
914 }
915 break;
916 }
917 next_buffer:
918 offset += 1 << inode->i_blkbits;
919
920 } while ((bh = bh->b_this_page) != head);
921
922 xfs_iunlock(ip, XFS_ILOCK_EXCL);
923 out_invalidate:
924 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
925 return;
926 }
927
928 /*
929 * Write out a dirty page.
930 *
931 * For delalloc space on the page we need to allocate space and flush it.
932 * For unwritten space on the page we need to start the conversion to
933 * regular allocated space.
934 * For any other dirty buffer heads on the page we should flush them.
935 */
936 STATIC int
937 xfs_vm_writepage(
938 struct page *page,
939 struct writeback_control *wbc)
940 {
941 struct inode *inode = page->mapping->host;
942 struct buffer_head *bh, *head;
943 struct xfs_bmbt_irec imap;
944 xfs_ioend_t *ioend = NULL, *iohead = NULL;
945 loff_t offset;
946 unsigned int type;
947 __uint64_t end_offset;
948 pgoff_t end_index, last_index;
949 ssize_t len;
950 int err, imap_valid = 0, uptodate = 1;
951 int count = 0;
952 int nonblocking = 0;
953
954 trace_xfs_writepage(inode, page, 0, 0);
955
956 ASSERT(page_has_buffers(page));
957
958 /*
959 * Refuse to write the page out if we are called from reclaim context.
960 *
961 * This avoids stack overflows when called from deeply used stacks in
962 * random callers for direct reclaim or memcg reclaim. We explicitly
963 * allow reclaim from kswapd as the stack usage there is relatively low.
964 *
965 * This should never happen except in the case of a VM regression so
966 * warn about it.
967 */
968 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
969 PF_MEMALLOC))
970 goto redirty;
971
972 /*
973 * Given that we do not allow direct reclaim to call us, we should
974 * never be called while in a filesystem transaction.
975 */
976 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
977 goto redirty;
978
979 /* Is this page beyond the end of the file? */
980 offset = i_size_read(inode);
981 end_index = offset >> PAGE_CACHE_SHIFT;
982 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
983
984 /*
985 * The page index is less than the end_index, adjust the end_offset
986 * to the highest offset that this page should represent.
987 * -----------------------------------------------------
988 * | file mapping | <EOF> |
989 * -----------------------------------------------------
990 * | Page ... | Page N-2 | Page N-1 | Page N | |
991 * ^--------------------------------^----------|--------
992 * | desired writeback range | see else |
993 * ---------------------------------^------------------|
994 */
995 if (page->index < end_index)
996 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
997 else {
998 /*
999 * Check whether the page to write out is beyond or straddles
1000 * i_size or not.
1001 * -------------------------------------------------------
1002 * | file mapping | <EOF> |
1003 * -------------------------------------------------------
1004 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1005 * ^--------------------------------^-----------|---------
1006 * | | Straddles |
1007 * ---------------------------------^-----------|--------|
1008 */
1009 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1010
1011 /*
1012 * Skip the page if it is fully outside i_size, e.g. due to a
1013 * truncate operation that is in progress. We must redirty the
1014 * page so that reclaim stops reclaiming it. Otherwise
1015 * xfs_vm_releasepage() is called on it and gets confused.
1016 *
1017 * Note that the end_index is unsigned long, it would overflow
1018 * if the given offset is greater than 16TB on 32-bit system
1019 * and if we do check the page is fully outside i_size or not
1020 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1021 * will be evaluated to 0. Hence this page will be redirtied
1022 * and be written out repeatedly which would result in an
1023 * infinite loop, the user program that perform this operation
1024 * will hang. Instead, we can verify this situation by checking
1025 * if the page to write is totally beyond the i_size or if it's
1026 * offset is just equal to the EOF.
1027 */
1028 if (page->index > end_index ||
1029 (page->index == end_index && offset_into_page == 0))
1030 goto redirty;
1031
1032 /*
1033 * The page straddles i_size. It must be zeroed out on each
1034 * and every writepage invocation because it may be mmapped.
1035 * "A file is mapped in multiples of the page size. For a file
1036 * that is not a multiple of the page size, the remaining
1037 * memory is zeroed when mapped, and writes to that region are
1038 * not written out to the file."
1039 */
1040 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1041
1042 /* Adjust the end_offset to the end of file */
1043 end_offset = offset;
1044 }
1045
1046 len = 1 << inode->i_blkbits;
1047
1048 bh = head = page_buffers(page);
1049 offset = page_offset(page);
1050 type = XFS_IO_OVERWRITE;
1051
1052 if (wbc->sync_mode == WB_SYNC_NONE)
1053 nonblocking = 1;
1054
1055 do {
1056 int new_ioend = 0;
1057
1058 if (offset >= end_offset)
1059 break;
1060 if (!buffer_uptodate(bh))
1061 uptodate = 0;
1062
1063 /*
1064 * set_page_dirty dirties all buffers in a page, independent
1065 * of their state. The dirty state however is entirely
1066 * meaningless for holes (!mapped && uptodate), so skip
1067 * buffers covering holes here.
1068 */
1069 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1070 imap_valid = 0;
1071 continue;
1072 }
1073
1074 if (buffer_unwritten(bh)) {
1075 if (type != XFS_IO_UNWRITTEN) {
1076 type = XFS_IO_UNWRITTEN;
1077 imap_valid = 0;
1078 }
1079 } else if (buffer_delay(bh)) {
1080 if (type != XFS_IO_DELALLOC) {
1081 type = XFS_IO_DELALLOC;
1082 imap_valid = 0;
1083 }
1084 } else if (buffer_uptodate(bh)) {
1085 if (type != XFS_IO_OVERWRITE) {
1086 type = XFS_IO_OVERWRITE;
1087 imap_valid = 0;
1088 }
1089 } else {
1090 if (PageUptodate(page))
1091 ASSERT(buffer_mapped(bh));
1092 /*
1093 * This buffer is not uptodate and will not be
1094 * written to disk. Ensure that we will put any
1095 * subsequent writeable buffers into a new
1096 * ioend.
1097 */
1098 imap_valid = 0;
1099 continue;
1100 }
1101
1102 if (imap_valid)
1103 imap_valid = xfs_imap_valid(inode, &imap, offset);
1104 if (!imap_valid) {
1105 /*
1106 * If we didn't have a valid mapping then we need to
1107 * put the new mapping into a separate ioend structure.
1108 * This ensures non-contiguous extents always have
1109 * separate ioends, which is particularly important
1110 * for unwritten extent conversion at I/O completion
1111 * time.
1112 */
1113 new_ioend = 1;
1114 err = xfs_map_blocks(inode, offset, &imap, type,
1115 nonblocking);
1116 if (err)
1117 goto error;
1118 imap_valid = xfs_imap_valid(inode, &imap, offset);
1119 }
1120 if (imap_valid) {
1121 lock_buffer(bh);
1122 if (type != XFS_IO_OVERWRITE)
1123 xfs_map_at_offset(inode, bh, &imap, offset);
1124 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1125 new_ioend);
1126 count++;
1127 }
1128
1129 if (!iohead)
1130 iohead = ioend;
1131
1132 } while (offset += len, ((bh = bh->b_this_page) != head));
1133
1134 if (uptodate && bh == head)
1135 SetPageUptodate(page);
1136
1137 xfs_start_page_writeback(page, 1, count);
1138
1139 /* if there is no IO to be submitted for this page, we are done */
1140 if (!ioend)
1141 return 0;
1142
1143 ASSERT(iohead);
1144
1145 /*
1146 * Any errors from this point onwards need tobe reported through the IO
1147 * completion path as we have marked the initial page as under writeback
1148 * and unlocked it.
1149 */
1150 if (imap_valid) {
1151 xfs_off_t end_index;
1152
1153 end_index = imap.br_startoff + imap.br_blockcount;
1154
1155 /* to bytes */
1156 end_index <<= inode->i_blkbits;
1157
1158 /* to pages */
1159 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1160
1161 /* check against file size */
1162 if (end_index > last_index)
1163 end_index = last_index;
1164
1165 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1166 wbc, end_index);
1167 }
1168
1169
1170 /*
1171 * Reserve log space if we might write beyond the on-disk inode size.
1172 */
1173 err = 0;
1174 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1175 err = xfs_setfilesize_trans_alloc(ioend);
1176
1177 xfs_submit_ioend(wbc, iohead, err);
1178
1179 return 0;
1180
1181 error:
1182 if (iohead)
1183 xfs_cancel_ioend(iohead);
1184
1185 if (err == -EAGAIN)
1186 goto redirty;
1187
1188 xfs_aops_discard_page(page);
1189 ClearPageUptodate(page);
1190 unlock_page(page);
1191 return err;
1192
1193 redirty:
1194 redirty_page_for_writepage(wbc, page);
1195 unlock_page(page);
1196 return 0;
1197 }
1198
1199 STATIC int
1200 xfs_vm_writepages(
1201 struct address_space *mapping,
1202 struct writeback_control *wbc)
1203 {
1204 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1205 return generic_writepages(mapping, wbc);
1206 }
1207
1208 /*
1209 * Called to move a page into cleanable state - and from there
1210 * to be released. The page should already be clean. We always
1211 * have buffer heads in this call.
1212 *
1213 * Returns 1 if the page is ok to release, 0 otherwise.
1214 */
1215 STATIC int
1216 xfs_vm_releasepage(
1217 struct page *page,
1218 gfp_t gfp_mask)
1219 {
1220 int delalloc, unwritten;
1221
1222 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1223
1224 xfs_count_page_state(page, &delalloc, &unwritten);
1225
1226 if (WARN_ON_ONCE(delalloc))
1227 return 0;
1228 if (WARN_ON_ONCE(unwritten))
1229 return 0;
1230
1231 return try_to_free_buffers(page);
1232 }
1233
1234 /*
1235 * When we map a DIO buffer, we may need to attach an ioend that describes the
1236 * type of write IO we are doing. This passes to the completion function the
1237 * operations it needs to perform. If the mapping is for an overwrite wholly
1238 * within the EOF then we don't need an ioend and so we don't allocate one.
1239 * This avoids the unnecessary overhead of allocating and freeing ioends for
1240 * workloads that don't require transactions on IO completion.
1241 *
1242 * If we get multiple mappings in a single IO, we might be mapping different
1243 * types. But because the direct IO can only have a single private pointer, we
1244 * need to ensure that:
1245 *
1246 * a) i) the ioend spans the entire region of unwritten mappings; or
1247 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
1248 * b) if it contains unwritten extents, it is *permanently* marked as such
1249 *
1250 * We could do this by chaining ioends like buffered IO does, but we only
1251 * actually get one IO completion callback from the direct IO, and that spans
1252 * the entire IO regardless of how many mappings and IOs are needed to complete
1253 * the DIO. There is only going to be one reference to the ioend and its life
1254 * cycle is constrained by the DIO completion code. hence we don't need
1255 * reference counting here.
1256 */
1257 static void
1258 xfs_map_direct(
1259 struct inode *inode,
1260 struct buffer_head *bh_result,
1261 struct xfs_bmbt_irec *imap,
1262 xfs_off_t offset)
1263 {
1264 struct xfs_ioend *ioend;
1265 xfs_off_t size = bh_result->b_size;
1266 int type;
1267
1268 if (ISUNWRITTEN(imap))
1269 type = XFS_IO_UNWRITTEN;
1270 else
1271 type = XFS_IO_OVERWRITE;
1272
1273 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1274
1275 if (bh_result->b_private) {
1276 ioend = bh_result->b_private;
1277 ASSERT(ioend->io_size > 0);
1278 ASSERT(offset >= ioend->io_offset);
1279 if (offset + size > ioend->io_offset + ioend->io_size)
1280 ioend->io_size = offset - ioend->io_offset + size;
1281
1282 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1283 ioend->io_type = XFS_IO_UNWRITTEN;
1284
1285 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1286 ioend->io_size, ioend->io_type,
1287 imap);
1288 } else if (type == XFS_IO_UNWRITTEN ||
1289 offset + size > i_size_read(inode)) {
1290 ioend = xfs_alloc_ioend(inode, type);
1291 ioend->io_offset = offset;
1292 ioend->io_size = size;
1293
1294 bh_result->b_private = ioend;
1295 set_buffer_defer_completion(bh_result);
1296
1297 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1298 imap);
1299 } else {
1300 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1301 imap);
1302 }
1303 }
1304
1305 /*
1306 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1307 * is, so that we can avoid repeated get_blocks calls.
1308 *
1309 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1310 * for blocks beyond EOF must be marked new so that sub block regions can be
1311 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1312 * was just allocated or is unwritten, otherwise the callers would overwrite
1313 * existing data with zeros. Hence we have to split the mapping into a range up
1314 * to and including EOF, and a second mapping for beyond EOF.
1315 */
1316 static void
1317 xfs_map_trim_size(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 struct xfs_bmbt_irec *imap,
1322 xfs_off_t offset,
1323 ssize_t size)
1324 {
1325 xfs_off_t mapping_size;
1326
1327 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1328 mapping_size <<= inode->i_blkbits;
1329
1330 ASSERT(mapping_size > 0);
1331 if (mapping_size > size)
1332 mapping_size = size;
1333 if (offset < i_size_read(inode) &&
1334 offset + mapping_size >= i_size_read(inode)) {
1335 /* limit mapping to block that spans EOF */
1336 mapping_size = roundup_64(i_size_read(inode) - offset,
1337 1 << inode->i_blkbits);
1338 }
1339 if (mapping_size > LONG_MAX)
1340 mapping_size = LONG_MAX;
1341
1342 bh_result->b_size = mapping_size;
1343 }
1344
1345 STATIC int
1346 __xfs_get_blocks(
1347 struct inode *inode,
1348 sector_t iblock,
1349 struct buffer_head *bh_result,
1350 int create,
1351 bool direct)
1352 {
1353 struct xfs_inode *ip = XFS_I(inode);
1354 struct xfs_mount *mp = ip->i_mount;
1355 xfs_fileoff_t offset_fsb, end_fsb;
1356 int error = 0;
1357 int lockmode = 0;
1358 struct xfs_bmbt_irec imap;
1359 int nimaps = 1;
1360 xfs_off_t offset;
1361 ssize_t size;
1362 int new = 0;
1363
1364 if (XFS_FORCED_SHUTDOWN(mp))
1365 return -EIO;
1366
1367 offset = (xfs_off_t)iblock << inode->i_blkbits;
1368 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1369 size = bh_result->b_size;
1370
1371 if (!create && direct && offset >= i_size_read(inode))
1372 return 0;
1373
1374 /*
1375 * Direct I/O is usually done on preallocated files, so try getting
1376 * a block mapping without an exclusive lock first. For buffered
1377 * writes we already have the exclusive iolock anyway, so avoiding
1378 * a lock roundtrip here by taking the ilock exclusive from the
1379 * beginning is a useful micro optimization.
1380 */
1381 if (create && !direct) {
1382 lockmode = XFS_ILOCK_EXCL;
1383 xfs_ilock(ip, lockmode);
1384 } else {
1385 lockmode = xfs_ilock_data_map_shared(ip);
1386 }
1387
1388 ASSERT(offset <= mp->m_super->s_maxbytes);
1389 if (offset + size > mp->m_super->s_maxbytes)
1390 size = mp->m_super->s_maxbytes - offset;
1391 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1392 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1393
1394 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1395 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1396 if (error)
1397 goto out_unlock;
1398
1399 if (create &&
1400 (!nimaps ||
1401 (imap.br_startblock == HOLESTARTBLOCK ||
1402 imap.br_startblock == DELAYSTARTBLOCK))) {
1403 if (direct || xfs_get_extsz_hint(ip)) {
1404 /*
1405 * Drop the ilock in preparation for starting the block
1406 * allocation transaction. It will be retaken
1407 * exclusively inside xfs_iomap_write_direct for the
1408 * actual allocation.
1409 */
1410 xfs_iunlock(ip, lockmode);
1411 error = xfs_iomap_write_direct(ip, offset, size,
1412 &imap, nimaps);
1413 if (error)
1414 return error;
1415 new = 1;
1416
1417 } else {
1418 /*
1419 * Delalloc reservations do not require a transaction,
1420 * we can go on without dropping the lock here. If we
1421 * are allocating a new delalloc block, make sure that
1422 * we set the new flag so that we mark the buffer new so
1423 * that we know that it is newly allocated if the write
1424 * fails.
1425 */
1426 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1427 new = 1;
1428 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1429 if (error)
1430 goto out_unlock;
1431
1432 xfs_iunlock(ip, lockmode);
1433 }
1434 trace_xfs_get_blocks_alloc(ip, offset, size,
1435 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1436 : XFS_IO_DELALLOC, &imap);
1437 } else if (nimaps) {
1438 trace_xfs_get_blocks_found(ip, offset, size,
1439 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1440 : XFS_IO_OVERWRITE, &imap);
1441 xfs_iunlock(ip, lockmode);
1442 } else {
1443 trace_xfs_get_blocks_notfound(ip, offset, size);
1444 goto out_unlock;
1445 }
1446
1447 /* trim mapping down to size requested */
1448 if (direct || size > (1 << inode->i_blkbits))
1449 xfs_map_trim_size(inode, iblock, bh_result,
1450 &imap, offset, size);
1451
1452 /*
1453 * For unwritten extents do not report a disk address in the buffered
1454 * read case (treat as if we're reading into a hole).
1455 */
1456 if (imap.br_startblock != HOLESTARTBLOCK &&
1457 imap.br_startblock != DELAYSTARTBLOCK &&
1458 (create || !ISUNWRITTEN(&imap))) {
1459 xfs_map_buffer(inode, bh_result, &imap, offset);
1460 if (ISUNWRITTEN(&imap))
1461 set_buffer_unwritten(bh_result);
1462 /* direct IO needs special help */
1463 if (create && direct)
1464 xfs_map_direct(inode, bh_result, &imap, offset);
1465 }
1466
1467 /*
1468 * If this is a realtime file, data may be on a different device.
1469 * to that pointed to from the buffer_head b_bdev currently.
1470 */
1471 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1472
1473 /*
1474 * If we previously allocated a block out beyond eof and we are now
1475 * coming back to use it then we will need to flag it as new even if it
1476 * has a disk address.
1477 *
1478 * With sub-block writes into unwritten extents we also need to mark
1479 * the buffer as new so that the unwritten parts of the buffer gets
1480 * correctly zeroed.
1481 */
1482 if (create &&
1483 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1484 (offset >= i_size_read(inode)) ||
1485 (new || ISUNWRITTEN(&imap))))
1486 set_buffer_new(bh_result);
1487
1488 if (imap.br_startblock == DELAYSTARTBLOCK) {
1489 BUG_ON(direct);
1490 if (create) {
1491 set_buffer_uptodate(bh_result);
1492 set_buffer_mapped(bh_result);
1493 set_buffer_delay(bh_result);
1494 }
1495 }
1496
1497 return 0;
1498
1499 out_unlock:
1500 xfs_iunlock(ip, lockmode);
1501 return error;
1502 }
1503
1504 int
1505 xfs_get_blocks(
1506 struct inode *inode,
1507 sector_t iblock,
1508 struct buffer_head *bh_result,
1509 int create)
1510 {
1511 return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1512 }
1513
1514 int
1515 xfs_get_blocks_direct(
1516 struct inode *inode,
1517 sector_t iblock,
1518 struct buffer_head *bh_result,
1519 int create)
1520 {
1521 return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1522 }
1523
1524 static void
1525 __xfs_end_io_direct_write(
1526 struct inode *inode,
1527 struct xfs_ioend *ioend,
1528 loff_t offset,
1529 ssize_t size)
1530 {
1531 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1532
1533 if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1534 goto out_end_io;
1535
1536 /*
1537 * dio completion end_io functions are only called on writes if more
1538 * than 0 bytes was written.
1539 */
1540 ASSERT(size > 0);
1541
1542 /*
1543 * The ioend only maps whole blocks, while the IO may be sector aligned.
1544 * Hence the ioend offset/size may not match the IO offset/size exactly.
1545 * Because we don't map overwrites within EOF into the ioend, the offset
1546 * may not match, but only if the endio spans EOF. Either way, write
1547 * the IO sizes into the ioend so that completion processing does the
1548 * right thing.
1549 */
1550 ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1551 ioend->io_size = size;
1552 ioend->io_offset = offset;
1553
1554 /*
1555 * The ioend tells us whether we are doing unwritten extent conversion
1556 * or an append transaction that updates the on-disk file size. These
1557 * cases are the only cases where we should *potentially* be needing
1558 * to update the VFS inode size.
1559 *
1560 * We need to update the in-core inode size here so that we don't end up
1561 * with the on-disk inode size being outside the in-core inode size. We
1562 * have no other method of updating EOF for AIO, so always do it here
1563 * if necessary.
1564 *
1565 * We need to lock the test/set EOF update as we can be racing with
1566 * other IO completions here to update the EOF. Failing to serialise
1567 * here can result in EOF moving backwards and Bad Things Happen when
1568 * that occurs.
1569 */
1570 spin_lock(&XFS_I(inode)->i_flags_lock);
1571 if (offset + size > i_size_read(inode))
1572 i_size_write(inode, offset + size);
1573 spin_unlock(&XFS_I(inode)->i_flags_lock);
1574
1575 /*
1576 * If we are doing an append IO that needs to update the EOF on disk,
1577 * do the transaction reserve now so we can use common end io
1578 * processing. Stashing the error (if there is one) in the ioend will
1579 * result in the ioend processing passing on the error if it is
1580 * possible as we can't return it from here.
1581 */
1582 if (ioend->io_type == XFS_IO_OVERWRITE)
1583 ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1584
1585 out_end_io:
1586 xfs_end_io(&ioend->io_work);
1587 return;
1588 }
1589
1590 /*
1591 * Complete a direct I/O write request.
1592 *
1593 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1594 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1595 * wholly within the EOF and so there is nothing for us to do. Note that in this
1596 * case the completion can be called in interrupt context, whereas if we have an
1597 * ioend we will always be called in task context (i.e. from a workqueue).
1598 */
1599 STATIC void
1600 xfs_end_io_direct_write(
1601 struct kiocb *iocb,
1602 loff_t offset,
1603 ssize_t size,
1604 void *private)
1605 {
1606 struct inode *inode = file_inode(iocb->ki_filp);
1607 struct xfs_ioend *ioend = private;
1608
1609 trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1610 ioend ? ioend->io_type : 0, NULL);
1611
1612 if (!ioend) {
1613 ASSERT(offset + size <= i_size_read(inode));
1614 return;
1615 }
1616
1617 __xfs_end_io_direct_write(inode, ioend, offset, size);
1618 }
1619
1620 /*
1621 * For DAX we need a mapping buffer callback for unwritten extent conversion
1622 * when page faults allocate blocks and then zero them. Note that in this
1623 * case the mapping indicated by the ioend may extend beyond EOF. We most
1624 * definitely do not want to extend EOF here, so we trim back the ioend size to
1625 * EOF.
1626 */
1627 #ifdef CONFIG_FS_DAX
1628 void
1629 xfs_end_io_dax_write(
1630 struct buffer_head *bh,
1631 int uptodate)
1632 {
1633 struct xfs_ioend *ioend = bh->b_private;
1634 struct inode *inode = ioend->io_inode;
1635 ssize_t size = ioend->io_size;
1636
1637 ASSERT(IS_DAX(ioend->io_inode));
1638
1639 /* if there was an error zeroing, then don't convert it */
1640 if (!uptodate)
1641 ioend->io_error = -EIO;
1642
1643 /*
1644 * Trim update to EOF, so we don't extend EOF during unwritten extent
1645 * conversion of partial EOF blocks.
1646 */
1647 spin_lock(&XFS_I(inode)->i_flags_lock);
1648 if (ioend->io_offset + size > i_size_read(inode))
1649 size = i_size_read(inode) - ioend->io_offset;
1650 spin_unlock(&XFS_I(inode)->i_flags_lock);
1651
1652 __xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1653
1654 }
1655 #else
1656 void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1657 #endif
1658
1659 static inline ssize_t
1660 xfs_vm_do_dio(
1661 struct inode *inode,
1662 struct kiocb *iocb,
1663 struct iov_iter *iter,
1664 loff_t offset,
1665 void (*endio)(struct kiocb *iocb,
1666 loff_t offset,
1667 ssize_t size,
1668 void *private),
1669 int flags)
1670 {
1671 struct block_device *bdev;
1672
1673 if (IS_DAX(inode))
1674 return dax_do_io(iocb, inode, iter, offset,
1675 xfs_get_blocks_direct, endio, 0);
1676
1677 bdev = xfs_find_bdev_for_inode(inode);
1678 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1679 xfs_get_blocks_direct, endio, NULL, flags);
1680 }
1681
1682 STATIC ssize_t
1683 xfs_vm_direct_IO(
1684 struct kiocb *iocb,
1685 struct iov_iter *iter,
1686 loff_t offset)
1687 {
1688 struct inode *inode = iocb->ki_filp->f_mapping->host;
1689
1690 if (iov_iter_rw(iter) == WRITE)
1691 return xfs_vm_do_dio(inode, iocb, iter, offset,
1692 xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1693 return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1694 }
1695
1696 /*
1697 * Punch out the delalloc blocks we have already allocated.
1698 *
1699 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1700 * as the page is still locked at this point.
1701 */
1702 STATIC void
1703 xfs_vm_kill_delalloc_range(
1704 struct inode *inode,
1705 loff_t start,
1706 loff_t end)
1707 {
1708 struct xfs_inode *ip = XFS_I(inode);
1709 xfs_fileoff_t start_fsb;
1710 xfs_fileoff_t end_fsb;
1711 int error;
1712
1713 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1714 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1715 if (end_fsb <= start_fsb)
1716 return;
1717
1718 xfs_ilock(ip, XFS_ILOCK_EXCL);
1719 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1720 end_fsb - start_fsb);
1721 if (error) {
1722 /* something screwed, just bail */
1723 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1724 xfs_alert(ip->i_mount,
1725 "xfs_vm_write_failed: unable to clean up ino %lld",
1726 ip->i_ino);
1727 }
1728 }
1729 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730 }
1731
1732 STATIC void
1733 xfs_vm_write_failed(
1734 struct inode *inode,
1735 struct page *page,
1736 loff_t pos,
1737 unsigned len)
1738 {
1739 loff_t block_offset;
1740 loff_t block_start;
1741 loff_t block_end;
1742 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1743 loff_t to = from + len;
1744 struct buffer_head *bh, *head;
1745
1746 /*
1747 * The request pos offset might be 32 or 64 bit, this is all fine
1748 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1749 * platform, the high 32-bit will be masked off if we evaluate the
1750 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1751 * 0xfffff000 as an unsigned long, hence the result is incorrect
1752 * which could cause the following ASSERT failed in most cases.
1753 * In order to avoid this, we can evaluate the block_offset of the
1754 * start of the page by using shifts rather than masks the mismatch
1755 * problem.
1756 */
1757 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1758
1759 ASSERT(block_offset + from == pos);
1760
1761 head = page_buffers(page);
1762 block_start = 0;
1763 for (bh = head; bh != head || !block_start;
1764 bh = bh->b_this_page, block_start = block_end,
1765 block_offset += bh->b_size) {
1766 block_end = block_start + bh->b_size;
1767
1768 /* skip buffers before the write */
1769 if (block_end <= from)
1770 continue;
1771
1772 /* if the buffer is after the write, we're done */
1773 if (block_start >= to)
1774 break;
1775
1776 if (!buffer_delay(bh))
1777 continue;
1778
1779 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1780 continue;
1781
1782 xfs_vm_kill_delalloc_range(inode, block_offset,
1783 block_offset + bh->b_size);
1784
1785 /*
1786 * This buffer does not contain data anymore. make sure anyone
1787 * who finds it knows that for certain.
1788 */
1789 clear_buffer_delay(bh);
1790 clear_buffer_uptodate(bh);
1791 clear_buffer_mapped(bh);
1792 clear_buffer_new(bh);
1793 clear_buffer_dirty(bh);
1794 }
1795
1796 }
1797
1798 /*
1799 * This used to call block_write_begin(), but it unlocks and releases the page
1800 * on error, and we need that page to be able to punch stale delalloc blocks out
1801 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1802 * the appropriate point.
1803 */
1804 STATIC int
1805 xfs_vm_write_begin(
1806 struct file *file,
1807 struct address_space *mapping,
1808 loff_t pos,
1809 unsigned len,
1810 unsigned flags,
1811 struct page **pagep,
1812 void **fsdata)
1813 {
1814 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1815 struct page *page;
1816 int status;
1817
1818 ASSERT(len <= PAGE_CACHE_SIZE);
1819
1820 page = grab_cache_page_write_begin(mapping, index, flags);
1821 if (!page)
1822 return -ENOMEM;
1823
1824 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1825 if (unlikely(status)) {
1826 struct inode *inode = mapping->host;
1827 size_t isize = i_size_read(inode);
1828
1829 xfs_vm_write_failed(inode, page, pos, len);
1830 unlock_page(page);
1831
1832 /*
1833 * If the write is beyond EOF, we only want to kill blocks
1834 * allocated in this write, not blocks that were previously
1835 * written successfully.
1836 */
1837 if (pos + len > isize) {
1838 ssize_t start = max_t(ssize_t, pos, isize);
1839
1840 truncate_pagecache_range(inode, start, pos + len);
1841 }
1842
1843 page_cache_release(page);
1844 page = NULL;
1845 }
1846
1847 *pagep = page;
1848 return status;
1849 }
1850
1851 /*
1852 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1853 * this specific write because they will never be written. Previous writes
1854 * beyond EOF where block allocation succeeded do not need to be trashed, so
1855 * only new blocks from this write should be trashed. For blocks within
1856 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1857 * written with all the other valid data.
1858 */
1859 STATIC int
1860 xfs_vm_write_end(
1861 struct file *file,
1862 struct address_space *mapping,
1863 loff_t pos,
1864 unsigned len,
1865 unsigned copied,
1866 struct page *page,
1867 void *fsdata)
1868 {
1869 int ret;
1870
1871 ASSERT(len <= PAGE_CACHE_SIZE);
1872
1873 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1874 if (unlikely(ret < len)) {
1875 struct inode *inode = mapping->host;
1876 size_t isize = i_size_read(inode);
1877 loff_t to = pos + len;
1878
1879 if (to > isize) {
1880 /* only kill blocks in this write beyond EOF */
1881 if (pos > isize)
1882 isize = pos;
1883 xfs_vm_kill_delalloc_range(inode, isize, to);
1884 truncate_pagecache_range(inode, isize, to);
1885 }
1886 }
1887 return ret;
1888 }
1889
1890 STATIC sector_t
1891 xfs_vm_bmap(
1892 struct address_space *mapping,
1893 sector_t block)
1894 {
1895 struct inode *inode = (struct inode *)mapping->host;
1896 struct xfs_inode *ip = XFS_I(inode);
1897
1898 trace_xfs_vm_bmap(XFS_I(inode));
1899 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1900 filemap_write_and_wait(mapping);
1901 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1902 return generic_block_bmap(mapping, block, xfs_get_blocks);
1903 }
1904
1905 STATIC int
1906 xfs_vm_readpage(
1907 struct file *unused,
1908 struct page *page)
1909 {
1910 return mpage_readpage(page, xfs_get_blocks);
1911 }
1912
1913 STATIC int
1914 xfs_vm_readpages(
1915 struct file *unused,
1916 struct address_space *mapping,
1917 struct list_head *pages,
1918 unsigned nr_pages)
1919 {
1920 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1921 }
1922
1923 /*
1924 * This is basically a copy of __set_page_dirty_buffers() with one
1925 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1926 * dirty, we'll never be able to clean them because we don't write buffers
1927 * beyond EOF, and that means we can't invalidate pages that span EOF
1928 * that have been marked dirty. Further, the dirty state can leak into
1929 * the file interior if the file is extended, resulting in all sorts of
1930 * bad things happening as the state does not match the underlying data.
1931 *
1932 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1933 * this only exist because of bufferheads and how the generic code manages them.
1934 */
1935 STATIC int
1936 xfs_vm_set_page_dirty(
1937 struct page *page)
1938 {
1939 struct address_space *mapping = page->mapping;
1940 struct inode *inode = mapping->host;
1941 loff_t end_offset;
1942 loff_t offset;
1943 int newly_dirty;
1944 struct mem_cgroup *memcg;
1945
1946 if (unlikely(!mapping))
1947 return !TestSetPageDirty(page);
1948
1949 end_offset = i_size_read(inode);
1950 offset = page_offset(page);
1951
1952 spin_lock(&mapping->private_lock);
1953 if (page_has_buffers(page)) {
1954 struct buffer_head *head = page_buffers(page);
1955 struct buffer_head *bh = head;
1956
1957 do {
1958 if (offset < end_offset)
1959 set_buffer_dirty(bh);
1960 bh = bh->b_this_page;
1961 offset += 1 << inode->i_blkbits;
1962 } while (bh != head);
1963 }
1964 /*
1965 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1966 * per-memcg dirty page counters.
1967 */
1968 memcg = mem_cgroup_begin_page_stat(page);
1969 newly_dirty = !TestSetPageDirty(page);
1970 spin_unlock(&mapping->private_lock);
1971
1972 if (newly_dirty) {
1973 /* sigh - __set_page_dirty() is static, so copy it here, too */
1974 unsigned long flags;
1975
1976 spin_lock_irqsave(&mapping->tree_lock, flags);
1977 if (page->mapping) { /* Race with truncate? */
1978 WARN_ON_ONCE(!PageUptodate(page));
1979 account_page_dirtied(page, mapping, memcg);
1980 radix_tree_tag_set(&mapping->page_tree,
1981 page_index(page), PAGECACHE_TAG_DIRTY);
1982 }
1983 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1984 }
1985 mem_cgroup_end_page_stat(memcg);
1986 if (newly_dirty)
1987 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1988 return newly_dirty;
1989 }
1990
1991 const struct address_space_operations xfs_address_space_operations = {
1992 .readpage = xfs_vm_readpage,
1993 .readpages = xfs_vm_readpages,
1994 .writepage = xfs_vm_writepage,
1995 .writepages = xfs_vm_writepages,
1996 .set_page_dirty = xfs_vm_set_page_dirty,
1997 .releasepage = xfs_vm_releasepage,
1998 .invalidatepage = xfs_vm_invalidatepage,
1999 .write_begin = xfs_vm_write_begin,
2000 .write_end = xfs_vm_write_end,
2001 .bmap = xfs_vm_bmap,
2002 .direct_IO = xfs_vm_direct_IO,
2003 .migratepage = buffer_migrate_page,
2004 .is_partially_uptodate = block_is_partially_uptodate,
2005 .error_remove_page = generic_error_remove_page,
2006 };