]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_bmap_util.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_bmap_util.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_trans.h"
32 #include "xfs_extfree_item.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_trans_space.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap_btree.h"
45 #include "xfs_iomap.h"
46 #include "xfs_reflink.h"
47 #include "xfs_refcount.h"
48
49 /* Kernel only BMAP related definitions and functions */
50
51 /*
52 * Convert the given file system block to a disk block. We have to treat it
53 * differently based on whether the file is a real time file or not, because the
54 * bmap code does.
55 */
56 xfs_daddr_t
57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
58 {
59 return (XFS_IS_REALTIME_INODE(ip) ? \
60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
62 }
63
64 /*
65 * Routine to zero an extent on disk allocated to the specific inode.
66 *
67 * The VFS functions take a linearised filesystem block offset, so we have to
68 * convert the sparse xfs fsb to the right format first.
69 * VFS types are real funky, too.
70 */
71 int
72 xfs_zero_extent(
73 struct xfs_inode *ip,
74 xfs_fsblock_t start_fsb,
75 xfs_off_t count_fsb)
76 {
77 struct xfs_mount *mp = ip->i_mount;
78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
79 sector_t block = XFS_BB_TO_FSBT(mp, sector);
80
81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
82 block << (mp->m_super->s_blocksize_bits - 9),
83 count_fsb << (mp->m_super->s_blocksize_bits - 9),
84 GFP_NOFS, true);
85 }
86
87 int
88 xfs_bmap_rtalloc(
89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
90 {
91 int error; /* error return value */
92 xfs_mount_t *mp; /* mount point structure */
93 xfs_extlen_t prod = 0; /* product factor for allocators */
94 xfs_extlen_t ralen = 0; /* realtime allocation length */
95 xfs_extlen_t align; /* minimum allocation alignment */
96 xfs_rtblock_t rtb;
97
98 mp = ap->ip->i_mount;
99 align = xfs_get_extsz_hint(ap->ip);
100 prod = align / mp->m_sb.sb_rextsize;
101 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
102 align, 1, ap->eof, 0,
103 ap->conv, &ap->offset, &ap->length);
104 if (error)
105 return error;
106 ASSERT(ap->length);
107 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
108
109 /*
110 * If the offset & length are not perfectly aligned
111 * then kill prod, it will just get us in trouble.
112 */
113 if (do_mod(ap->offset, align) || ap->length % align)
114 prod = 1;
115 /*
116 * Set ralen to be the actual requested length in rtextents.
117 */
118 ralen = ap->length / mp->m_sb.sb_rextsize;
119 /*
120 * If the old value was close enough to MAXEXTLEN that
121 * we rounded up to it, cut it back so it's valid again.
122 * Note that if it's a really large request (bigger than
123 * MAXEXTLEN), we don't hear about that number, and can't
124 * adjust the starting point to match it.
125 */
126 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
127 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
128
129 /*
130 * Lock out modifications to both the RT bitmap and summary inodes
131 */
132 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
133 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
134 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
135 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
136
137 /*
138 * If it's an allocation to an empty file at offset 0,
139 * pick an extent that will space things out in the rt area.
140 */
141 if (ap->eof && ap->offset == 0) {
142 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
143
144 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
145 if (error)
146 return error;
147 ap->blkno = rtx * mp->m_sb.sb_rextsize;
148 } else {
149 ap->blkno = 0;
150 }
151
152 xfs_bmap_adjacent(ap);
153
154 /*
155 * Realtime allocation, done through xfs_rtallocate_extent.
156 */
157 do_div(ap->blkno, mp->m_sb.sb_rextsize);
158 rtb = ap->blkno;
159 ap->length = ralen;
160 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
161 &ralen, ap->wasdel, prod, &rtb);
162 if (error)
163 return error;
164
165 ap->blkno = rtb;
166 if (ap->blkno != NULLFSBLOCK) {
167 ap->blkno *= mp->m_sb.sb_rextsize;
168 ralen *= mp->m_sb.sb_rextsize;
169 ap->length = ralen;
170 ap->ip->i_d.di_nblocks += ralen;
171 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
172 if (ap->wasdel)
173 ap->ip->i_delayed_blks -= ralen;
174 /*
175 * Adjust the disk quota also. This was reserved
176 * earlier.
177 */
178 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
179 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
180 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
181
182 /* Zero the extent if we were asked to do so */
183 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
184 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
185 if (error)
186 return error;
187 }
188 } else {
189 ap->length = 0;
190 }
191 return 0;
192 }
193
194 /*
195 * Check if the endoff is outside the last extent. If so the caller will grow
196 * the allocation to a stripe unit boundary. All offsets are considered outside
197 * the end of file for an empty fork, so 1 is returned in *eof in that case.
198 */
199 int
200 xfs_bmap_eof(
201 struct xfs_inode *ip,
202 xfs_fileoff_t endoff,
203 int whichfork,
204 int *eof)
205 {
206 struct xfs_bmbt_irec rec;
207 int error;
208
209 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
210 if (error || *eof)
211 return error;
212
213 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
214 return 0;
215 }
216
217 /*
218 * Extent tree block counting routines.
219 */
220
221 /*
222 * Count leaf blocks given a range of extent records.
223 */
224 STATIC void
225 xfs_bmap_count_leaves(
226 xfs_ifork_t *ifp,
227 xfs_extnum_t idx,
228 int numrecs,
229 int *count)
230 {
231 int b;
232
233 for (b = 0; b < numrecs; b++) {
234 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
235 *count += xfs_bmbt_get_blockcount(frp);
236 }
237 }
238
239 /*
240 * Count leaf blocks given a range of extent records originally
241 * in btree format.
242 */
243 STATIC void
244 xfs_bmap_disk_count_leaves(
245 struct xfs_mount *mp,
246 struct xfs_btree_block *block,
247 int numrecs,
248 int *count)
249 {
250 int b;
251 xfs_bmbt_rec_t *frp;
252
253 for (b = 1; b <= numrecs; b++) {
254 frp = XFS_BMBT_REC_ADDR(mp, block, b);
255 *count += xfs_bmbt_disk_get_blockcount(frp);
256 }
257 }
258
259 /*
260 * Recursively walks each level of a btree
261 * to count total fsblocks in use.
262 */
263 STATIC int /* error */
264 xfs_bmap_count_tree(
265 xfs_mount_t *mp, /* file system mount point */
266 xfs_trans_t *tp, /* transaction pointer */
267 xfs_ifork_t *ifp, /* inode fork pointer */
268 xfs_fsblock_t blockno, /* file system block number */
269 int levelin, /* level in btree */
270 int *count) /* Count of blocks */
271 {
272 int error;
273 xfs_buf_t *bp, *nbp;
274 int level = levelin;
275 __be64 *pp;
276 xfs_fsblock_t bno = blockno;
277 xfs_fsblock_t nextbno;
278 struct xfs_btree_block *block, *nextblock;
279 int numrecs;
280
281 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
282 &xfs_bmbt_buf_ops);
283 if (error)
284 return error;
285 *count += 1;
286 block = XFS_BUF_TO_BLOCK(bp);
287
288 if (--level) {
289 /* Not at node above leaves, count this level of nodes */
290 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
291 while (nextbno != NULLFSBLOCK) {
292 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
293 XFS_BMAP_BTREE_REF,
294 &xfs_bmbt_buf_ops);
295 if (error)
296 return error;
297 *count += 1;
298 nextblock = XFS_BUF_TO_BLOCK(nbp);
299 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
300 xfs_trans_brelse(tp, nbp);
301 }
302
303 /* Dive to the next level */
304 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
305 bno = be64_to_cpu(*pp);
306 if (unlikely((error =
307 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
308 xfs_trans_brelse(tp, bp);
309 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
310 XFS_ERRLEVEL_LOW, mp);
311 return -EFSCORRUPTED;
312 }
313 xfs_trans_brelse(tp, bp);
314 } else {
315 /* count all level 1 nodes and their leaves */
316 for (;;) {
317 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
318 numrecs = be16_to_cpu(block->bb_numrecs);
319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
320 xfs_trans_brelse(tp, bp);
321 if (nextbno == NULLFSBLOCK)
322 break;
323 bno = nextbno;
324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
325 XFS_BMAP_BTREE_REF,
326 &xfs_bmbt_buf_ops);
327 if (error)
328 return error;
329 *count += 1;
330 block = XFS_BUF_TO_BLOCK(bp);
331 }
332 }
333 return 0;
334 }
335
336 /*
337 * Count fsblocks of the given fork.
338 */
339 static int /* error */
340 xfs_bmap_count_blocks(
341 xfs_trans_t *tp, /* transaction pointer */
342 xfs_inode_t *ip, /* incore inode */
343 int whichfork, /* data or attr fork */
344 int *count) /* out: count of blocks */
345 {
346 struct xfs_btree_block *block; /* current btree block */
347 xfs_fsblock_t bno; /* block # of "block" */
348 xfs_ifork_t *ifp; /* fork structure */
349 int level; /* btree level, for checking */
350 xfs_mount_t *mp; /* file system mount structure */
351 __be64 *pp; /* pointer to block address */
352
353 bno = NULLFSBLOCK;
354 mp = ip->i_mount;
355 ifp = XFS_IFORK_PTR(ip, whichfork);
356 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
357 xfs_bmap_count_leaves(ifp, 0, xfs_iext_count(ifp), count);
358 return 0;
359 }
360
361 /*
362 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
363 */
364 block = ifp->if_broot;
365 level = be16_to_cpu(block->bb_level);
366 ASSERT(level > 0);
367 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
368 bno = be64_to_cpu(*pp);
369 ASSERT(bno != NULLFSBLOCK);
370 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
371 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
372
373 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
374 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
375 mp);
376 return -EFSCORRUPTED;
377 }
378
379 return 0;
380 }
381
382 /*
383 * returns 1 for success, 0 if we failed to map the extent.
384 */
385 STATIC int
386 xfs_getbmapx_fix_eof_hole(
387 xfs_inode_t *ip, /* xfs incore inode pointer */
388 int whichfork,
389 struct getbmapx *out, /* output structure */
390 int prealloced, /* this is a file with
391 * preallocated data space */
392 __int64_t end, /* last block requested */
393 xfs_fsblock_t startblock,
394 bool moretocome)
395 {
396 __int64_t fixlen;
397 xfs_mount_t *mp; /* file system mount point */
398 xfs_ifork_t *ifp; /* inode fork pointer */
399 xfs_extnum_t lastx; /* last extent pointer */
400 xfs_fileoff_t fileblock;
401
402 if (startblock == HOLESTARTBLOCK) {
403 mp = ip->i_mount;
404 out->bmv_block = -1;
405 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
406 fixlen -= out->bmv_offset;
407 if (prealloced && out->bmv_offset + out->bmv_length == end) {
408 /* Came to hole at EOF. Trim it. */
409 if (fixlen <= 0)
410 return 0;
411 out->bmv_length = fixlen;
412 }
413 } else {
414 if (startblock == DELAYSTARTBLOCK)
415 out->bmv_block = -2;
416 else
417 out->bmv_block = xfs_fsb_to_db(ip, startblock);
418 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
419 ifp = XFS_IFORK_PTR(ip, whichfork);
420 if (!moretocome &&
421 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
422 (lastx == xfs_iext_count(ifp) - 1))
423 out->bmv_oflags |= BMV_OF_LAST;
424 }
425
426 return 1;
427 }
428
429 /* Adjust the reported bmap around shared/unshared extent transitions. */
430 STATIC int
431 xfs_getbmap_adjust_shared(
432 struct xfs_inode *ip,
433 int whichfork,
434 struct xfs_bmbt_irec *map,
435 struct getbmapx *out,
436 struct xfs_bmbt_irec *next_map)
437 {
438 struct xfs_mount *mp = ip->i_mount;
439 xfs_agnumber_t agno;
440 xfs_agblock_t agbno;
441 xfs_agblock_t ebno;
442 xfs_extlen_t elen;
443 xfs_extlen_t nlen;
444 int error;
445
446 next_map->br_startblock = NULLFSBLOCK;
447 next_map->br_startoff = NULLFILEOFF;
448 next_map->br_blockcount = 0;
449
450 /* Only written data blocks can be shared. */
451 if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK ||
452 map->br_startblock == DELAYSTARTBLOCK ||
453 map->br_startblock == HOLESTARTBLOCK ||
454 ISUNWRITTEN(map))
455 return 0;
456
457 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock);
458 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock);
459 error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount,
460 &ebno, &elen, true);
461 if (error)
462 return error;
463
464 if (ebno == NULLAGBLOCK) {
465 /* No shared blocks at all. */
466 return 0;
467 } else if (agbno == ebno) {
468 /*
469 * Shared extent at (agbno, elen). Shrink the reported
470 * extent length and prepare to move the start of map[i]
471 * to agbno+elen, with the aim of (re)formatting the new
472 * map[i] the next time through the inner loop.
473 */
474 out->bmv_length = XFS_FSB_TO_BB(mp, elen);
475 out->bmv_oflags |= BMV_OF_SHARED;
476 if (elen != map->br_blockcount) {
477 *next_map = *map;
478 next_map->br_startblock += elen;
479 next_map->br_startoff += elen;
480 next_map->br_blockcount -= elen;
481 }
482 map->br_blockcount -= elen;
483 } else {
484 /*
485 * There's an unshared extent (agbno, ebno - agbno)
486 * followed by shared extent at (ebno, elen). Shrink
487 * the reported extent length to cover only the unshared
488 * extent and prepare to move up the start of map[i] to
489 * ebno, with the aim of (re)formatting the new map[i]
490 * the next time through the inner loop.
491 */
492 *next_map = *map;
493 nlen = ebno - agbno;
494 out->bmv_length = XFS_FSB_TO_BB(mp, nlen);
495 next_map->br_startblock += nlen;
496 next_map->br_startoff += nlen;
497 next_map->br_blockcount -= nlen;
498 map->br_blockcount -= nlen;
499 }
500
501 return 0;
502 }
503
504 /*
505 * Get inode's extents as described in bmv, and format for output.
506 * Calls formatter to fill the user's buffer until all extents
507 * are mapped, until the passed-in bmv->bmv_count slots have
508 * been filled, or until the formatter short-circuits the loop,
509 * if it is tracking filled-in extents on its own.
510 */
511 int /* error code */
512 xfs_getbmap(
513 xfs_inode_t *ip,
514 struct getbmapx *bmv, /* user bmap structure */
515 xfs_bmap_format_t formatter, /* format to user */
516 void *arg) /* formatter arg */
517 {
518 __int64_t bmvend; /* last block requested */
519 int error = 0; /* return value */
520 __int64_t fixlen; /* length for -1 case */
521 int i; /* extent number */
522 int lock; /* lock state */
523 xfs_bmbt_irec_t *map; /* buffer for user's data */
524 xfs_mount_t *mp; /* file system mount point */
525 int nex; /* # of user extents can do */
526 int subnex; /* # of bmapi's can do */
527 int nmap; /* number of map entries */
528 struct getbmapx *out; /* output structure */
529 int whichfork; /* data or attr fork */
530 int prealloced; /* this is a file with
531 * preallocated data space */
532 int iflags; /* interface flags */
533 int bmapi_flags; /* flags for xfs_bmapi */
534 int cur_ext = 0;
535 struct xfs_bmbt_irec inject_map;
536
537 mp = ip->i_mount;
538 iflags = bmv->bmv_iflags;
539
540 #ifndef DEBUG
541 /* Only allow CoW fork queries if we're debugging. */
542 if (iflags & BMV_IF_COWFORK)
543 return -EINVAL;
544 #endif
545 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
546 return -EINVAL;
547
548 if (iflags & BMV_IF_ATTRFORK)
549 whichfork = XFS_ATTR_FORK;
550 else if (iflags & BMV_IF_COWFORK)
551 whichfork = XFS_COW_FORK;
552 else
553 whichfork = XFS_DATA_FORK;
554
555 switch (whichfork) {
556 case XFS_ATTR_FORK:
557 if (XFS_IFORK_Q(ip)) {
558 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
559 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
560 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
561 return -EINVAL;
562 } else if (unlikely(
563 ip->i_d.di_aformat != 0 &&
564 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
565 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
566 ip->i_mount);
567 return -EFSCORRUPTED;
568 }
569
570 prealloced = 0;
571 fixlen = 1LL << 32;
572 break;
573 case XFS_COW_FORK:
574 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS)
575 return -EINVAL;
576
577 if (xfs_get_cowextsz_hint(ip)) {
578 prealloced = 1;
579 fixlen = mp->m_super->s_maxbytes;
580 } else {
581 prealloced = 0;
582 fixlen = XFS_ISIZE(ip);
583 }
584 break;
585 default:
586 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
587 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
588 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
589 return -EINVAL;
590
591 if (xfs_get_extsz_hint(ip) ||
592 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
593 prealloced = 1;
594 fixlen = mp->m_super->s_maxbytes;
595 } else {
596 prealloced = 0;
597 fixlen = XFS_ISIZE(ip);
598 }
599 break;
600 }
601
602 if (bmv->bmv_length == -1) {
603 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
604 bmv->bmv_length =
605 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
606 } else if (bmv->bmv_length == 0) {
607 bmv->bmv_entries = 0;
608 return 0;
609 } else if (bmv->bmv_length < 0) {
610 return -EINVAL;
611 }
612
613 nex = bmv->bmv_count - 1;
614 if (nex <= 0)
615 return -EINVAL;
616 bmvend = bmv->bmv_offset + bmv->bmv_length;
617
618
619 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
620 return -ENOMEM;
621 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
622 if (!out)
623 return -ENOMEM;
624
625 xfs_ilock(ip, XFS_IOLOCK_SHARED);
626 switch (whichfork) {
627 case XFS_DATA_FORK:
628 if (!(iflags & BMV_IF_DELALLOC) &&
629 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
630 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
631 if (error)
632 goto out_unlock_iolock;
633
634 /*
635 * Even after flushing the inode, there can still be
636 * delalloc blocks on the inode beyond EOF due to
637 * speculative preallocation. These are not removed
638 * until the release function is called or the inode
639 * is inactivated. Hence we cannot assert here that
640 * ip->i_delayed_blks == 0.
641 */
642 }
643
644 lock = xfs_ilock_data_map_shared(ip);
645 break;
646 case XFS_COW_FORK:
647 lock = XFS_ILOCK_SHARED;
648 xfs_ilock(ip, lock);
649 break;
650 case XFS_ATTR_FORK:
651 lock = xfs_ilock_attr_map_shared(ip);
652 break;
653 }
654
655 /*
656 * Don't let nex be bigger than the number of extents
657 * we can have assuming alternating holes and real extents.
658 */
659 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
660 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
661
662 bmapi_flags = xfs_bmapi_aflag(whichfork);
663 if (!(iflags & BMV_IF_PREALLOC))
664 bmapi_flags |= XFS_BMAPI_IGSTATE;
665
666 /*
667 * Allocate enough space to handle "subnex" maps at a time.
668 */
669 error = -ENOMEM;
670 subnex = 16;
671 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
672 if (!map)
673 goto out_unlock_ilock;
674
675 bmv->bmv_entries = 0;
676
677 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
678 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
679 error = 0;
680 goto out_free_map;
681 }
682
683 do {
684 nmap = (nex> subnex) ? subnex : nex;
685 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
686 XFS_BB_TO_FSB(mp, bmv->bmv_length),
687 map, &nmap, bmapi_flags);
688 if (error)
689 goto out_free_map;
690 ASSERT(nmap <= subnex);
691
692 for (i = 0; i < nmap && bmv->bmv_length &&
693 cur_ext < bmv->bmv_count - 1; i++) {
694 out[cur_ext].bmv_oflags = 0;
695 if (map[i].br_state == XFS_EXT_UNWRITTEN)
696 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
697 else if (map[i].br_startblock == DELAYSTARTBLOCK)
698 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
699 out[cur_ext].bmv_offset =
700 XFS_FSB_TO_BB(mp, map[i].br_startoff);
701 out[cur_ext].bmv_length =
702 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
703 out[cur_ext].bmv_unused1 = 0;
704 out[cur_ext].bmv_unused2 = 0;
705
706 /*
707 * delayed allocation extents that start beyond EOF can
708 * occur due to speculative EOF allocation when the
709 * delalloc extent is larger than the largest freespace
710 * extent at conversion time. These extents cannot be
711 * converted by data writeback, so can exist here even
712 * if we are not supposed to be finding delalloc
713 * extents.
714 */
715 if (map[i].br_startblock == DELAYSTARTBLOCK &&
716 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
717 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
718
719 if (map[i].br_startblock == HOLESTARTBLOCK &&
720 whichfork == XFS_ATTR_FORK) {
721 /* came to the end of attribute fork */
722 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
723 goto out_free_map;
724 }
725
726 /* Is this a shared block? */
727 error = xfs_getbmap_adjust_shared(ip, whichfork,
728 &map[i], &out[cur_ext], &inject_map);
729 if (error)
730 goto out_free_map;
731
732 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork,
733 &out[cur_ext], prealloced, bmvend,
734 map[i].br_startblock,
735 inject_map.br_startblock != NULLFSBLOCK))
736 goto out_free_map;
737
738 bmv->bmv_offset =
739 out[cur_ext].bmv_offset +
740 out[cur_ext].bmv_length;
741 bmv->bmv_length =
742 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
743
744 /*
745 * In case we don't want to return the hole,
746 * don't increase cur_ext so that we can reuse
747 * it in the next loop.
748 */
749 if ((iflags & BMV_IF_NO_HOLES) &&
750 map[i].br_startblock == HOLESTARTBLOCK) {
751 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
752 continue;
753 }
754
755 /*
756 * In order to report shared extents accurately,
757 * we report each distinct shared/unshared part
758 * of a single bmbt record using multiple bmap
759 * extents. To make that happen, we iterate the
760 * same map array item multiple times, each
761 * time trimming out the subextent that we just
762 * reported.
763 *
764 * Because of this, we must check the out array
765 * index (cur_ext) directly against bmv_count-1
766 * to avoid overflows.
767 */
768 if (inject_map.br_startblock != NULLFSBLOCK) {
769 map[i] = inject_map;
770 i--;
771 }
772 bmv->bmv_entries++;
773 cur_ext++;
774 }
775 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1);
776
777 out_free_map:
778 kmem_free(map);
779 out_unlock_ilock:
780 xfs_iunlock(ip, lock);
781 out_unlock_iolock:
782 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
783
784 for (i = 0; i < cur_ext; i++) {
785 /* format results & advance arg */
786 error = formatter(&arg, &out[i]);
787 if (error)
788 break;
789 }
790
791 kmem_free(out);
792 return error;
793 }
794
795 /*
796 * dead simple method of punching delalyed allocation blocks from a range in
797 * the inode. Walks a block at a time so will be slow, but is only executed in
798 * rare error cases so the overhead is not critical. This will always punch out
799 * both the start and end blocks, even if the ranges only partially overlap
800 * them, so it is up to the caller to ensure that partial blocks are not
801 * passed in.
802 */
803 int
804 xfs_bmap_punch_delalloc_range(
805 struct xfs_inode *ip,
806 xfs_fileoff_t start_fsb,
807 xfs_fileoff_t length)
808 {
809 xfs_fileoff_t remaining = length;
810 int error = 0;
811
812 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
813
814 do {
815 int done;
816 xfs_bmbt_irec_t imap;
817 int nimaps = 1;
818 xfs_fsblock_t firstblock;
819 struct xfs_defer_ops dfops;
820
821 /*
822 * Map the range first and check that it is a delalloc extent
823 * before trying to unmap the range. Otherwise we will be
824 * trying to remove a real extent (which requires a
825 * transaction) or a hole, which is probably a bad idea...
826 */
827 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
828 XFS_BMAPI_ENTIRE);
829
830 if (error) {
831 /* something screwed, just bail */
832 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
833 xfs_alert(ip->i_mount,
834 "Failed delalloc mapping lookup ino %lld fsb %lld.",
835 ip->i_ino, start_fsb);
836 }
837 break;
838 }
839 if (!nimaps) {
840 /* nothing there */
841 goto next_block;
842 }
843 if (imap.br_startblock != DELAYSTARTBLOCK) {
844 /* been converted, ignore */
845 goto next_block;
846 }
847 WARN_ON(imap.br_blockcount == 0);
848
849 /*
850 * Note: while we initialise the firstblock/dfops pair, they
851 * should never be used because blocks should never be
852 * allocated or freed for a delalloc extent and hence we need
853 * don't cancel or finish them after the xfs_bunmapi() call.
854 */
855 xfs_defer_init(&dfops, &firstblock);
856 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
857 &dfops, &done);
858 if (error)
859 break;
860
861 ASSERT(!xfs_defer_has_unfinished_work(&dfops));
862 next_block:
863 start_fsb++;
864 remaining--;
865 } while(remaining > 0);
866
867 return error;
868 }
869
870 /*
871 * Test whether it is appropriate to check an inode for and free post EOF
872 * blocks. The 'force' parameter determines whether we should also consider
873 * regular files that are marked preallocated or append-only.
874 */
875 bool
876 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
877 {
878 /* prealloc/delalloc exists only on regular files */
879 if (!S_ISREG(VFS_I(ip)->i_mode))
880 return false;
881
882 /*
883 * Zero sized files with no cached pages and delalloc blocks will not
884 * have speculative prealloc/delalloc blocks to remove.
885 */
886 if (VFS_I(ip)->i_size == 0 &&
887 VFS_I(ip)->i_mapping->nrpages == 0 &&
888 ip->i_delayed_blks == 0)
889 return false;
890
891 /* If we haven't read in the extent list, then don't do it now. */
892 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
893 return false;
894
895 /*
896 * Do not free real preallocated or append-only files unless the file
897 * has delalloc blocks and we are forced to remove them.
898 */
899 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
900 if (!force || ip->i_delayed_blks == 0)
901 return false;
902
903 return true;
904 }
905
906 /*
907 * This is called by xfs_inactive to free any blocks beyond eof
908 * when the link count isn't zero and by xfs_dm_punch_hole() when
909 * punching a hole to EOF.
910 */
911 int
912 xfs_free_eofblocks(
913 struct xfs_inode *ip)
914 {
915 struct xfs_trans *tp;
916 int error;
917 xfs_fileoff_t end_fsb;
918 xfs_fileoff_t last_fsb;
919 xfs_filblks_t map_len;
920 int nimaps;
921 struct xfs_bmbt_irec imap;
922 struct xfs_mount *mp = ip->i_mount;
923
924 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
925
926 /*
927 * Figure out if there are any blocks beyond the end
928 * of the file. If not, then there is nothing to do.
929 */
930 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
931 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
932 if (last_fsb <= end_fsb)
933 return 0;
934 map_len = last_fsb - end_fsb;
935
936 nimaps = 1;
937 xfs_ilock(ip, XFS_ILOCK_SHARED);
938 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
939 xfs_iunlock(ip, XFS_ILOCK_SHARED);
940
941 /*
942 * If there are blocks after the end of file, truncate the file to its
943 * current size to free them up.
944 */
945 if (!error && (nimaps != 0) &&
946 (imap.br_startblock != HOLESTARTBLOCK ||
947 ip->i_delayed_blks)) {
948 /*
949 * Attach the dquots to the inode up front.
950 */
951 error = xfs_qm_dqattach(ip, 0);
952 if (error)
953 return error;
954
955 /* wait on dio to ensure i_size has settled */
956 inode_dio_wait(VFS_I(ip));
957
958 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
959 &tp);
960 if (error) {
961 ASSERT(XFS_FORCED_SHUTDOWN(mp));
962 return error;
963 }
964
965 xfs_ilock(ip, XFS_ILOCK_EXCL);
966 xfs_trans_ijoin(tp, ip, 0);
967
968 /*
969 * Do not update the on-disk file size. If we update the
970 * on-disk file size and then the system crashes before the
971 * contents of the file are flushed to disk then the files
972 * may be full of holes (ie NULL files bug).
973 */
974 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
975 XFS_ISIZE(ip));
976 if (error) {
977 /*
978 * If we get an error at this point we simply don't
979 * bother truncating the file.
980 */
981 xfs_trans_cancel(tp);
982 } else {
983 error = xfs_trans_commit(tp);
984 if (!error)
985 xfs_inode_clear_eofblocks_tag(ip);
986 }
987
988 xfs_iunlock(ip, XFS_ILOCK_EXCL);
989 }
990 return error;
991 }
992
993 int
994 xfs_alloc_file_space(
995 struct xfs_inode *ip,
996 xfs_off_t offset,
997 xfs_off_t len,
998 int alloc_type)
999 {
1000 xfs_mount_t *mp = ip->i_mount;
1001 xfs_off_t count;
1002 xfs_filblks_t allocated_fsb;
1003 xfs_filblks_t allocatesize_fsb;
1004 xfs_extlen_t extsz, temp;
1005 xfs_fileoff_t startoffset_fsb;
1006 xfs_fsblock_t firstfsb;
1007 int nimaps;
1008 int quota_flag;
1009 int rt;
1010 xfs_trans_t *tp;
1011 xfs_bmbt_irec_t imaps[1], *imapp;
1012 struct xfs_defer_ops dfops;
1013 uint qblocks, resblks, resrtextents;
1014 int error;
1015
1016 trace_xfs_alloc_file_space(ip);
1017
1018 if (XFS_FORCED_SHUTDOWN(mp))
1019 return -EIO;
1020
1021 error = xfs_qm_dqattach(ip, 0);
1022 if (error)
1023 return error;
1024
1025 if (len <= 0)
1026 return -EINVAL;
1027
1028 rt = XFS_IS_REALTIME_INODE(ip);
1029 extsz = xfs_get_extsz_hint(ip);
1030
1031 count = len;
1032 imapp = &imaps[0];
1033 nimaps = 1;
1034 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
1035 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
1036
1037 /*
1038 * Allocate file space until done or until there is an error
1039 */
1040 while (allocatesize_fsb && !error) {
1041 xfs_fileoff_t s, e;
1042
1043 /*
1044 * Determine space reservations for data/realtime.
1045 */
1046 if (unlikely(extsz)) {
1047 s = startoffset_fsb;
1048 do_div(s, extsz);
1049 s *= extsz;
1050 e = startoffset_fsb + allocatesize_fsb;
1051 if ((temp = do_mod(startoffset_fsb, extsz)))
1052 e += temp;
1053 if ((temp = do_mod(e, extsz)))
1054 e += extsz - temp;
1055 } else {
1056 s = 0;
1057 e = allocatesize_fsb;
1058 }
1059
1060 /*
1061 * The transaction reservation is limited to a 32-bit block
1062 * count, hence we need to limit the number of blocks we are
1063 * trying to reserve to avoid an overflow. We can't allocate
1064 * more than @nimaps extents, and an extent is limited on disk
1065 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1066 */
1067 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1068 if (unlikely(rt)) {
1069 resrtextents = qblocks = resblks;
1070 resrtextents /= mp->m_sb.sb_rextsize;
1071 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1072 quota_flag = XFS_QMOPT_RES_RTBLKS;
1073 } else {
1074 resrtextents = 0;
1075 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1076 quota_flag = XFS_QMOPT_RES_REGBLKS;
1077 }
1078
1079 /*
1080 * Allocate and setup the transaction.
1081 */
1082 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1083 resrtextents, 0, &tp);
1084
1085 /*
1086 * Check for running out of space
1087 */
1088 if (error) {
1089 /*
1090 * Free the transaction structure.
1091 */
1092 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1093 break;
1094 }
1095 xfs_ilock(ip, XFS_ILOCK_EXCL);
1096 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1097 0, quota_flag);
1098 if (error)
1099 goto error1;
1100
1101 xfs_trans_ijoin(tp, ip, 0);
1102
1103 xfs_defer_init(&dfops, &firstfsb);
1104 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1105 allocatesize_fsb, alloc_type, &firstfsb,
1106 resblks, imapp, &nimaps, &dfops);
1107 if (error)
1108 goto error0;
1109
1110 /*
1111 * Complete the transaction
1112 */
1113 error = xfs_defer_finish(&tp, &dfops, NULL);
1114 if (error)
1115 goto error0;
1116
1117 error = xfs_trans_commit(tp);
1118 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1119 if (error)
1120 break;
1121
1122 allocated_fsb = imapp->br_blockcount;
1123
1124 if (nimaps == 0) {
1125 error = -ENOSPC;
1126 break;
1127 }
1128
1129 startoffset_fsb += allocated_fsb;
1130 allocatesize_fsb -= allocated_fsb;
1131 }
1132
1133 return error;
1134
1135 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1136 xfs_defer_cancel(&dfops);
1137 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1138
1139 error1: /* Just cancel transaction */
1140 xfs_trans_cancel(tp);
1141 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1142 return error;
1143 }
1144
1145 static int
1146 xfs_unmap_extent(
1147 struct xfs_inode *ip,
1148 xfs_fileoff_t startoffset_fsb,
1149 xfs_filblks_t len_fsb,
1150 int *done)
1151 {
1152 struct xfs_mount *mp = ip->i_mount;
1153 struct xfs_trans *tp;
1154 struct xfs_defer_ops dfops;
1155 xfs_fsblock_t firstfsb;
1156 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1157 int error;
1158
1159 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1160 if (error) {
1161 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1162 return error;
1163 }
1164
1165 xfs_ilock(ip, XFS_ILOCK_EXCL);
1166 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1167 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1168 if (error)
1169 goto out_trans_cancel;
1170
1171 xfs_trans_ijoin(tp, ip, 0);
1172
1173 xfs_defer_init(&dfops, &firstfsb);
1174 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1175 &dfops, done);
1176 if (error)
1177 goto out_bmap_cancel;
1178
1179 error = xfs_defer_finish(&tp, &dfops, ip);
1180 if (error)
1181 goto out_bmap_cancel;
1182
1183 error = xfs_trans_commit(tp);
1184 out_unlock:
1185 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1186 return error;
1187
1188 out_bmap_cancel:
1189 xfs_defer_cancel(&dfops);
1190 out_trans_cancel:
1191 xfs_trans_cancel(tp);
1192 goto out_unlock;
1193 }
1194
1195 static int
1196 xfs_adjust_extent_unmap_boundaries(
1197 struct xfs_inode *ip,
1198 xfs_fileoff_t *startoffset_fsb,
1199 xfs_fileoff_t *endoffset_fsb)
1200 {
1201 struct xfs_mount *mp = ip->i_mount;
1202 struct xfs_bmbt_irec imap;
1203 int nimap, error;
1204 xfs_extlen_t mod = 0;
1205
1206 nimap = 1;
1207 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1208 if (error)
1209 return error;
1210
1211 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1212 xfs_daddr_t block;
1213
1214 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1215 block = imap.br_startblock;
1216 mod = do_div(block, mp->m_sb.sb_rextsize);
1217 if (mod)
1218 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1219 }
1220
1221 nimap = 1;
1222 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1223 if (error)
1224 return error;
1225
1226 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1227 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1228 mod++;
1229 if (mod && mod != mp->m_sb.sb_rextsize)
1230 *endoffset_fsb -= mod;
1231 }
1232
1233 return 0;
1234 }
1235
1236 static int
1237 xfs_flush_unmap_range(
1238 struct xfs_inode *ip,
1239 xfs_off_t offset,
1240 xfs_off_t len)
1241 {
1242 struct xfs_mount *mp = ip->i_mount;
1243 struct inode *inode = VFS_I(ip);
1244 xfs_off_t rounding, start, end;
1245 int error;
1246
1247 /* wait for the completion of any pending DIOs */
1248 inode_dio_wait(inode);
1249
1250 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1251 start = round_down(offset, rounding);
1252 end = round_up(offset + len, rounding) - 1;
1253
1254 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1255 if (error)
1256 return error;
1257 truncate_pagecache_range(inode, start, end);
1258 return 0;
1259 }
1260
1261 int
1262 xfs_free_file_space(
1263 struct xfs_inode *ip,
1264 xfs_off_t offset,
1265 xfs_off_t len)
1266 {
1267 struct xfs_mount *mp = ip->i_mount;
1268 xfs_fileoff_t startoffset_fsb;
1269 xfs_fileoff_t endoffset_fsb;
1270 int done = 0, error;
1271
1272 trace_xfs_free_file_space(ip);
1273
1274 error = xfs_qm_dqattach(ip, 0);
1275 if (error)
1276 return error;
1277
1278 if (len <= 0) /* if nothing being freed */
1279 return 0;
1280
1281 error = xfs_flush_unmap_range(ip, offset, len);
1282 if (error)
1283 return error;
1284
1285 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1286 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1287
1288 /*
1289 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1290 * and we can't use unwritten extents then we actually need to ensure
1291 * to zero the whole extent, otherwise we just need to take of block
1292 * boundaries, and xfs_bunmapi will handle the rest.
1293 */
1294 if (XFS_IS_REALTIME_INODE(ip) &&
1295 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1296 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1297 &endoffset_fsb);
1298 if (error)
1299 return error;
1300 }
1301
1302 if (endoffset_fsb > startoffset_fsb) {
1303 while (!done) {
1304 error = xfs_unmap_extent(ip, startoffset_fsb,
1305 endoffset_fsb - startoffset_fsb, &done);
1306 if (error)
1307 return error;
1308 }
1309 }
1310
1311 /*
1312 * Now that we've unmap all full blocks we'll have to zero out any
1313 * partial block at the beginning and/or end. xfs_zero_range is
1314 * smart enough to skip any holes, including those we just created.
1315 */
1316 return xfs_zero_range(ip, offset, len, NULL);
1317 }
1318
1319 /*
1320 * Preallocate and zero a range of a file. This mechanism has the allocation
1321 * semantics of fallocate and in addition converts data in the range to zeroes.
1322 */
1323 int
1324 xfs_zero_file_space(
1325 struct xfs_inode *ip,
1326 xfs_off_t offset,
1327 xfs_off_t len)
1328 {
1329 struct xfs_mount *mp = ip->i_mount;
1330 uint blksize;
1331 int error;
1332
1333 trace_xfs_zero_file_space(ip);
1334
1335 blksize = 1 << mp->m_sb.sb_blocklog;
1336
1337 /*
1338 * Punch a hole and prealloc the range. We use hole punch rather than
1339 * unwritten extent conversion for two reasons:
1340 *
1341 * 1.) Hole punch handles partial block zeroing for us.
1342 *
1343 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1344 * by virtue of the hole punch.
1345 */
1346 error = xfs_free_file_space(ip, offset, len);
1347 if (error)
1348 goto out;
1349
1350 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1351 round_up(offset + len, blksize) -
1352 round_down(offset, blksize),
1353 XFS_BMAPI_PREALLOC);
1354 out:
1355 return error;
1356
1357 }
1358
1359 /*
1360 * @next_fsb will keep track of the extent currently undergoing shift.
1361 * @stop_fsb will keep track of the extent at which we have to stop.
1362 * If we are shifting left, we will start with block (offset + len) and
1363 * shift each extent till last extent.
1364 * If we are shifting right, we will start with last extent inside file space
1365 * and continue until we reach the block corresponding to offset.
1366 */
1367 static int
1368 xfs_shift_file_space(
1369 struct xfs_inode *ip,
1370 xfs_off_t offset,
1371 xfs_off_t len,
1372 enum shift_direction direction)
1373 {
1374 int done = 0;
1375 struct xfs_mount *mp = ip->i_mount;
1376 struct xfs_trans *tp;
1377 int error;
1378 struct xfs_defer_ops dfops;
1379 xfs_fsblock_t first_block;
1380 xfs_fileoff_t stop_fsb;
1381 xfs_fileoff_t next_fsb;
1382 xfs_fileoff_t shift_fsb;
1383 uint resblks;
1384
1385 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1386
1387 if (direction == SHIFT_LEFT) {
1388 /*
1389 * Reserve blocks to cover potential extent merges after left
1390 * shift operations.
1391 */
1392 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1393 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1394 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1395 } else {
1396 /*
1397 * If right shift, delegate the work of initialization of
1398 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1399 */
1400 resblks = 0;
1401 next_fsb = NULLFSBLOCK;
1402 stop_fsb = XFS_B_TO_FSB(mp, offset);
1403 }
1404
1405 shift_fsb = XFS_B_TO_FSB(mp, len);
1406
1407 /*
1408 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1409 * into the accessible region of the file.
1410 */
1411 if (xfs_can_free_eofblocks(ip, true)) {
1412 error = xfs_free_eofblocks(ip);
1413 if (error)
1414 return error;
1415 }
1416
1417 /*
1418 * Writeback and invalidate cache for the remainder of the file as we're
1419 * about to shift down every extent from offset to EOF.
1420 */
1421 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1422 offset, -1);
1423 if (error)
1424 return error;
1425 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1426 offset >> PAGE_SHIFT, -1);
1427 if (error)
1428 return error;
1429
1430 /*
1431 * The extent shiting code works on extent granularity. So, if
1432 * stop_fsb is not the starting block of extent, we need to split
1433 * the extent at stop_fsb.
1434 */
1435 if (direction == SHIFT_RIGHT) {
1436 error = xfs_bmap_split_extent(ip, stop_fsb);
1437 if (error)
1438 return error;
1439 }
1440
1441 while (!error && !done) {
1442 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1443 &tp);
1444 if (error)
1445 break;
1446
1447 xfs_ilock(ip, XFS_ILOCK_EXCL);
1448 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1449 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1450 XFS_QMOPT_RES_REGBLKS);
1451 if (error)
1452 goto out_trans_cancel;
1453
1454 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1455
1456 xfs_defer_init(&dfops, &first_block);
1457
1458 /*
1459 * We are using the write transaction in which max 2 bmbt
1460 * updates are allowed
1461 */
1462 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1463 &done, stop_fsb, &first_block, &dfops,
1464 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1465 if (error)
1466 goto out_bmap_cancel;
1467
1468 error = xfs_defer_finish(&tp, &dfops, NULL);
1469 if (error)
1470 goto out_bmap_cancel;
1471
1472 error = xfs_trans_commit(tp);
1473 }
1474
1475 return error;
1476
1477 out_bmap_cancel:
1478 xfs_defer_cancel(&dfops);
1479 out_trans_cancel:
1480 xfs_trans_cancel(tp);
1481 return error;
1482 }
1483
1484 /*
1485 * xfs_collapse_file_space()
1486 * This routine frees disk space and shift extent for the given file.
1487 * The first thing we do is to free data blocks in the specified range
1488 * by calling xfs_free_file_space(). It would also sync dirty data
1489 * and invalidate page cache over the region on which collapse range
1490 * is working. And Shift extent records to the left to cover a hole.
1491 * RETURNS:
1492 * 0 on success
1493 * errno on error
1494 *
1495 */
1496 int
1497 xfs_collapse_file_space(
1498 struct xfs_inode *ip,
1499 xfs_off_t offset,
1500 xfs_off_t len)
1501 {
1502 int error;
1503
1504 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1505 trace_xfs_collapse_file_space(ip);
1506
1507 error = xfs_free_file_space(ip, offset, len);
1508 if (error)
1509 return error;
1510
1511 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1512 }
1513
1514 /*
1515 * xfs_insert_file_space()
1516 * This routine create hole space by shifting extents for the given file.
1517 * The first thing we do is to sync dirty data and invalidate page cache
1518 * over the region on which insert range is working. And split an extent
1519 * to two extents at given offset by calling xfs_bmap_split_extent.
1520 * And shift all extent records which are laying between [offset,
1521 * last allocated extent] to the right to reserve hole range.
1522 * RETURNS:
1523 * 0 on success
1524 * errno on error
1525 */
1526 int
1527 xfs_insert_file_space(
1528 struct xfs_inode *ip,
1529 loff_t offset,
1530 loff_t len)
1531 {
1532 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1533 trace_xfs_insert_file_space(ip);
1534
1535 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1536 }
1537
1538 /*
1539 * We need to check that the format of the data fork in the temporary inode is
1540 * valid for the target inode before doing the swap. This is not a problem with
1541 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1542 * data fork depending on the space the attribute fork is taking so we can get
1543 * invalid formats on the target inode.
1544 *
1545 * E.g. target has space for 7 extents in extent format, temp inode only has
1546 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1547 * btree, but when swapped it needs to be in extent format. Hence we can't just
1548 * blindly swap data forks on attr2 filesystems.
1549 *
1550 * Note that we check the swap in both directions so that we don't end up with
1551 * a corrupt temporary inode, either.
1552 *
1553 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1554 * inode will prevent this situation from occurring, so all we do here is
1555 * reject and log the attempt. basically we are putting the responsibility on
1556 * userspace to get this right.
1557 */
1558 static int
1559 xfs_swap_extents_check_format(
1560 struct xfs_inode *ip, /* target inode */
1561 struct xfs_inode *tip) /* tmp inode */
1562 {
1563
1564 /* Should never get a local format */
1565 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1566 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1567 return -EINVAL;
1568
1569 /*
1570 * if the target inode has less extents that then temporary inode then
1571 * why did userspace call us?
1572 */
1573 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1574 return -EINVAL;
1575
1576 /*
1577 * If we have to use the (expensive) rmap swap method, we can
1578 * handle any number of extents and any format.
1579 */
1580 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1581 return 0;
1582
1583 /*
1584 * if the target inode is in extent form and the temp inode is in btree
1585 * form then we will end up with the target inode in the wrong format
1586 * as we already know there are less extents in the temp inode.
1587 */
1588 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1589 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1590 return -EINVAL;
1591
1592 /* Check temp in extent form to max in target */
1593 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1594 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1595 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1596 return -EINVAL;
1597
1598 /* Check target in extent form to max in temp */
1599 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1600 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1601 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1602 return -EINVAL;
1603
1604 /*
1605 * If we are in a btree format, check that the temp root block will fit
1606 * in the target and that it has enough extents to be in btree format
1607 * in the target.
1608 *
1609 * Note that we have to be careful to allow btree->extent conversions
1610 * (a common defrag case) which will occur when the temp inode is in
1611 * extent format...
1612 */
1613 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1614 if (XFS_IFORK_BOFF(ip) &&
1615 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1616 return -EINVAL;
1617 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1618 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1619 return -EINVAL;
1620 }
1621
1622 /* Reciprocal target->temp btree format checks */
1623 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1624 if (XFS_IFORK_BOFF(tip) &&
1625 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1626 return -EINVAL;
1627 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1628 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1629 return -EINVAL;
1630 }
1631
1632 return 0;
1633 }
1634
1635 static int
1636 xfs_swap_extent_flush(
1637 struct xfs_inode *ip)
1638 {
1639 int error;
1640
1641 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1642 if (error)
1643 return error;
1644 truncate_pagecache_range(VFS_I(ip), 0, -1);
1645
1646 /* Verify O_DIRECT for ftmp */
1647 if (VFS_I(ip)->i_mapping->nrpages)
1648 return -EINVAL;
1649 return 0;
1650 }
1651
1652 /*
1653 * Move extents from one file to another, when rmap is enabled.
1654 */
1655 STATIC int
1656 xfs_swap_extent_rmap(
1657 struct xfs_trans **tpp,
1658 struct xfs_inode *ip,
1659 struct xfs_inode *tip)
1660 {
1661 struct xfs_bmbt_irec irec;
1662 struct xfs_bmbt_irec uirec;
1663 struct xfs_bmbt_irec tirec;
1664 xfs_fileoff_t offset_fsb;
1665 xfs_fileoff_t end_fsb;
1666 xfs_filblks_t count_fsb;
1667 xfs_fsblock_t firstfsb;
1668 struct xfs_defer_ops dfops;
1669 int error;
1670 xfs_filblks_t ilen;
1671 xfs_filblks_t rlen;
1672 int nimaps;
1673 __uint64_t tip_flags2;
1674
1675 /*
1676 * If the source file has shared blocks, we must flag the donor
1677 * file as having shared blocks so that we get the shared-block
1678 * rmap functions when we go to fix up the rmaps. The flags
1679 * will be switch for reals later.
1680 */
1681 tip_flags2 = tip->i_d.di_flags2;
1682 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1683 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1684
1685 offset_fsb = 0;
1686 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1687 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1688
1689 while (count_fsb) {
1690 /* Read extent from the donor file */
1691 nimaps = 1;
1692 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1693 &nimaps, 0);
1694 if (error)
1695 goto out;
1696 ASSERT(nimaps == 1);
1697 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1698
1699 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1700 ilen = tirec.br_blockcount;
1701
1702 /* Unmap the old blocks in the source file. */
1703 while (tirec.br_blockcount) {
1704 xfs_defer_init(&dfops, &firstfsb);
1705 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1706
1707 /* Read extent from the source file */
1708 nimaps = 1;
1709 error = xfs_bmapi_read(ip, tirec.br_startoff,
1710 tirec.br_blockcount, &irec,
1711 &nimaps, 0);
1712 if (error)
1713 goto out_defer;
1714 ASSERT(nimaps == 1);
1715 ASSERT(tirec.br_startoff == irec.br_startoff);
1716 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1717
1718 /* Trim the extent. */
1719 uirec = tirec;
1720 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1721 tirec.br_blockcount,
1722 irec.br_blockcount);
1723 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1724
1725 /* Remove the mapping from the donor file. */
1726 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1727 tip, &uirec);
1728 if (error)
1729 goto out_defer;
1730
1731 /* Remove the mapping from the source file. */
1732 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1733 ip, &irec);
1734 if (error)
1735 goto out_defer;
1736
1737 /* Map the donor file's blocks into the source file. */
1738 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1739 ip, &uirec);
1740 if (error)
1741 goto out_defer;
1742
1743 /* Map the source file's blocks into the donor file. */
1744 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1745 tip, &irec);
1746 if (error)
1747 goto out_defer;
1748
1749 error = xfs_defer_finish(tpp, &dfops, ip);
1750 if (error)
1751 goto out_defer;
1752
1753 tirec.br_startoff += rlen;
1754 if (tirec.br_startblock != HOLESTARTBLOCK &&
1755 tirec.br_startblock != DELAYSTARTBLOCK)
1756 tirec.br_startblock += rlen;
1757 tirec.br_blockcount -= rlen;
1758 }
1759
1760 /* Roll on... */
1761 count_fsb -= ilen;
1762 offset_fsb += ilen;
1763 }
1764
1765 tip->i_d.di_flags2 = tip_flags2;
1766 return 0;
1767
1768 out_defer:
1769 xfs_defer_cancel(&dfops);
1770 out:
1771 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1772 tip->i_d.di_flags2 = tip_flags2;
1773 return error;
1774 }
1775
1776 /* Swap the extents of two files by swapping data forks. */
1777 STATIC int
1778 xfs_swap_extent_forks(
1779 struct xfs_trans *tp,
1780 struct xfs_inode *ip,
1781 struct xfs_inode *tip,
1782 int *src_log_flags,
1783 int *target_log_flags)
1784 {
1785 struct xfs_ifork tempifp, *ifp, *tifp;
1786 int aforkblks = 0;
1787 int taforkblks = 0;
1788 xfs_extnum_t nextents;
1789 __uint64_t tmp;
1790 int error;
1791
1792 /*
1793 * Count the number of extended attribute blocks
1794 */
1795 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1796 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1797 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK,
1798 &aforkblks);
1799 if (error)
1800 return error;
1801 }
1802 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1803 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1804 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1805 &taforkblks);
1806 if (error)
1807 return error;
1808 }
1809
1810 /*
1811 * Before we've swapped the forks, lets set the owners of the forks
1812 * appropriately. We have to do this as we are demand paging the btree
1813 * buffers, and so the validation done on read will expect the owner
1814 * field to be correctly set. Once we change the owners, we can swap the
1815 * inode forks.
1816 */
1817 if (ip->i_d.di_version == 3 &&
1818 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1819 (*target_log_flags) |= XFS_ILOG_DOWNER;
1820 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1821 tip->i_ino, NULL);
1822 if (error)
1823 return error;
1824 }
1825
1826 if (tip->i_d.di_version == 3 &&
1827 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1828 (*src_log_flags) |= XFS_ILOG_DOWNER;
1829 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1830 ip->i_ino, NULL);
1831 if (error)
1832 return error;
1833 }
1834
1835 /*
1836 * Swap the data forks of the inodes
1837 */
1838 ifp = &ip->i_df;
1839 tifp = &tip->i_df;
1840 tempifp = *ifp; /* struct copy */
1841 *ifp = *tifp; /* struct copy */
1842 *tifp = tempifp; /* struct copy */
1843
1844 /*
1845 * Fix the on-disk inode values
1846 */
1847 tmp = (__uint64_t)ip->i_d.di_nblocks;
1848 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1849 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1850
1851 tmp = (__uint64_t) ip->i_d.di_nextents;
1852 ip->i_d.di_nextents = tip->i_d.di_nextents;
1853 tip->i_d.di_nextents = tmp;
1854
1855 tmp = (__uint64_t) ip->i_d.di_format;
1856 ip->i_d.di_format = tip->i_d.di_format;
1857 tip->i_d.di_format = tmp;
1858
1859 /*
1860 * The extents in the source inode could still contain speculative
1861 * preallocation beyond EOF (e.g. the file is open but not modified
1862 * while defrag is in progress). In that case, we need to copy over the
1863 * number of delalloc blocks the data fork in the source inode is
1864 * tracking beyond EOF so that when the fork is truncated away when the
1865 * temporary inode is unlinked we don't underrun the i_delayed_blks
1866 * counter on that inode.
1867 */
1868 ASSERT(tip->i_delayed_blks == 0);
1869 tip->i_delayed_blks = ip->i_delayed_blks;
1870 ip->i_delayed_blks = 0;
1871
1872 switch (ip->i_d.di_format) {
1873 case XFS_DINODE_FMT_EXTENTS:
1874 /*
1875 * If the extents fit in the inode, fix the pointer. Otherwise
1876 * it's already NULL or pointing to the extent.
1877 */
1878 nextents = xfs_iext_count(&ip->i_df);
1879 if (nextents <= XFS_INLINE_EXTS)
1880 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
1881 (*src_log_flags) |= XFS_ILOG_DEXT;
1882 break;
1883 case XFS_DINODE_FMT_BTREE:
1884 ASSERT(ip->i_d.di_version < 3 ||
1885 (*src_log_flags & XFS_ILOG_DOWNER));
1886 (*src_log_flags) |= XFS_ILOG_DBROOT;
1887 break;
1888 }
1889
1890 switch (tip->i_d.di_format) {
1891 case XFS_DINODE_FMT_EXTENTS:
1892 /*
1893 * If the extents fit in the inode, fix the pointer. Otherwise
1894 * it's already NULL or pointing to the extent.
1895 */
1896 nextents = xfs_iext_count(&tip->i_df);
1897 if (nextents <= XFS_INLINE_EXTS)
1898 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext;
1899 (*target_log_flags) |= XFS_ILOG_DEXT;
1900 break;
1901 case XFS_DINODE_FMT_BTREE:
1902 (*target_log_flags) |= XFS_ILOG_DBROOT;
1903 ASSERT(tip->i_d.di_version < 3 ||
1904 (*target_log_flags & XFS_ILOG_DOWNER));
1905 break;
1906 }
1907
1908 return 0;
1909 }
1910
1911 int
1912 xfs_swap_extents(
1913 struct xfs_inode *ip, /* target inode */
1914 struct xfs_inode *tip, /* tmp inode */
1915 struct xfs_swapext *sxp)
1916 {
1917 struct xfs_mount *mp = ip->i_mount;
1918 struct xfs_trans *tp;
1919 struct xfs_bstat *sbp = &sxp->sx_stat;
1920 int src_log_flags, target_log_flags;
1921 int error = 0;
1922 int lock_flags;
1923 struct xfs_ifork *cowfp;
1924 __uint64_t f;
1925 int resblks;
1926
1927 /*
1928 * Lock the inodes against other IO, page faults and truncate to
1929 * begin with. Then we can ensure the inodes are flushed and have no
1930 * page cache safely. Once we have done this we can take the ilocks and
1931 * do the rest of the checks.
1932 */
1933 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1934 lock_flags = XFS_MMAPLOCK_EXCL;
1935 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1936
1937 /* Verify that both files have the same format */
1938 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1939 error = -EINVAL;
1940 goto out_unlock;
1941 }
1942
1943 /* Verify both files are either real-time or non-realtime */
1944 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1945 error = -EINVAL;
1946 goto out_unlock;
1947 }
1948
1949 error = xfs_swap_extent_flush(ip);
1950 if (error)
1951 goto out_unlock;
1952 error = xfs_swap_extent_flush(tip);
1953 if (error)
1954 goto out_unlock;
1955
1956 /*
1957 * Extent "swapping" with rmap requires a permanent reservation and
1958 * a block reservation because it's really just a remap operation
1959 * performed with log redo items!
1960 */
1961 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
1962 /*
1963 * Conceptually this shouldn't affect the shape of either
1964 * bmbt, but since we atomically move extents one by one,
1965 * we reserve enough space to rebuild both trees.
1966 */
1967 resblks = XFS_SWAP_RMAP_SPACE_RES(mp,
1968 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK),
1969 XFS_DATA_FORK) +
1970 XFS_SWAP_RMAP_SPACE_RES(mp,
1971 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK),
1972 XFS_DATA_FORK);
1973 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1974 0, 0, &tp);
1975 } else
1976 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0,
1977 0, 0, &tp);
1978 if (error)
1979 goto out_unlock;
1980
1981 /*
1982 * Lock and join the inodes to the tansaction so that transaction commit
1983 * or cancel will unlock the inodes from this point onwards.
1984 */
1985 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1986 lock_flags |= XFS_ILOCK_EXCL;
1987 xfs_trans_ijoin(tp, ip, 0);
1988 xfs_trans_ijoin(tp, tip, 0);
1989
1990
1991 /* Verify all data are being swapped */
1992 if (sxp->sx_offset != 0 ||
1993 sxp->sx_length != ip->i_d.di_size ||
1994 sxp->sx_length != tip->i_d.di_size) {
1995 error = -EFAULT;
1996 goto out_trans_cancel;
1997 }
1998
1999 trace_xfs_swap_extent_before(ip, 0);
2000 trace_xfs_swap_extent_before(tip, 1);
2001
2002 /* check inode formats now that data is flushed */
2003 error = xfs_swap_extents_check_format(ip, tip);
2004 if (error) {
2005 xfs_notice(mp,
2006 "%s: inode 0x%llx format is incompatible for exchanging.",
2007 __func__, ip->i_ino);
2008 goto out_trans_cancel;
2009 }
2010
2011 /*
2012 * Compare the current change & modify times with that
2013 * passed in. If they differ, we abort this swap.
2014 * This is the mechanism used to ensure the calling
2015 * process that the file was not changed out from
2016 * under it.
2017 */
2018 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
2019 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
2020 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
2021 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
2022 error = -EBUSY;
2023 goto out_trans_cancel;
2024 }
2025
2026 /*
2027 * Note the trickiness in setting the log flags - we set the owner log
2028 * flag on the opposite inode (i.e. the inode we are setting the new
2029 * owner to be) because once we swap the forks and log that, log
2030 * recovery is going to see the fork as owned by the swapped inode,
2031 * not the pre-swapped inodes.
2032 */
2033 src_log_flags = XFS_ILOG_CORE;
2034 target_log_flags = XFS_ILOG_CORE;
2035
2036 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2037 error = xfs_swap_extent_rmap(&tp, ip, tip);
2038 else
2039 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
2040 &target_log_flags);
2041 if (error)
2042 goto out_trans_cancel;
2043
2044 /* Do we have to swap reflink flags? */
2045 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
2046 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
2047 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2048 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2049 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2050 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2051 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
2052 cowfp = ip->i_cowfp;
2053 ip->i_cowfp = tip->i_cowfp;
2054 tip->i_cowfp = cowfp;
2055 xfs_inode_set_cowblocks_tag(ip);
2056 xfs_inode_set_cowblocks_tag(tip);
2057 }
2058
2059 xfs_trans_log_inode(tp, ip, src_log_flags);
2060 xfs_trans_log_inode(tp, tip, target_log_flags);
2061
2062 /*
2063 * If this is a synchronous mount, make sure that the
2064 * transaction goes to disk before returning to the user.
2065 */
2066 if (mp->m_flags & XFS_MOUNT_WSYNC)
2067 xfs_trans_set_sync(tp);
2068
2069 error = xfs_trans_commit(tp);
2070
2071 trace_xfs_swap_extent_after(ip, 0);
2072 trace_xfs_swap_extent_after(tip, 1);
2073
2074 out_unlock:
2075 xfs_iunlock(ip, lock_flags);
2076 xfs_iunlock(tip, lock_flags);
2077 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2078 return error;
2079
2080 out_trans_cancel:
2081 xfs_trans_cancel(tp);
2082 goto out_unlock;
2083 }