]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_bmap_util.c
xfs: perag initialization should only touch m_ag_max_usable for AG 0
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_bmap_util.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_trans.h"
32 #include "xfs_extfree_item.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_trans_space.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap_btree.h"
45 #include "xfs_iomap.h"
46 #include "xfs_reflink.h"
47 #include "xfs_refcount.h"
48
49 /* Kernel only BMAP related definitions and functions */
50
51 /*
52 * Convert the given file system block to a disk block. We have to treat it
53 * differently based on whether the file is a real time file or not, because the
54 * bmap code does.
55 */
56 xfs_daddr_t
57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
58 {
59 return (XFS_IS_REALTIME_INODE(ip) ? \
60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
62 }
63
64 /*
65 * Routine to zero an extent on disk allocated to the specific inode.
66 *
67 * The VFS functions take a linearised filesystem block offset, so we have to
68 * convert the sparse xfs fsb to the right format first.
69 * VFS types are real funky, too.
70 */
71 int
72 xfs_zero_extent(
73 struct xfs_inode *ip,
74 xfs_fsblock_t start_fsb,
75 xfs_off_t count_fsb)
76 {
77 struct xfs_mount *mp = ip->i_mount;
78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
79 sector_t block = XFS_BB_TO_FSBT(mp, sector);
80
81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
82 block << (mp->m_super->s_blocksize_bits - 9),
83 count_fsb << (mp->m_super->s_blocksize_bits - 9),
84 GFP_NOFS, 0);
85 }
86
87 int
88 xfs_bmap_rtalloc(
89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
90 {
91 int error; /* error return value */
92 xfs_mount_t *mp; /* mount point structure */
93 xfs_extlen_t prod = 0; /* product factor for allocators */
94 xfs_extlen_t ralen = 0; /* realtime allocation length */
95 xfs_extlen_t align; /* minimum allocation alignment */
96 xfs_rtblock_t rtb;
97
98 mp = ap->ip->i_mount;
99 align = xfs_get_extsz_hint(ap->ip);
100 prod = align / mp->m_sb.sb_rextsize;
101 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
102 align, 1, ap->eof, 0,
103 ap->conv, &ap->offset, &ap->length);
104 if (error)
105 return error;
106 ASSERT(ap->length);
107 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
108
109 /*
110 * If the offset & length are not perfectly aligned
111 * then kill prod, it will just get us in trouble.
112 */
113 if (do_mod(ap->offset, align) || ap->length % align)
114 prod = 1;
115 /*
116 * Set ralen to be the actual requested length in rtextents.
117 */
118 ralen = ap->length / mp->m_sb.sb_rextsize;
119 /*
120 * If the old value was close enough to MAXEXTLEN that
121 * we rounded up to it, cut it back so it's valid again.
122 * Note that if it's a really large request (bigger than
123 * MAXEXTLEN), we don't hear about that number, and can't
124 * adjust the starting point to match it.
125 */
126 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
127 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
128
129 /*
130 * Lock out modifications to both the RT bitmap and summary inodes
131 */
132 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
133 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
134 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
135 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
136
137 /*
138 * If it's an allocation to an empty file at offset 0,
139 * pick an extent that will space things out in the rt area.
140 */
141 if (ap->eof && ap->offset == 0) {
142 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
143
144 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
145 if (error)
146 return error;
147 ap->blkno = rtx * mp->m_sb.sb_rextsize;
148 } else {
149 ap->blkno = 0;
150 }
151
152 xfs_bmap_adjacent(ap);
153
154 /*
155 * Realtime allocation, done through xfs_rtallocate_extent.
156 */
157 do_div(ap->blkno, mp->m_sb.sb_rextsize);
158 rtb = ap->blkno;
159 ap->length = ralen;
160 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
161 &ralen, ap->wasdel, prod, &rtb);
162 if (error)
163 return error;
164
165 ap->blkno = rtb;
166 if (ap->blkno != NULLFSBLOCK) {
167 ap->blkno *= mp->m_sb.sb_rextsize;
168 ralen *= mp->m_sb.sb_rextsize;
169 ap->length = ralen;
170 ap->ip->i_d.di_nblocks += ralen;
171 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
172 if (ap->wasdel)
173 ap->ip->i_delayed_blks -= ralen;
174 /*
175 * Adjust the disk quota also. This was reserved
176 * earlier.
177 */
178 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
179 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
180 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
181
182 /* Zero the extent if we were asked to do so */
183 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
184 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
185 if (error)
186 return error;
187 }
188 } else {
189 ap->length = 0;
190 }
191 return 0;
192 }
193
194 /*
195 * Check if the endoff is outside the last extent. If so the caller will grow
196 * the allocation to a stripe unit boundary. All offsets are considered outside
197 * the end of file for an empty fork, so 1 is returned in *eof in that case.
198 */
199 int
200 xfs_bmap_eof(
201 struct xfs_inode *ip,
202 xfs_fileoff_t endoff,
203 int whichfork,
204 int *eof)
205 {
206 struct xfs_bmbt_irec rec;
207 int error;
208
209 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
210 if (error || *eof)
211 return error;
212
213 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
214 return 0;
215 }
216
217 /*
218 * Extent tree block counting routines.
219 */
220
221 /*
222 * Count leaf blocks given a range of extent records. Delayed allocation
223 * extents are not counted towards the totals.
224 */
225 STATIC void
226 xfs_bmap_count_leaves(
227 struct xfs_ifork *ifp,
228 xfs_extnum_t *numrecs,
229 xfs_filblks_t *count)
230 {
231 xfs_extnum_t i;
232 xfs_extnum_t nr_exts = xfs_iext_count(ifp);
233
234 for (i = 0; i < nr_exts; i++) {
235 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, i);
236 if (!isnullstartblock(xfs_bmbt_get_startblock(frp))) {
237 (*numrecs)++;
238 *count += xfs_bmbt_get_blockcount(frp);
239 }
240 }
241 }
242
243 /*
244 * Count leaf blocks given a range of extent records originally
245 * in btree format.
246 */
247 STATIC void
248 xfs_bmap_disk_count_leaves(
249 struct xfs_mount *mp,
250 struct xfs_btree_block *block,
251 int numrecs,
252 xfs_filblks_t *count)
253 {
254 int b;
255 xfs_bmbt_rec_t *frp;
256
257 for (b = 1; b <= numrecs; b++) {
258 frp = XFS_BMBT_REC_ADDR(mp, block, b);
259 *count += xfs_bmbt_disk_get_blockcount(frp);
260 }
261 }
262
263 /*
264 * Recursively walks each level of a btree
265 * to count total fsblocks in use.
266 */
267 STATIC int
268 xfs_bmap_count_tree(
269 struct xfs_mount *mp,
270 struct xfs_trans *tp,
271 struct xfs_ifork *ifp,
272 xfs_fsblock_t blockno,
273 int levelin,
274 xfs_extnum_t *nextents,
275 xfs_filblks_t *count)
276 {
277 int error;
278 struct xfs_buf *bp, *nbp;
279 int level = levelin;
280 __be64 *pp;
281 xfs_fsblock_t bno = blockno;
282 xfs_fsblock_t nextbno;
283 struct xfs_btree_block *block, *nextblock;
284 int numrecs;
285
286 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
287 &xfs_bmbt_buf_ops);
288 if (error)
289 return error;
290 *count += 1;
291 block = XFS_BUF_TO_BLOCK(bp);
292
293 if (--level) {
294 /* Not at node above leaves, count this level of nodes */
295 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
296 while (nextbno != NULLFSBLOCK) {
297 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
298 XFS_BMAP_BTREE_REF,
299 &xfs_bmbt_buf_ops);
300 if (error)
301 return error;
302 *count += 1;
303 nextblock = XFS_BUF_TO_BLOCK(nbp);
304 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
305 xfs_trans_brelse(tp, nbp);
306 }
307
308 /* Dive to the next level */
309 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
310 bno = be64_to_cpu(*pp);
311 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
312 count);
313 if (error) {
314 xfs_trans_brelse(tp, bp);
315 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
316 XFS_ERRLEVEL_LOW, mp);
317 return -EFSCORRUPTED;
318 }
319 xfs_trans_brelse(tp, bp);
320 } else {
321 /* count all level 1 nodes and their leaves */
322 for (;;) {
323 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
324 numrecs = be16_to_cpu(block->bb_numrecs);
325 (*nextents) += numrecs;
326 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
327 xfs_trans_brelse(tp, bp);
328 if (nextbno == NULLFSBLOCK)
329 break;
330 bno = nextbno;
331 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
332 XFS_BMAP_BTREE_REF,
333 &xfs_bmbt_buf_ops);
334 if (error)
335 return error;
336 *count += 1;
337 block = XFS_BUF_TO_BLOCK(bp);
338 }
339 }
340 return 0;
341 }
342
343 /*
344 * Count fsblocks of the given fork. Delayed allocation extents are
345 * not counted towards the totals.
346 */
347 int
348 xfs_bmap_count_blocks(
349 struct xfs_trans *tp,
350 struct xfs_inode *ip,
351 int whichfork,
352 xfs_extnum_t *nextents,
353 xfs_filblks_t *count)
354 {
355 struct xfs_mount *mp; /* file system mount structure */
356 __be64 *pp; /* pointer to block address */
357 struct xfs_btree_block *block; /* current btree block */
358 struct xfs_ifork *ifp; /* fork structure */
359 xfs_fsblock_t bno; /* block # of "block" */
360 int level; /* btree level, for checking */
361 int error;
362
363 bno = NULLFSBLOCK;
364 mp = ip->i_mount;
365 *nextents = 0;
366 *count = 0;
367 ifp = XFS_IFORK_PTR(ip, whichfork);
368 if (!ifp)
369 return 0;
370
371 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
372 case XFS_DINODE_FMT_EXTENTS:
373 xfs_bmap_count_leaves(ifp, nextents, count);
374 return 0;
375 case XFS_DINODE_FMT_BTREE:
376 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
377 error = xfs_iread_extents(tp, ip, whichfork);
378 if (error)
379 return error;
380 }
381
382 /*
383 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
384 */
385 block = ifp->if_broot;
386 level = be16_to_cpu(block->bb_level);
387 ASSERT(level > 0);
388 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
389 bno = be64_to_cpu(*pp);
390 ASSERT(bno != NULLFSBLOCK);
391 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
392 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
393
394 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
395 nextents, count);
396 if (error) {
397 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
398 XFS_ERRLEVEL_LOW, mp);
399 return -EFSCORRUPTED;
400 }
401 return 0;
402 }
403
404 return 0;
405 }
406
407 /*
408 * returns 1 for success, 0 if we failed to map the extent.
409 */
410 STATIC int
411 xfs_getbmapx_fix_eof_hole(
412 xfs_inode_t *ip, /* xfs incore inode pointer */
413 int whichfork,
414 struct getbmapx *out, /* output structure */
415 int prealloced, /* this is a file with
416 * preallocated data space */
417 int64_t end, /* last block requested */
418 xfs_fsblock_t startblock,
419 bool moretocome)
420 {
421 int64_t fixlen;
422 xfs_mount_t *mp; /* file system mount point */
423 xfs_ifork_t *ifp; /* inode fork pointer */
424 xfs_extnum_t lastx; /* last extent pointer */
425 xfs_fileoff_t fileblock;
426
427 if (startblock == HOLESTARTBLOCK) {
428 mp = ip->i_mount;
429 out->bmv_block = -1;
430 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
431 fixlen -= out->bmv_offset;
432 if (prealloced && out->bmv_offset + out->bmv_length == end) {
433 /* Came to hole at EOF. Trim it. */
434 if (fixlen <= 0)
435 return 0;
436 out->bmv_length = fixlen;
437 }
438 } else {
439 if (startblock == DELAYSTARTBLOCK)
440 out->bmv_block = -2;
441 else
442 out->bmv_block = xfs_fsb_to_db(ip, startblock);
443 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
444 ifp = XFS_IFORK_PTR(ip, whichfork);
445 if (!moretocome &&
446 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
447 (lastx == xfs_iext_count(ifp) - 1))
448 out->bmv_oflags |= BMV_OF_LAST;
449 }
450
451 return 1;
452 }
453
454 /* Adjust the reported bmap around shared/unshared extent transitions. */
455 STATIC int
456 xfs_getbmap_adjust_shared(
457 struct xfs_inode *ip,
458 int whichfork,
459 struct xfs_bmbt_irec *map,
460 struct getbmapx *out,
461 struct xfs_bmbt_irec *next_map)
462 {
463 struct xfs_mount *mp = ip->i_mount;
464 xfs_agnumber_t agno;
465 xfs_agblock_t agbno;
466 xfs_agblock_t ebno;
467 xfs_extlen_t elen;
468 xfs_extlen_t nlen;
469 int error;
470
471 next_map->br_startblock = NULLFSBLOCK;
472 next_map->br_startoff = NULLFILEOFF;
473 next_map->br_blockcount = 0;
474
475 /* Only written data blocks can be shared. */
476 if (!xfs_is_reflink_inode(ip) ||
477 whichfork != XFS_DATA_FORK ||
478 !xfs_bmap_is_real_extent(map))
479 return 0;
480
481 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock);
482 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock);
483 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
484 map->br_blockcount, &ebno, &elen, true);
485 if (error)
486 return error;
487
488 if (ebno == NULLAGBLOCK) {
489 /* No shared blocks at all. */
490 return 0;
491 } else if (agbno == ebno) {
492 /*
493 * Shared extent at (agbno, elen). Shrink the reported
494 * extent length and prepare to move the start of map[i]
495 * to agbno+elen, with the aim of (re)formatting the new
496 * map[i] the next time through the inner loop.
497 */
498 out->bmv_length = XFS_FSB_TO_BB(mp, elen);
499 out->bmv_oflags |= BMV_OF_SHARED;
500 if (elen != map->br_blockcount) {
501 *next_map = *map;
502 next_map->br_startblock += elen;
503 next_map->br_startoff += elen;
504 next_map->br_blockcount -= elen;
505 }
506 map->br_blockcount -= elen;
507 } else {
508 /*
509 * There's an unshared extent (agbno, ebno - agbno)
510 * followed by shared extent at (ebno, elen). Shrink
511 * the reported extent length to cover only the unshared
512 * extent and prepare to move up the start of map[i] to
513 * ebno, with the aim of (re)formatting the new map[i]
514 * the next time through the inner loop.
515 */
516 *next_map = *map;
517 nlen = ebno - agbno;
518 out->bmv_length = XFS_FSB_TO_BB(mp, nlen);
519 next_map->br_startblock += nlen;
520 next_map->br_startoff += nlen;
521 next_map->br_blockcount -= nlen;
522 map->br_blockcount -= nlen;
523 }
524
525 return 0;
526 }
527
528 /*
529 * Get inode's extents as described in bmv, and format for output.
530 * Calls formatter to fill the user's buffer until all extents
531 * are mapped, until the passed-in bmv->bmv_count slots have
532 * been filled, or until the formatter short-circuits the loop,
533 * if it is tracking filled-in extents on its own.
534 */
535 int /* error code */
536 xfs_getbmap(
537 xfs_inode_t *ip,
538 struct getbmapx *bmv, /* user bmap structure */
539 xfs_bmap_format_t formatter, /* format to user */
540 void *arg) /* formatter arg */
541 {
542 int64_t bmvend; /* last block requested */
543 int error = 0; /* return value */
544 int64_t fixlen; /* length for -1 case */
545 int i; /* extent number */
546 int lock; /* lock state */
547 xfs_bmbt_irec_t *map; /* buffer for user's data */
548 xfs_mount_t *mp; /* file system mount point */
549 int nex; /* # of user extents can do */
550 int subnex; /* # of bmapi's can do */
551 int nmap; /* number of map entries */
552 struct getbmapx *out; /* output structure */
553 int whichfork; /* data or attr fork */
554 int prealloced; /* this is a file with
555 * preallocated data space */
556 int iflags; /* interface flags */
557 int bmapi_flags; /* flags for xfs_bmapi */
558 int cur_ext = 0;
559 struct xfs_bmbt_irec inject_map;
560
561 mp = ip->i_mount;
562 iflags = bmv->bmv_iflags;
563
564 #ifndef DEBUG
565 /* Only allow CoW fork queries if we're debugging. */
566 if (iflags & BMV_IF_COWFORK)
567 return -EINVAL;
568 #endif
569 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
570 return -EINVAL;
571
572 if (iflags & BMV_IF_ATTRFORK)
573 whichfork = XFS_ATTR_FORK;
574 else if (iflags & BMV_IF_COWFORK)
575 whichfork = XFS_COW_FORK;
576 else
577 whichfork = XFS_DATA_FORK;
578
579 switch (whichfork) {
580 case XFS_ATTR_FORK:
581 if (XFS_IFORK_Q(ip)) {
582 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
583 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
584 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
585 return -EINVAL;
586 } else if (unlikely(
587 ip->i_d.di_aformat != 0 &&
588 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
589 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
590 ip->i_mount);
591 return -EFSCORRUPTED;
592 }
593
594 prealloced = 0;
595 fixlen = 1LL << 32;
596 break;
597 case XFS_COW_FORK:
598 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS)
599 return -EINVAL;
600
601 if (xfs_get_cowextsz_hint(ip)) {
602 prealloced = 1;
603 fixlen = mp->m_super->s_maxbytes;
604 } else {
605 prealloced = 0;
606 fixlen = XFS_ISIZE(ip);
607 }
608 break;
609 default:
610 /* Local format data forks report no extents. */
611 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL) {
612 bmv->bmv_entries = 0;
613 return 0;
614 }
615 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
616 ip->i_d.di_format != XFS_DINODE_FMT_BTREE)
617 return -EINVAL;
618
619 if (xfs_get_extsz_hint(ip) ||
620 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
621 prealloced = 1;
622 fixlen = mp->m_super->s_maxbytes;
623 } else {
624 prealloced = 0;
625 fixlen = XFS_ISIZE(ip);
626 }
627 break;
628 }
629
630 if (bmv->bmv_length == -1) {
631 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
632 bmv->bmv_length =
633 max_t(int64_t, fixlen - bmv->bmv_offset, 0);
634 } else if (bmv->bmv_length == 0) {
635 bmv->bmv_entries = 0;
636 return 0;
637 } else if (bmv->bmv_length < 0) {
638 return -EINVAL;
639 }
640
641 nex = bmv->bmv_count - 1;
642 if (nex <= 0)
643 return -EINVAL;
644 bmvend = bmv->bmv_offset + bmv->bmv_length;
645
646
647 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
648 return -ENOMEM;
649 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
650 if (!out)
651 return -ENOMEM;
652
653 xfs_ilock(ip, XFS_IOLOCK_SHARED);
654 switch (whichfork) {
655 case XFS_DATA_FORK:
656 if (!(iflags & BMV_IF_DELALLOC) &&
657 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
658 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
659 if (error)
660 goto out_unlock_iolock;
661
662 /*
663 * Even after flushing the inode, there can still be
664 * delalloc blocks on the inode beyond EOF due to
665 * speculative preallocation. These are not removed
666 * until the release function is called or the inode
667 * is inactivated. Hence we cannot assert here that
668 * ip->i_delayed_blks == 0.
669 */
670 }
671
672 lock = xfs_ilock_data_map_shared(ip);
673 break;
674 case XFS_COW_FORK:
675 lock = XFS_ILOCK_SHARED;
676 xfs_ilock(ip, lock);
677 break;
678 case XFS_ATTR_FORK:
679 lock = xfs_ilock_attr_map_shared(ip);
680 break;
681 }
682
683 /*
684 * Don't let nex be bigger than the number of extents
685 * we can have assuming alternating holes and real extents.
686 */
687 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
688 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
689
690 bmapi_flags = xfs_bmapi_aflag(whichfork);
691 if (!(iflags & BMV_IF_PREALLOC))
692 bmapi_flags |= XFS_BMAPI_IGSTATE;
693
694 /*
695 * Allocate enough space to handle "subnex" maps at a time.
696 */
697 error = -ENOMEM;
698 subnex = 16;
699 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
700 if (!map)
701 goto out_unlock_ilock;
702
703 bmv->bmv_entries = 0;
704
705 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
706 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
707 error = 0;
708 goto out_free_map;
709 }
710
711 do {
712 nmap = (nex> subnex) ? subnex : nex;
713 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
714 XFS_BB_TO_FSB(mp, bmv->bmv_length),
715 map, &nmap, bmapi_flags);
716 if (error)
717 goto out_free_map;
718 ASSERT(nmap <= subnex);
719
720 for (i = 0; i < nmap && bmv->bmv_length &&
721 cur_ext < bmv->bmv_count - 1; i++) {
722 out[cur_ext].bmv_oflags = 0;
723 if (map[i].br_state == XFS_EXT_UNWRITTEN)
724 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
725 else if (map[i].br_startblock == DELAYSTARTBLOCK)
726 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
727 out[cur_ext].bmv_offset =
728 XFS_FSB_TO_BB(mp, map[i].br_startoff);
729 out[cur_ext].bmv_length =
730 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
731 out[cur_ext].bmv_unused1 = 0;
732 out[cur_ext].bmv_unused2 = 0;
733
734 /*
735 * delayed allocation extents that start beyond EOF can
736 * occur due to speculative EOF allocation when the
737 * delalloc extent is larger than the largest freespace
738 * extent at conversion time. These extents cannot be
739 * converted by data writeback, so can exist here even
740 * if we are not supposed to be finding delalloc
741 * extents.
742 */
743 if (map[i].br_startblock == DELAYSTARTBLOCK &&
744 map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
745 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
746
747 if (map[i].br_startblock == HOLESTARTBLOCK &&
748 whichfork == XFS_ATTR_FORK) {
749 /* came to the end of attribute fork */
750 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
751 goto out_free_map;
752 }
753
754 /* Is this a shared block? */
755 error = xfs_getbmap_adjust_shared(ip, whichfork,
756 &map[i], &out[cur_ext], &inject_map);
757 if (error)
758 goto out_free_map;
759
760 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork,
761 &out[cur_ext], prealloced, bmvend,
762 map[i].br_startblock,
763 inject_map.br_startblock != NULLFSBLOCK))
764 goto out_free_map;
765
766 bmv->bmv_offset =
767 out[cur_ext].bmv_offset +
768 out[cur_ext].bmv_length;
769 bmv->bmv_length =
770 max_t(int64_t, 0, bmvend - bmv->bmv_offset);
771
772 /*
773 * In case we don't want to return the hole,
774 * don't increase cur_ext so that we can reuse
775 * it in the next loop.
776 */
777 if ((iflags & BMV_IF_NO_HOLES) &&
778 map[i].br_startblock == HOLESTARTBLOCK) {
779 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
780 continue;
781 }
782
783 /*
784 * In order to report shared extents accurately,
785 * we report each distinct shared/unshared part
786 * of a single bmbt record using multiple bmap
787 * extents. To make that happen, we iterate the
788 * same map array item multiple times, each
789 * time trimming out the subextent that we just
790 * reported.
791 *
792 * Because of this, we must check the out array
793 * index (cur_ext) directly against bmv_count-1
794 * to avoid overflows.
795 */
796 if (inject_map.br_startblock != NULLFSBLOCK) {
797 map[i] = inject_map;
798 i--;
799 }
800 bmv->bmv_entries++;
801 cur_ext++;
802 }
803 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1);
804
805 out_free_map:
806 kmem_free(map);
807 out_unlock_ilock:
808 xfs_iunlock(ip, lock);
809 out_unlock_iolock:
810 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
811
812 for (i = 0; i < cur_ext; i++) {
813 /* format results & advance arg */
814 error = formatter(&arg, &out[i]);
815 if (error)
816 break;
817 }
818
819 kmem_free(out);
820 return error;
821 }
822
823 /*
824 * dead simple method of punching delalyed allocation blocks from a range in
825 * the inode. Walks a block at a time so will be slow, but is only executed in
826 * rare error cases so the overhead is not critical. This will always punch out
827 * both the start and end blocks, even if the ranges only partially overlap
828 * them, so it is up to the caller to ensure that partial blocks are not
829 * passed in.
830 */
831 int
832 xfs_bmap_punch_delalloc_range(
833 struct xfs_inode *ip,
834 xfs_fileoff_t start_fsb,
835 xfs_fileoff_t length)
836 {
837 xfs_fileoff_t remaining = length;
838 int error = 0;
839
840 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
841
842 do {
843 int done;
844 xfs_bmbt_irec_t imap;
845 int nimaps = 1;
846 xfs_fsblock_t firstblock;
847 struct xfs_defer_ops dfops;
848
849 /*
850 * Map the range first and check that it is a delalloc extent
851 * before trying to unmap the range. Otherwise we will be
852 * trying to remove a real extent (which requires a
853 * transaction) or a hole, which is probably a bad idea...
854 */
855 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
856 XFS_BMAPI_ENTIRE);
857
858 if (error) {
859 /* something screwed, just bail */
860 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
861 xfs_alert(ip->i_mount,
862 "Failed delalloc mapping lookup ino %lld fsb %lld.",
863 ip->i_ino, start_fsb);
864 }
865 break;
866 }
867 if (!nimaps) {
868 /* nothing there */
869 goto next_block;
870 }
871 if (imap.br_startblock != DELAYSTARTBLOCK) {
872 /* been converted, ignore */
873 goto next_block;
874 }
875 WARN_ON(imap.br_blockcount == 0);
876
877 /*
878 * Note: while we initialise the firstblock/dfops pair, they
879 * should never be used because blocks should never be
880 * allocated or freed for a delalloc extent and hence we need
881 * don't cancel or finish them after the xfs_bunmapi() call.
882 */
883 xfs_defer_init(&dfops, &firstblock);
884 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
885 &dfops, &done);
886 if (error)
887 break;
888
889 ASSERT(!xfs_defer_has_unfinished_work(&dfops));
890 next_block:
891 start_fsb++;
892 remaining--;
893 } while(remaining > 0);
894
895 return error;
896 }
897
898 /*
899 * Test whether it is appropriate to check an inode for and free post EOF
900 * blocks. The 'force' parameter determines whether we should also consider
901 * regular files that are marked preallocated or append-only.
902 */
903 bool
904 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
905 {
906 /* prealloc/delalloc exists only on regular files */
907 if (!S_ISREG(VFS_I(ip)->i_mode))
908 return false;
909
910 /*
911 * Zero sized files with no cached pages and delalloc blocks will not
912 * have speculative prealloc/delalloc blocks to remove.
913 */
914 if (VFS_I(ip)->i_size == 0 &&
915 VFS_I(ip)->i_mapping->nrpages == 0 &&
916 ip->i_delayed_blks == 0)
917 return false;
918
919 /* If we haven't read in the extent list, then don't do it now. */
920 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
921 return false;
922
923 /*
924 * Do not free real preallocated or append-only files unless the file
925 * has delalloc blocks and we are forced to remove them.
926 */
927 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
928 if (!force || ip->i_delayed_blks == 0)
929 return false;
930
931 return true;
932 }
933
934 /*
935 * This is called to free any blocks beyond eof. The caller must hold
936 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
937 * reference to the inode.
938 */
939 int
940 xfs_free_eofblocks(
941 struct xfs_inode *ip)
942 {
943 struct xfs_trans *tp;
944 int error;
945 xfs_fileoff_t end_fsb;
946 xfs_fileoff_t last_fsb;
947 xfs_filblks_t map_len;
948 int nimaps;
949 struct xfs_bmbt_irec imap;
950 struct xfs_mount *mp = ip->i_mount;
951
952 /*
953 * Figure out if there are any blocks beyond the end
954 * of the file. If not, then there is nothing to do.
955 */
956 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
957 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
958 if (last_fsb <= end_fsb)
959 return 0;
960 map_len = last_fsb - end_fsb;
961
962 nimaps = 1;
963 xfs_ilock(ip, XFS_ILOCK_SHARED);
964 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
965 xfs_iunlock(ip, XFS_ILOCK_SHARED);
966
967 /*
968 * If there are blocks after the end of file, truncate the file to its
969 * current size to free them up.
970 */
971 if (!error && (nimaps != 0) &&
972 (imap.br_startblock != HOLESTARTBLOCK ||
973 ip->i_delayed_blks)) {
974 /*
975 * Attach the dquots to the inode up front.
976 */
977 error = xfs_qm_dqattach(ip, 0);
978 if (error)
979 return error;
980
981 /* wait on dio to ensure i_size has settled */
982 inode_dio_wait(VFS_I(ip));
983
984 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
985 &tp);
986 if (error) {
987 ASSERT(XFS_FORCED_SHUTDOWN(mp));
988 return error;
989 }
990
991 xfs_ilock(ip, XFS_ILOCK_EXCL);
992 xfs_trans_ijoin(tp, ip, 0);
993
994 /*
995 * Do not update the on-disk file size. If we update the
996 * on-disk file size and then the system crashes before the
997 * contents of the file are flushed to disk then the files
998 * may be full of holes (ie NULL files bug).
999 */
1000 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
1001 XFS_ISIZE(ip));
1002 if (error) {
1003 /*
1004 * If we get an error at this point we simply don't
1005 * bother truncating the file.
1006 */
1007 xfs_trans_cancel(tp);
1008 } else {
1009 error = xfs_trans_commit(tp);
1010 if (!error)
1011 xfs_inode_clear_eofblocks_tag(ip);
1012 }
1013
1014 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1015 }
1016 return error;
1017 }
1018
1019 int
1020 xfs_alloc_file_space(
1021 struct xfs_inode *ip,
1022 xfs_off_t offset,
1023 xfs_off_t len,
1024 int alloc_type)
1025 {
1026 xfs_mount_t *mp = ip->i_mount;
1027 xfs_off_t count;
1028 xfs_filblks_t allocated_fsb;
1029 xfs_filblks_t allocatesize_fsb;
1030 xfs_extlen_t extsz, temp;
1031 xfs_fileoff_t startoffset_fsb;
1032 xfs_fsblock_t firstfsb;
1033 int nimaps;
1034 int quota_flag;
1035 int rt;
1036 xfs_trans_t *tp;
1037 xfs_bmbt_irec_t imaps[1], *imapp;
1038 struct xfs_defer_ops dfops;
1039 uint qblocks, resblks, resrtextents;
1040 int error;
1041
1042 trace_xfs_alloc_file_space(ip);
1043
1044 if (XFS_FORCED_SHUTDOWN(mp))
1045 return -EIO;
1046
1047 error = xfs_qm_dqattach(ip, 0);
1048 if (error)
1049 return error;
1050
1051 if (len <= 0)
1052 return -EINVAL;
1053
1054 rt = XFS_IS_REALTIME_INODE(ip);
1055 extsz = xfs_get_extsz_hint(ip);
1056
1057 count = len;
1058 imapp = &imaps[0];
1059 nimaps = 1;
1060 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
1061 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
1062
1063 /*
1064 * Allocate file space until done or until there is an error
1065 */
1066 while (allocatesize_fsb && !error) {
1067 xfs_fileoff_t s, e;
1068
1069 /*
1070 * Determine space reservations for data/realtime.
1071 */
1072 if (unlikely(extsz)) {
1073 s = startoffset_fsb;
1074 do_div(s, extsz);
1075 s *= extsz;
1076 e = startoffset_fsb + allocatesize_fsb;
1077 if ((temp = do_mod(startoffset_fsb, extsz)))
1078 e += temp;
1079 if ((temp = do_mod(e, extsz)))
1080 e += extsz - temp;
1081 } else {
1082 s = 0;
1083 e = allocatesize_fsb;
1084 }
1085
1086 /*
1087 * The transaction reservation is limited to a 32-bit block
1088 * count, hence we need to limit the number of blocks we are
1089 * trying to reserve to avoid an overflow. We can't allocate
1090 * more than @nimaps extents, and an extent is limited on disk
1091 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1092 */
1093 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1094 if (unlikely(rt)) {
1095 resrtextents = qblocks = resblks;
1096 resrtextents /= mp->m_sb.sb_rextsize;
1097 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1098 quota_flag = XFS_QMOPT_RES_RTBLKS;
1099 } else {
1100 resrtextents = 0;
1101 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1102 quota_flag = XFS_QMOPT_RES_REGBLKS;
1103 }
1104
1105 /*
1106 * Allocate and setup the transaction.
1107 */
1108 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1109 resrtextents, 0, &tp);
1110
1111 /*
1112 * Check for running out of space
1113 */
1114 if (error) {
1115 /*
1116 * Free the transaction structure.
1117 */
1118 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1119 break;
1120 }
1121 xfs_ilock(ip, XFS_ILOCK_EXCL);
1122 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1123 0, quota_flag);
1124 if (error)
1125 goto error1;
1126
1127 xfs_trans_ijoin(tp, ip, 0);
1128
1129 xfs_defer_init(&dfops, &firstfsb);
1130 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1131 allocatesize_fsb, alloc_type, &firstfsb,
1132 resblks, imapp, &nimaps, &dfops);
1133 if (error)
1134 goto error0;
1135
1136 /*
1137 * Complete the transaction
1138 */
1139 error = xfs_defer_finish(&tp, &dfops, NULL);
1140 if (error)
1141 goto error0;
1142
1143 error = xfs_trans_commit(tp);
1144 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1145 if (error)
1146 break;
1147
1148 allocated_fsb = imapp->br_blockcount;
1149
1150 if (nimaps == 0) {
1151 error = -ENOSPC;
1152 break;
1153 }
1154
1155 startoffset_fsb += allocated_fsb;
1156 allocatesize_fsb -= allocated_fsb;
1157 }
1158
1159 return error;
1160
1161 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1162 xfs_defer_cancel(&dfops);
1163 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1164
1165 error1: /* Just cancel transaction */
1166 xfs_trans_cancel(tp);
1167 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1168 return error;
1169 }
1170
1171 static int
1172 xfs_unmap_extent(
1173 struct xfs_inode *ip,
1174 xfs_fileoff_t startoffset_fsb,
1175 xfs_filblks_t len_fsb,
1176 int *done)
1177 {
1178 struct xfs_mount *mp = ip->i_mount;
1179 struct xfs_trans *tp;
1180 struct xfs_defer_ops dfops;
1181 xfs_fsblock_t firstfsb;
1182 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1183 int error;
1184
1185 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1186 if (error) {
1187 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1188 return error;
1189 }
1190
1191 xfs_ilock(ip, XFS_ILOCK_EXCL);
1192 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1193 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1194 if (error)
1195 goto out_trans_cancel;
1196
1197 xfs_trans_ijoin(tp, ip, 0);
1198
1199 xfs_defer_init(&dfops, &firstfsb);
1200 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1201 &dfops, done);
1202 if (error)
1203 goto out_bmap_cancel;
1204
1205 error = xfs_defer_finish(&tp, &dfops, ip);
1206 if (error)
1207 goto out_bmap_cancel;
1208
1209 error = xfs_trans_commit(tp);
1210 out_unlock:
1211 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1212 return error;
1213
1214 out_bmap_cancel:
1215 xfs_defer_cancel(&dfops);
1216 out_trans_cancel:
1217 xfs_trans_cancel(tp);
1218 goto out_unlock;
1219 }
1220
1221 static int
1222 xfs_adjust_extent_unmap_boundaries(
1223 struct xfs_inode *ip,
1224 xfs_fileoff_t *startoffset_fsb,
1225 xfs_fileoff_t *endoffset_fsb)
1226 {
1227 struct xfs_mount *mp = ip->i_mount;
1228 struct xfs_bmbt_irec imap;
1229 int nimap, error;
1230 xfs_extlen_t mod = 0;
1231
1232 nimap = 1;
1233 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1234 if (error)
1235 return error;
1236
1237 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1238 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1239 mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize);
1240 if (mod)
1241 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1242 }
1243
1244 nimap = 1;
1245 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1246 if (error)
1247 return error;
1248
1249 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1250 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1251 mod++;
1252 if (mod && mod != mp->m_sb.sb_rextsize)
1253 *endoffset_fsb -= mod;
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int
1260 xfs_flush_unmap_range(
1261 struct xfs_inode *ip,
1262 xfs_off_t offset,
1263 xfs_off_t len)
1264 {
1265 struct xfs_mount *mp = ip->i_mount;
1266 struct inode *inode = VFS_I(ip);
1267 xfs_off_t rounding, start, end;
1268 int error;
1269
1270 /* wait for the completion of any pending DIOs */
1271 inode_dio_wait(inode);
1272
1273 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1274 start = round_down(offset, rounding);
1275 end = round_up(offset + len, rounding) - 1;
1276
1277 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1278 if (error)
1279 return error;
1280 truncate_pagecache_range(inode, start, end);
1281 return 0;
1282 }
1283
1284 int
1285 xfs_free_file_space(
1286 struct xfs_inode *ip,
1287 xfs_off_t offset,
1288 xfs_off_t len)
1289 {
1290 struct xfs_mount *mp = ip->i_mount;
1291 xfs_fileoff_t startoffset_fsb;
1292 xfs_fileoff_t endoffset_fsb;
1293 int done = 0, error;
1294
1295 trace_xfs_free_file_space(ip);
1296
1297 error = xfs_qm_dqattach(ip, 0);
1298 if (error)
1299 return error;
1300
1301 if (len <= 0) /* if nothing being freed */
1302 return 0;
1303
1304 error = xfs_flush_unmap_range(ip, offset, len);
1305 if (error)
1306 return error;
1307
1308 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1309 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1310
1311 /*
1312 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1313 * and we can't use unwritten extents then we actually need to ensure
1314 * to zero the whole extent, otherwise we just need to take of block
1315 * boundaries, and xfs_bunmapi will handle the rest.
1316 */
1317 if (XFS_IS_REALTIME_INODE(ip) &&
1318 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1319 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1320 &endoffset_fsb);
1321 if (error)
1322 return error;
1323 }
1324
1325 if (endoffset_fsb > startoffset_fsb) {
1326 while (!done) {
1327 error = xfs_unmap_extent(ip, startoffset_fsb,
1328 endoffset_fsb - startoffset_fsb, &done);
1329 if (error)
1330 return error;
1331 }
1332 }
1333
1334 /*
1335 * Now that we've unmap all full blocks we'll have to zero out any
1336 * partial block at the beginning and/or end. xfs_zero_range is
1337 * smart enough to skip any holes, including those we just created,
1338 * but we must take care not to zero beyond EOF and enlarge i_size.
1339 */
1340
1341 if (offset >= XFS_ISIZE(ip))
1342 return 0;
1343
1344 if (offset + len > XFS_ISIZE(ip))
1345 len = XFS_ISIZE(ip) - offset;
1346
1347 return xfs_zero_range(ip, offset, len, NULL);
1348 }
1349
1350 /*
1351 * Preallocate and zero a range of a file. This mechanism has the allocation
1352 * semantics of fallocate and in addition converts data in the range to zeroes.
1353 */
1354 int
1355 xfs_zero_file_space(
1356 struct xfs_inode *ip,
1357 xfs_off_t offset,
1358 xfs_off_t len)
1359 {
1360 struct xfs_mount *mp = ip->i_mount;
1361 uint blksize;
1362 int error;
1363
1364 trace_xfs_zero_file_space(ip);
1365
1366 blksize = 1 << mp->m_sb.sb_blocklog;
1367
1368 /*
1369 * Punch a hole and prealloc the range. We use hole punch rather than
1370 * unwritten extent conversion for two reasons:
1371 *
1372 * 1.) Hole punch handles partial block zeroing for us.
1373 *
1374 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1375 * by virtue of the hole punch.
1376 */
1377 error = xfs_free_file_space(ip, offset, len);
1378 if (error)
1379 goto out;
1380
1381 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1382 round_up(offset + len, blksize) -
1383 round_down(offset, blksize),
1384 XFS_BMAPI_PREALLOC);
1385 out:
1386 return error;
1387
1388 }
1389
1390 /*
1391 * @next_fsb will keep track of the extent currently undergoing shift.
1392 * @stop_fsb will keep track of the extent at which we have to stop.
1393 * If we are shifting left, we will start with block (offset + len) and
1394 * shift each extent till last extent.
1395 * If we are shifting right, we will start with last extent inside file space
1396 * and continue until we reach the block corresponding to offset.
1397 */
1398 static int
1399 xfs_shift_file_space(
1400 struct xfs_inode *ip,
1401 xfs_off_t offset,
1402 xfs_off_t len,
1403 enum shift_direction direction)
1404 {
1405 int done = 0;
1406 struct xfs_mount *mp = ip->i_mount;
1407 struct xfs_trans *tp;
1408 int error;
1409 struct xfs_defer_ops dfops;
1410 xfs_fsblock_t first_block;
1411 xfs_fileoff_t stop_fsb;
1412 xfs_fileoff_t next_fsb;
1413 xfs_fileoff_t shift_fsb;
1414 uint resblks;
1415
1416 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1417
1418 if (direction == SHIFT_LEFT) {
1419 /*
1420 * Reserve blocks to cover potential extent merges after left
1421 * shift operations.
1422 */
1423 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1424 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1425 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1426 } else {
1427 /*
1428 * If right shift, delegate the work of initialization of
1429 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1430 */
1431 resblks = 0;
1432 next_fsb = NULLFSBLOCK;
1433 stop_fsb = XFS_B_TO_FSB(mp, offset);
1434 }
1435
1436 shift_fsb = XFS_B_TO_FSB(mp, len);
1437
1438 /*
1439 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1440 * into the accessible region of the file.
1441 */
1442 if (xfs_can_free_eofblocks(ip, true)) {
1443 error = xfs_free_eofblocks(ip);
1444 if (error)
1445 return error;
1446 }
1447
1448 /*
1449 * Writeback and invalidate cache for the remainder of the file as we're
1450 * about to shift down every extent from offset to EOF.
1451 */
1452 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1453 offset, -1);
1454 if (error)
1455 return error;
1456 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1457 offset >> PAGE_SHIFT, -1);
1458 if (error)
1459 return error;
1460
1461 /*
1462 * Clean out anything hanging around in the cow fork now that
1463 * we've flushed all the dirty data out to disk to avoid having
1464 * CoW extents at the wrong offsets.
1465 */
1466 if (xfs_is_reflink_inode(ip)) {
1467 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1468 true);
1469 if (error)
1470 return error;
1471 }
1472
1473 /*
1474 * The extent shifting code works on extent granularity. So, if
1475 * stop_fsb is not the starting block of extent, we need to split
1476 * the extent at stop_fsb.
1477 */
1478 if (direction == SHIFT_RIGHT) {
1479 error = xfs_bmap_split_extent(ip, stop_fsb);
1480 if (error)
1481 return error;
1482 }
1483
1484 while (!error && !done) {
1485 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1486 &tp);
1487 if (error)
1488 break;
1489
1490 xfs_ilock(ip, XFS_ILOCK_EXCL);
1491 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1492 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1493 XFS_QMOPT_RES_REGBLKS);
1494 if (error)
1495 goto out_trans_cancel;
1496
1497 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1498
1499 xfs_defer_init(&dfops, &first_block);
1500
1501 /*
1502 * We are using the write transaction in which max 2 bmbt
1503 * updates are allowed
1504 */
1505 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1506 &done, stop_fsb, &first_block, &dfops,
1507 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1508 if (error)
1509 goto out_bmap_cancel;
1510
1511 error = xfs_defer_finish(&tp, &dfops, NULL);
1512 if (error)
1513 goto out_bmap_cancel;
1514
1515 error = xfs_trans_commit(tp);
1516 }
1517
1518 return error;
1519
1520 out_bmap_cancel:
1521 xfs_defer_cancel(&dfops);
1522 out_trans_cancel:
1523 xfs_trans_cancel(tp);
1524 return error;
1525 }
1526
1527 /*
1528 * xfs_collapse_file_space()
1529 * This routine frees disk space and shift extent for the given file.
1530 * The first thing we do is to free data blocks in the specified range
1531 * by calling xfs_free_file_space(). It would also sync dirty data
1532 * and invalidate page cache over the region on which collapse range
1533 * is working. And Shift extent records to the left to cover a hole.
1534 * RETURNS:
1535 * 0 on success
1536 * errno on error
1537 *
1538 */
1539 int
1540 xfs_collapse_file_space(
1541 struct xfs_inode *ip,
1542 xfs_off_t offset,
1543 xfs_off_t len)
1544 {
1545 int error;
1546
1547 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1548 trace_xfs_collapse_file_space(ip);
1549
1550 error = xfs_free_file_space(ip, offset, len);
1551 if (error)
1552 return error;
1553
1554 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1555 }
1556
1557 /*
1558 * xfs_insert_file_space()
1559 * This routine create hole space by shifting extents for the given file.
1560 * The first thing we do is to sync dirty data and invalidate page cache
1561 * over the region on which insert range is working. And split an extent
1562 * to two extents at given offset by calling xfs_bmap_split_extent.
1563 * And shift all extent records which are laying between [offset,
1564 * last allocated extent] to the right to reserve hole range.
1565 * RETURNS:
1566 * 0 on success
1567 * errno on error
1568 */
1569 int
1570 xfs_insert_file_space(
1571 struct xfs_inode *ip,
1572 loff_t offset,
1573 loff_t len)
1574 {
1575 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1576 trace_xfs_insert_file_space(ip);
1577
1578 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1579 }
1580
1581 /*
1582 * We need to check that the format of the data fork in the temporary inode is
1583 * valid for the target inode before doing the swap. This is not a problem with
1584 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1585 * data fork depending on the space the attribute fork is taking so we can get
1586 * invalid formats on the target inode.
1587 *
1588 * E.g. target has space for 7 extents in extent format, temp inode only has
1589 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1590 * btree, but when swapped it needs to be in extent format. Hence we can't just
1591 * blindly swap data forks on attr2 filesystems.
1592 *
1593 * Note that we check the swap in both directions so that we don't end up with
1594 * a corrupt temporary inode, either.
1595 *
1596 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1597 * inode will prevent this situation from occurring, so all we do here is
1598 * reject and log the attempt. basically we are putting the responsibility on
1599 * userspace to get this right.
1600 */
1601 static int
1602 xfs_swap_extents_check_format(
1603 struct xfs_inode *ip, /* target inode */
1604 struct xfs_inode *tip) /* tmp inode */
1605 {
1606
1607 /* Should never get a local format */
1608 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1609 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1610 return -EINVAL;
1611
1612 /*
1613 * if the target inode has less extents that then temporary inode then
1614 * why did userspace call us?
1615 */
1616 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1617 return -EINVAL;
1618
1619 /*
1620 * If we have to use the (expensive) rmap swap method, we can
1621 * handle any number of extents and any format.
1622 */
1623 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1624 return 0;
1625
1626 /*
1627 * if the target inode is in extent form and the temp inode is in btree
1628 * form then we will end up with the target inode in the wrong format
1629 * as we already know there are less extents in the temp inode.
1630 */
1631 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1632 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1633 return -EINVAL;
1634
1635 /* Check temp in extent form to max in target */
1636 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1637 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1638 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1639 return -EINVAL;
1640
1641 /* Check target in extent form to max in temp */
1642 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1643 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1644 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1645 return -EINVAL;
1646
1647 /*
1648 * If we are in a btree format, check that the temp root block will fit
1649 * in the target and that it has enough extents to be in btree format
1650 * in the target.
1651 *
1652 * Note that we have to be careful to allow btree->extent conversions
1653 * (a common defrag case) which will occur when the temp inode is in
1654 * extent format...
1655 */
1656 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1657 if (XFS_IFORK_Q(ip) &&
1658 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1659 return -EINVAL;
1660 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1661 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1662 return -EINVAL;
1663 }
1664
1665 /* Reciprocal target->temp btree format checks */
1666 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1667 if (XFS_IFORK_Q(tip) &&
1668 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1669 return -EINVAL;
1670 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1671 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1672 return -EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 static int
1679 xfs_swap_extent_flush(
1680 struct xfs_inode *ip)
1681 {
1682 int error;
1683
1684 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1685 if (error)
1686 return error;
1687 truncate_pagecache_range(VFS_I(ip), 0, -1);
1688
1689 /* Verify O_DIRECT for ftmp */
1690 if (VFS_I(ip)->i_mapping->nrpages)
1691 return -EINVAL;
1692 return 0;
1693 }
1694
1695 /*
1696 * Move extents from one file to another, when rmap is enabled.
1697 */
1698 STATIC int
1699 xfs_swap_extent_rmap(
1700 struct xfs_trans **tpp,
1701 struct xfs_inode *ip,
1702 struct xfs_inode *tip)
1703 {
1704 struct xfs_bmbt_irec irec;
1705 struct xfs_bmbt_irec uirec;
1706 struct xfs_bmbt_irec tirec;
1707 xfs_fileoff_t offset_fsb;
1708 xfs_fileoff_t end_fsb;
1709 xfs_filblks_t count_fsb;
1710 xfs_fsblock_t firstfsb;
1711 struct xfs_defer_ops dfops;
1712 int error;
1713 xfs_filblks_t ilen;
1714 xfs_filblks_t rlen;
1715 int nimaps;
1716 uint64_t tip_flags2;
1717
1718 /*
1719 * If the source file has shared blocks, we must flag the donor
1720 * file as having shared blocks so that we get the shared-block
1721 * rmap functions when we go to fix up the rmaps. The flags
1722 * will be switch for reals later.
1723 */
1724 tip_flags2 = tip->i_d.di_flags2;
1725 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1726 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1727
1728 offset_fsb = 0;
1729 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1730 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1731
1732 while (count_fsb) {
1733 /* Read extent from the donor file */
1734 nimaps = 1;
1735 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1736 &nimaps, 0);
1737 if (error)
1738 goto out;
1739 ASSERT(nimaps == 1);
1740 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1741
1742 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1743 ilen = tirec.br_blockcount;
1744
1745 /* Unmap the old blocks in the source file. */
1746 while (tirec.br_blockcount) {
1747 xfs_defer_init(&dfops, &firstfsb);
1748 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1749
1750 /* Read extent from the source file */
1751 nimaps = 1;
1752 error = xfs_bmapi_read(ip, tirec.br_startoff,
1753 tirec.br_blockcount, &irec,
1754 &nimaps, 0);
1755 if (error)
1756 goto out_defer;
1757 ASSERT(nimaps == 1);
1758 ASSERT(tirec.br_startoff == irec.br_startoff);
1759 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1760
1761 /* Trim the extent. */
1762 uirec = tirec;
1763 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1764 tirec.br_blockcount,
1765 irec.br_blockcount);
1766 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1767
1768 /* Remove the mapping from the donor file. */
1769 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1770 tip, &uirec);
1771 if (error)
1772 goto out_defer;
1773
1774 /* Remove the mapping from the source file. */
1775 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1776 ip, &irec);
1777 if (error)
1778 goto out_defer;
1779
1780 /* Map the donor file's blocks into the source file. */
1781 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1782 ip, &uirec);
1783 if (error)
1784 goto out_defer;
1785
1786 /* Map the source file's blocks into the donor file. */
1787 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1788 tip, &irec);
1789 if (error)
1790 goto out_defer;
1791
1792 error = xfs_defer_finish(tpp, &dfops, ip);
1793 if (error)
1794 goto out_defer;
1795
1796 tirec.br_startoff += rlen;
1797 if (tirec.br_startblock != HOLESTARTBLOCK &&
1798 tirec.br_startblock != DELAYSTARTBLOCK)
1799 tirec.br_startblock += rlen;
1800 tirec.br_blockcount -= rlen;
1801 }
1802
1803 /* Roll on... */
1804 count_fsb -= ilen;
1805 offset_fsb += ilen;
1806 }
1807
1808 tip->i_d.di_flags2 = tip_flags2;
1809 return 0;
1810
1811 out_defer:
1812 xfs_defer_cancel(&dfops);
1813 out:
1814 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1815 tip->i_d.di_flags2 = tip_flags2;
1816 return error;
1817 }
1818
1819 /* Swap the extents of two files by swapping data forks. */
1820 STATIC int
1821 xfs_swap_extent_forks(
1822 struct xfs_trans *tp,
1823 struct xfs_inode *ip,
1824 struct xfs_inode *tip,
1825 int *src_log_flags,
1826 int *target_log_flags)
1827 {
1828 struct xfs_ifork tempifp, *ifp, *tifp;
1829 xfs_filblks_t aforkblks = 0;
1830 xfs_filblks_t taforkblks = 0;
1831 xfs_extnum_t junk;
1832 xfs_extnum_t nextents;
1833 uint64_t tmp;
1834 int error;
1835
1836 /*
1837 * Count the number of extended attribute blocks
1838 */
1839 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1840 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1841 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1842 &aforkblks);
1843 if (error)
1844 return error;
1845 }
1846 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1847 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1848 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1849 &taforkblks);
1850 if (error)
1851 return error;
1852 }
1853
1854 /*
1855 * Btree format (v3) inodes have the inode number stamped in the bmbt
1856 * block headers. We can't start changing the bmbt blocks until the
1857 * inode owner change is logged so recovery does the right thing in the
1858 * event of a crash. Set the owner change log flags now and leave the
1859 * bmbt scan as the last step.
1860 */
1861 if (ip->i_d.di_version == 3 &&
1862 ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1863 (*target_log_flags) |= XFS_ILOG_DOWNER;
1864 if (tip->i_d.di_version == 3 &&
1865 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1866 (*src_log_flags) |= XFS_ILOG_DOWNER;
1867
1868 /*
1869 * Swap the data forks of the inodes
1870 */
1871 ifp = &ip->i_df;
1872 tifp = &tip->i_df;
1873 tempifp = *ifp; /* struct copy */
1874 *ifp = *tifp; /* struct copy */
1875 *tifp = tempifp; /* struct copy */
1876
1877 /*
1878 * Fix the on-disk inode values
1879 */
1880 tmp = (uint64_t)ip->i_d.di_nblocks;
1881 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1882 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1883
1884 tmp = (uint64_t) ip->i_d.di_nextents;
1885 ip->i_d.di_nextents = tip->i_d.di_nextents;
1886 tip->i_d.di_nextents = tmp;
1887
1888 tmp = (uint64_t) ip->i_d.di_format;
1889 ip->i_d.di_format = tip->i_d.di_format;
1890 tip->i_d.di_format = tmp;
1891
1892 /*
1893 * The extents in the source inode could still contain speculative
1894 * preallocation beyond EOF (e.g. the file is open but not modified
1895 * while defrag is in progress). In that case, we need to copy over the
1896 * number of delalloc blocks the data fork in the source inode is
1897 * tracking beyond EOF so that when the fork is truncated away when the
1898 * temporary inode is unlinked we don't underrun the i_delayed_blks
1899 * counter on that inode.
1900 */
1901 ASSERT(tip->i_delayed_blks == 0);
1902 tip->i_delayed_blks = ip->i_delayed_blks;
1903 ip->i_delayed_blks = 0;
1904
1905 switch (ip->i_d.di_format) {
1906 case XFS_DINODE_FMT_EXTENTS:
1907 /*
1908 * If the extents fit in the inode, fix the pointer. Otherwise
1909 * it's already NULL or pointing to the extent.
1910 */
1911 nextents = xfs_iext_count(&ip->i_df);
1912 if (nextents <= XFS_INLINE_EXTS)
1913 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
1914 (*src_log_flags) |= XFS_ILOG_DEXT;
1915 break;
1916 case XFS_DINODE_FMT_BTREE:
1917 ASSERT(ip->i_d.di_version < 3 ||
1918 (*src_log_flags & XFS_ILOG_DOWNER));
1919 (*src_log_flags) |= XFS_ILOG_DBROOT;
1920 break;
1921 }
1922
1923 switch (tip->i_d.di_format) {
1924 case XFS_DINODE_FMT_EXTENTS:
1925 /*
1926 * If the extents fit in the inode, fix the pointer. Otherwise
1927 * it's already NULL or pointing to the extent.
1928 */
1929 nextents = xfs_iext_count(&tip->i_df);
1930 if (nextents <= XFS_INLINE_EXTS)
1931 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext;
1932 (*target_log_flags) |= XFS_ILOG_DEXT;
1933 break;
1934 case XFS_DINODE_FMT_BTREE:
1935 (*target_log_flags) |= XFS_ILOG_DBROOT;
1936 ASSERT(tip->i_d.di_version < 3 ||
1937 (*target_log_flags & XFS_ILOG_DOWNER));
1938 break;
1939 }
1940
1941 return 0;
1942 }
1943
1944 /*
1945 * Fix up the owners of the bmbt blocks to refer to the current inode. The
1946 * change owner scan attempts to order all modified buffers in the current
1947 * transaction. In the event of ordered buffer failure, the offending buffer is
1948 * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1949 * the transaction in this case to replenish the fallback log reservation and
1950 * restart the scan. This process repeats until the scan completes.
1951 */
1952 static int
1953 xfs_swap_change_owner(
1954 struct xfs_trans **tpp,
1955 struct xfs_inode *ip,
1956 struct xfs_inode *tmpip)
1957 {
1958 int error;
1959 struct xfs_trans *tp = *tpp;
1960
1961 do {
1962 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1963 NULL);
1964 /* success or fatal error */
1965 if (error != -EAGAIN)
1966 break;
1967
1968 error = xfs_trans_roll(tpp, NULL);
1969 if (error)
1970 break;
1971 tp = *tpp;
1972
1973 /*
1974 * Redirty both inodes so they can relog and keep the log tail
1975 * moving forward.
1976 */
1977 xfs_trans_ijoin(tp, ip, 0);
1978 xfs_trans_ijoin(tp, tmpip, 0);
1979 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1980 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1981 } while (true);
1982
1983 return error;
1984 }
1985
1986 int
1987 xfs_swap_extents(
1988 struct xfs_inode *ip, /* target inode */
1989 struct xfs_inode *tip, /* tmp inode */
1990 struct xfs_swapext *sxp)
1991 {
1992 struct xfs_mount *mp = ip->i_mount;
1993 struct xfs_trans *tp;
1994 struct xfs_bstat *sbp = &sxp->sx_stat;
1995 int src_log_flags, target_log_flags;
1996 int error = 0;
1997 int lock_flags;
1998 struct xfs_ifork *cowfp;
1999 uint64_t f;
2000 int resblks = 0;
2001
2002 /*
2003 * Lock the inodes against other IO, page faults and truncate to
2004 * begin with. Then we can ensure the inodes are flushed and have no
2005 * page cache safely. Once we have done this we can take the ilocks and
2006 * do the rest of the checks.
2007 */
2008 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2009 lock_flags = XFS_MMAPLOCK_EXCL;
2010 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
2011
2012 /* Verify that both files have the same format */
2013 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
2014 error = -EINVAL;
2015 goto out_unlock;
2016 }
2017
2018 /* Verify both files are either real-time or non-realtime */
2019 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
2020 error = -EINVAL;
2021 goto out_unlock;
2022 }
2023
2024 error = xfs_swap_extent_flush(ip);
2025 if (error)
2026 goto out_unlock;
2027 error = xfs_swap_extent_flush(tip);
2028 if (error)
2029 goto out_unlock;
2030
2031 /*
2032 * Extent "swapping" with rmap requires a permanent reservation and
2033 * a block reservation because it's really just a remap operation
2034 * performed with log redo items!
2035 */
2036 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
2037 /*
2038 * Conceptually this shouldn't affect the shape of either
2039 * bmbt, but since we atomically move extents one by one,
2040 * we reserve enough space to rebuild both trees.
2041 */
2042 resblks = XFS_SWAP_RMAP_SPACE_RES(mp,
2043 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK),
2044 XFS_DATA_FORK) +
2045 XFS_SWAP_RMAP_SPACE_RES(mp,
2046 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK),
2047 XFS_DATA_FORK);
2048 }
2049 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
2050 if (error)
2051 goto out_unlock;
2052
2053 /*
2054 * Lock and join the inodes to the tansaction so that transaction commit
2055 * or cancel will unlock the inodes from this point onwards.
2056 */
2057 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
2058 lock_flags |= XFS_ILOCK_EXCL;
2059 xfs_trans_ijoin(tp, ip, 0);
2060 xfs_trans_ijoin(tp, tip, 0);
2061
2062
2063 /* Verify all data are being swapped */
2064 if (sxp->sx_offset != 0 ||
2065 sxp->sx_length != ip->i_d.di_size ||
2066 sxp->sx_length != tip->i_d.di_size) {
2067 error = -EFAULT;
2068 goto out_trans_cancel;
2069 }
2070
2071 trace_xfs_swap_extent_before(ip, 0);
2072 trace_xfs_swap_extent_before(tip, 1);
2073
2074 /* check inode formats now that data is flushed */
2075 error = xfs_swap_extents_check_format(ip, tip);
2076 if (error) {
2077 xfs_notice(mp,
2078 "%s: inode 0x%llx format is incompatible for exchanging.",
2079 __func__, ip->i_ino);
2080 goto out_trans_cancel;
2081 }
2082
2083 /*
2084 * Compare the current change & modify times with that
2085 * passed in. If they differ, we abort this swap.
2086 * This is the mechanism used to ensure the calling
2087 * process that the file was not changed out from
2088 * under it.
2089 */
2090 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
2091 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
2092 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
2093 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
2094 error = -EBUSY;
2095 goto out_trans_cancel;
2096 }
2097
2098 /*
2099 * Note the trickiness in setting the log flags - we set the owner log
2100 * flag on the opposite inode (i.e. the inode we are setting the new
2101 * owner to be) because once we swap the forks and log that, log
2102 * recovery is going to see the fork as owned by the swapped inode,
2103 * not the pre-swapped inodes.
2104 */
2105 src_log_flags = XFS_ILOG_CORE;
2106 target_log_flags = XFS_ILOG_CORE;
2107
2108 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2109 error = xfs_swap_extent_rmap(&tp, ip, tip);
2110 else
2111 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
2112 &target_log_flags);
2113 if (error)
2114 goto out_trans_cancel;
2115
2116 /* Do we have to swap reflink flags? */
2117 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
2118 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
2119 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2120 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2121 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2122 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2123 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
2124 cowfp = ip->i_cowfp;
2125 ip->i_cowfp = tip->i_cowfp;
2126 tip->i_cowfp = cowfp;
2127 xfs_inode_set_cowblocks_tag(ip);
2128 xfs_inode_set_cowblocks_tag(tip);
2129 }
2130
2131 xfs_trans_log_inode(tp, ip, src_log_flags);
2132 xfs_trans_log_inode(tp, tip, target_log_flags);
2133
2134 /*
2135 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
2136 * have inode number owner values in the bmbt blocks that still refer to
2137 * the old inode. Scan each bmbt to fix up the owner values with the
2138 * inode number of the current inode.
2139 */
2140 if (src_log_flags & XFS_ILOG_DOWNER) {
2141 error = xfs_swap_change_owner(&tp, ip, tip);
2142 if (error)
2143 goto out_trans_cancel;
2144 }
2145 if (target_log_flags & XFS_ILOG_DOWNER) {
2146 error = xfs_swap_change_owner(&tp, tip, ip);
2147 if (error)
2148 goto out_trans_cancel;
2149 }
2150
2151 /*
2152 * If this is a synchronous mount, make sure that the
2153 * transaction goes to disk before returning to the user.
2154 */
2155 if (mp->m_flags & XFS_MOUNT_WSYNC)
2156 xfs_trans_set_sync(tp);
2157
2158 error = xfs_trans_commit(tp);
2159
2160 trace_xfs_swap_extent_after(ip, 0);
2161 trace_xfs_swap_extent_after(tip, 1);
2162
2163 out_unlock:
2164 xfs_iunlock(ip, lock_flags);
2165 xfs_iunlock(tip, lock_flags);
2166 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2167 return error;
2168
2169 out_trans_cancel:
2170 xfs_trans_cancel(tp);
2171 goto out_unlock;
2172 }