]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_bmap_util.c
Merge branch 'xfs-4.8-iomap-write' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_bmap_util.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
42 #include "xfs_log.h"
43
44 /* Kernel only BMAP related definitions and functions */
45
46 /*
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
49 * bmap code does.
50 */
51 xfs_daddr_t
52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53 {
54 return (XFS_IS_REALTIME_INODE(ip) ? \
55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57 }
58
59 /*
60 * Routine to zero an extent on disk allocated to the specific inode.
61 *
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
65 */
66 int
67 xfs_zero_extent(
68 struct xfs_inode *ip,
69 xfs_fsblock_t start_fsb,
70 xfs_off_t count_fsb)
71 {
72 struct xfs_mount *mp = ip->i_mount;
73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
74 sector_t block = XFS_BB_TO_FSBT(mp, sector);
75
76 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
77 block << (mp->m_super->s_blocksize_bits - 9),
78 count_fsb << (mp->m_super->s_blocksize_bits - 9),
79 GFP_NOFS, true);
80 }
81
82 /*
83 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
84 * caller. Frees all the extents that need freeing, which must be done
85 * last due to locking considerations. We never free any extents in
86 * the first transaction.
87 *
88 * If an inode *ip is provided, rejoin it to the transaction if
89 * the transaction was committed.
90 */
91 int /* error */
92 xfs_bmap_finish(
93 struct xfs_trans **tp, /* transaction pointer addr */
94 struct xfs_bmap_free *flist, /* i/o: list extents to free */
95 struct xfs_inode *ip)
96 {
97 struct xfs_efd_log_item *efd; /* extent free data */
98 struct xfs_efi_log_item *efi; /* extent free intention */
99 int error; /* error return value */
100 int committed;/* xact committed or not */
101 struct xfs_bmap_free_item *free; /* free extent item */
102 struct xfs_bmap_free_item *next; /* next item on free list */
103
104 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
105 if (flist->xbf_count == 0)
106 return 0;
107
108 efi = xfs_trans_get_efi(*tp, flist->xbf_count);
109 for (free = flist->xbf_first; free; free = free->xbfi_next)
110 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
111 free->xbfi_blockcount);
112
113 error = __xfs_trans_roll(tp, ip, &committed);
114 if (error) {
115 /*
116 * If the transaction was committed, drop the EFD reference
117 * since we're bailing out of here. The other reference is
118 * dropped when the EFI hits the AIL.
119 *
120 * If the transaction was not committed, the EFI is freed by the
121 * EFI item unlock handler on abort. Also, we have a new
122 * transaction so we should return committed=1 even though we're
123 * returning an error.
124 */
125 if (committed) {
126 xfs_efi_release(efi);
127 xfs_force_shutdown((*tp)->t_mountp,
128 SHUTDOWN_META_IO_ERROR);
129 }
130 return error;
131 }
132
133 /*
134 * Get an EFD and free each extent in the list, logging to the EFD in
135 * the process. The remaining bmap free list is cleaned up by the caller
136 * on error.
137 */
138 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
139 for (free = flist->xbf_first; free != NULL; free = next) {
140 next = free->xbfi_next;
141
142 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
143 free->xbfi_blockcount);
144 if (error)
145 return error;
146
147 xfs_bmap_del_free(flist, NULL, free);
148 }
149
150 return 0;
151 }
152
153 int
154 xfs_bmap_rtalloc(
155 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
156 {
157 xfs_alloctype_t atype = 0; /* type for allocation routines */
158 int error; /* error return value */
159 xfs_mount_t *mp; /* mount point structure */
160 xfs_extlen_t prod = 0; /* product factor for allocators */
161 xfs_extlen_t ralen = 0; /* realtime allocation length */
162 xfs_extlen_t align; /* minimum allocation alignment */
163 xfs_rtblock_t rtb;
164
165 mp = ap->ip->i_mount;
166 align = xfs_get_extsz_hint(ap->ip);
167 prod = align / mp->m_sb.sb_rextsize;
168 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
169 align, 1, ap->eof, 0,
170 ap->conv, &ap->offset, &ap->length);
171 if (error)
172 return error;
173 ASSERT(ap->length);
174 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
175
176 /*
177 * If the offset & length are not perfectly aligned
178 * then kill prod, it will just get us in trouble.
179 */
180 if (do_mod(ap->offset, align) || ap->length % align)
181 prod = 1;
182 /*
183 * Set ralen to be the actual requested length in rtextents.
184 */
185 ralen = ap->length / mp->m_sb.sb_rextsize;
186 /*
187 * If the old value was close enough to MAXEXTLEN that
188 * we rounded up to it, cut it back so it's valid again.
189 * Note that if it's a really large request (bigger than
190 * MAXEXTLEN), we don't hear about that number, and can't
191 * adjust the starting point to match it.
192 */
193 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
194 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
195
196 /*
197 * Lock out modifications to both the RT bitmap and summary inodes
198 */
199 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
200 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
201 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL);
202 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
203
204 /*
205 * If it's an allocation to an empty file at offset 0,
206 * pick an extent that will space things out in the rt area.
207 */
208 if (ap->eof && ap->offset == 0) {
209 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
210
211 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
212 if (error)
213 return error;
214 ap->blkno = rtx * mp->m_sb.sb_rextsize;
215 } else {
216 ap->blkno = 0;
217 }
218
219 xfs_bmap_adjacent(ap);
220
221 /*
222 * Realtime allocation, done through xfs_rtallocate_extent.
223 */
224 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
225 do_div(ap->blkno, mp->m_sb.sb_rextsize);
226 rtb = ap->blkno;
227 ap->length = ralen;
228 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
229 &ralen, atype, ap->wasdel, prod, &rtb)))
230 return error;
231 if (rtb == NULLFSBLOCK && prod > 1 &&
232 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
233 ap->length, &ralen, atype,
234 ap->wasdel, 1, &rtb)))
235 return error;
236 ap->blkno = rtb;
237 if (ap->blkno != NULLFSBLOCK) {
238 ap->blkno *= mp->m_sb.sb_rextsize;
239 ralen *= mp->m_sb.sb_rextsize;
240 ap->length = ralen;
241 ap->ip->i_d.di_nblocks += ralen;
242 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
243 if (ap->wasdel)
244 ap->ip->i_delayed_blks -= ralen;
245 /*
246 * Adjust the disk quota also. This was reserved
247 * earlier.
248 */
249 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
250 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
251 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
252
253 /* Zero the extent if we were asked to do so */
254 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
255 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
256 if (error)
257 return error;
258 }
259 } else {
260 ap->length = 0;
261 }
262 return 0;
263 }
264
265 /*
266 * Check if the endoff is outside the last extent. If so the caller will grow
267 * the allocation to a stripe unit boundary. All offsets are considered outside
268 * the end of file for an empty fork, so 1 is returned in *eof in that case.
269 */
270 int
271 xfs_bmap_eof(
272 struct xfs_inode *ip,
273 xfs_fileoff_t endoff,
274 int whichfork,
275 int *eof)
276 {
277 struct xfs_bmbt_irec rec;
278 int error;
279
280 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
281 if (error || *eof)
282 return error;
283
284 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
285 return 0;
286 }
287
288 /*
289 * Extent tree block counting routines.
290 */
291
292 /*
293 * Count leaf blocks given a range of extent records.
294 */
295 STATIC void
296 xfs_bmap_count_leaves(
297 xfs_ifork_t *ifp,
298 xfs_extnum_t idx,
299 int numrecs,
300 int *count)
301 {
302 int b;
303
304 for (b = 0; b < numrecs; b++) {
305 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
306 *count += xfs_bmbt_get_blockcount(frp);
307 }
308 }
309
310 /*
311 * Count leaf blocks given a range of extent records originally
312 * in btree format.
313 */
314 STATIC void
315 xfs_bmap_disk_count_leaves(
316 struct xfs_mount *mp,
317 struct xfs_btree_block *block,
318 int numrecs,
319 int *count)
320 {
321 int b;
322 xfs_bmbt_rec_t *frp;
323
324 for (b = 1; b <= numrecs; b++) {
325 frp = XFS_BMBT_REC_ADDR(mp, block, b);
326 *count += xfs_bmbt_disk_get_blockcount(frp);
327 }
328 }
329
330 /*
331 * Recursively walks each level of a btree
332 * to count total fsblocks in use.
333 */
334 STATIC int /* error */
335 xfs_bmap_count_tree(
336 xfs_mount_t *mp, /* file system mount point */
337 xfs_trans_t *tp, /* transaction pointer */
338 xfs_ifork_t *ifp, /* inode fork pointer */
339 xfs_fsblock_t blockno, /* file system block number */
340 int levelin, /* level in btree */
341 int *count) /* Count of blocks */
342 {
343 int error;
344 xfs_buf_t *bp, *nbp;
345 int level = levelin;
346 __be64 *pp;
347 xfs_fsblock_t bno = blockno;
348 xfs_fsblock_t nextbno;
349 struct xfs_btree_block *block, *nextblock;
350 int numrecs;
351
352 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
353 &xfs_bmbt_buf_ops);
354 if (error)
355 return error;
356 *count += 1;
357 block = XFS_BUF_TO_BLOCK(bp);
358
359 if (--level) {
360 /* Not at node above leaves, count this level of nodes */
361 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
362 while (nextbno != NULLFSBLOCK) {
363 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
364 XFS_BMAP_BTREE_REF,
365 &xfs_bmbt_buf_ops);
366 if (error)
367 return error;
368 *count += 1;
369 nextblock = XFS_BUF_TO_BLOCK(nbp);
370 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
371 xfs_trans_brelse(tp, nbp);
372 }
373
374 /* Dive to the next level */
375 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
376 bno = be64_to_cpu(*pp);
377 if (unlikely((error =
378 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
379 xfs_trans_brelse(tp, bp);
380 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
381 XFS_ERRLEVEL_LOW, mp);
382 return -EFSCORRUPTED;
383 }
384 xfs_trans_brelse(tp, bp);
385 } else {
386 /* count all level 1 nodes and their leaves */
387 for (;;) {
388 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
389 numrecs = be16_to_cpu(block->bb_numrecs);
390 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
391 xfs_trans_brelse(tp, bp);
392 if (nextbno == NULLFSBLOCK)
393 break;
394 bno = nextbno;
395 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
396 XFS_BMAP_BTREE_REF,
397 &xfs_bmbt_buf_ops);
398 if (error)
399 return error;
400 *count += 1;
401 block = XFS_BUF_TO_BLOCK(bp);
402 }
403 }
404 return 0;
405 }
406
407 /*
408 * Count fsblocks of the given fork.
409 */
410 static int /* error */
411 xfs_bmap_count_blocks(
412 xfs_trans_t *tp, /* transaction pointer */
413 xfs_inode_t *ip, /* incore inode */
414 int whichfork, /* data or attr fork */
415 int *count) /* out: count of blocks */
416 {
417 struct xfs_btree_block *block; /* current btree block */
418 xfs_fsblock_t bno; /* block # of "block" */
419 xfs_ifork_t *ifp; /* fork structure */
420 int level; /* btree level, for checking */
421 xfs_mount_t *mp; /* file system mount structure */
422 __be64 *pp; /* pointer to block address */
423
424 bno = NULLFSBLOCK;
425 mp = ip->i_mount;
426 ifp = XFS_IFORK_PTR(ip, whichfork);
427 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
428 xfs_bmap_count_leaves(ifp, 0,
429 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
430 count);
431 return 0;
432 }
433
434 /*
435 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
436 */
437 block = ifp->if_broot;
438 level = be16_to_cpu(block->bb_level);
439 ASSERT(level > 0);
440 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
441 bno = be64_to_cpu(*pp);
442 ASSERT(bno != NULLFSBLOCK);
443 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
444 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
445
446 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
447 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
448 mp);
449 return -EFSCORRUPTED;
450 }
451
452 return 0;
453 }
454
455 /*
456 * returns 1 for success, 0 if we failed to map the extent.
457 */
458 STATIC int
459 xfs_getbmapx_fix_eof_hole(
460 xfs_inode_t *ip, /* xfs incore inode pointer */
461 struct getbmapx *out, /* output structure */
462 int prealloced, /* this is a file with
463 * preallocated data space */
464 __int64_t end, /* last block requested */
465 xfs_fsblock_t startblock)
466 {
467 __int64_t fixlen;
468 xfs_mount_t *mp; /* file system mount point */
469 xfs_ifork_t *ifp; /* inode fork pointer */
470 xfs_extnum_t lastx; /* last extent pointer */
471 xfs_fileoff_t fileblock;
472
473 if (startblock == HOLESTARTBLOCK) {
474 mp = ip->i_mount;
475 out->bmv_block = -1;
476 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
477 fixlen -= out->bmv_offset;
478 if (prealloced && out->bmv_offset + out->bmv_length == end) {
479 /* Came to hole at EOF. Trim it. */
480 if (fixlen <= 0)
481 return 0;
482 out->bmv_length = fixlen;
483 }
484 } else {
485 if (startblock == DELAYSTARTBLOCK)
486 out->bmv_block = -2;
487 else
488 out->bmv_block = xfs_fsb_to_db(ip, startblock);
489 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
490 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
491 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
492 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
493 out->bmv_oflags |= BMV_OF_LAST;
494 }
495
496 return 1;
497 }
498
499 /*
500 * Get inode's extents as described in bmv, and format for output.
501 * Calls formatter to fill the user's buffer until all extents
502 * are mapped, until the passed-in bmv->bmv_count slots have
503 * been filled, or until the formatter short-circuits the loop,
504 * if it is tracking filled-in extents on its own.
505 */
506 int /* error code */
507 xfs_getbmap(
508 xfs_inode_t *ip,
509 struct getbmapx *bmv, /* user bmap structure */
510 xfs_bmap_format_t formatter, /* format to user */
511 void *arg) /* formatter arg */
512 {
513 __int64_t bmvend; /* last block requested */
514 int error = 0; /* return value */
515 __int64_t fixlen; /* length for -1 case */
516 int i; /* extent number */
517 int lock; /* lock state */
518 xfs_bmbt_irec_t *map; /* buffer for user's data */
519 xfs_mount_t *mp; /* file system mount point */
520 int nex; /* # of user extents can do */
521 int nexleft; /* # of user extents left */
522 int subnex; /* # of bmapi's can do */
523 int nmap; /* number of map entries */
524 struct getbmapx *out; /* output structure */
525 int whichfork; /* data or attr fork */
526 int prealloced; /* this is a file with
527 * preallocated data space */
528 int iflags; /* interface flags */
529 int bmapi_flags; /* flags for xfs_bmapi */
530 int cur_ext = 0;
531
532 mp = ip->i_mount;
533 iflags = bmv->bmv_iflags;
534 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
535
536 if (whichfork == XFS_ATTR_FORK) {
537 if (XFS_IFORK_Q(ip)) {
538 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
539 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
540 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
541 return -EINVAL;
542 } else if (unlikely(
543 ip->i_d.di_aformat != 0 &&
544 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
545 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
546 ip->i_mount);
547 return -EFSCORRUPTED;
548 }
549
550 prealloced = 0;
551 fixlen = 1LL << 32;
552 } else {
553 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
554 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
555 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
556 return -EINVAL;
557
558 if (xfs_get_extsz_hint(ip) ||
559 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
560 prealloced = 1;
561 fixlen = mp->m_super->s_maxbytes;
562 } else {
563 prealloced = 0;
564 fixlen = XFS_ISIZE(ip);
565 }
566 }
567
568 if (bmv->bmv_length == -1) {
569 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
570 bmv->bmv_length =
571 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
572 } else if (bmv->bmv_length == 0) {
573 bmv->bmv_entries = 0;
574 return 0;
575 } else if (bmv->bmv_length < 0) {
576 return -EINVAL;
577 }
578
579 nex = bmv->bmv_count - 1;
580 if (nex <= 0)
581 return -EINVAL;
582 bmvend = bmv->bmv_offset + bmv->bmv_length;
583
584
585 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
586 return -ENOMEM;
587 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
588 if (!out)
589 return -ENOMEM;
590
591 xfs_ilock(ip, XFS_IOLOCK_SHARED);
592 if (whichfork == XFS_DATA_FORK) {
593 if (!(iflags & BMV_IF_DELALLOC) &&
594 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
595 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
596 if (error)
597 goto out_unlock_iolock;
598
599 /*
600 * Even after flushing the inode, there can still be
601 * delalloc blocks on the inode beyond EOF due to
602 * speculative preallocation. These are not removed
603 * until the release function is called or the inode
604 * is inactivated. Hence we cannot assert here that
605 * ip->i_delayed_blks == 0.
606 */
607 }
608
609 lock = xfs_ilock_data_map_shared(ip);
610 } else {
611 lock = xfs_ilock_attr_map_shared(ip);
612 }
613
614 /*
615 * Don't let nex be bigger than the number of extents
616 * we can have assuming alternating holes and real extents.
617 */
618 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
619 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
620
621 bmapi_flags = xfs_bmapi_aflag(whichfork);
622 if (!(iflags & BMV_IF_PREALLOC))
623 bmapi_flags |= XFS_BMAPI_IGSTATE;
624
625 /*
626 * Allocate enough space to handle "subnex" maps at a time.
627 */
628 error = -ENOMEM;
629 subnex = 16;
630 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
631 if (!map)
632 goto out_unlock_ilock;
633
634 bmv->bmv_entries = 0;
635
636 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
637 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
638 error = 0;
639 goto out_free_map;
640 }
641
642 nexleft = nex;
643
644 do {
645 nmap = (nexleft > subnex) ? subnex : nexleft;
646 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
647 XFS_BB_TO_FSB(mp, bmv->bmv_length),
648 map, &nmap, bmapi_flags);
649 if (error)
650 goto out_free_map;
651 ASSERT(nmap <= subnex);
652
653 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
654 out[cur_ext].bmv_oflags = 0;
655 if (map[i].br_state == XFS_EXT_UNWRITTEN)
656 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
657 else if (map[i].br_startblock == DELAYSTARTBLOCK)
658 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
659 out[cur_ext].bmv_offset =
660 XFS_FSB_TO_BB(mp, map[i].br_startoff);
661 out[cur_ext].bmv_length =
662 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
663 out[cur_ext].bmv_unused1 = 0;
664 out[cur_ext].bmv_unused2 = 0;
665
666 /*
667 * delayed allocation extents that start beyond EOF can
668 * occur due to speculative EOF allocation when the
669 * delalloc extent is larger than the largest freespace
670 * extent at conversion time. These extents cannot be
671 * converted by data writeback, so can exist here even
672 * if we are not supposed to be finding delalloc
673 * extents.
674 */
675 if (map[i].br_startblock == DELAYSTARTBLOCK &&
676 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
677 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
678
679 if (map[i].br_startblock == HOLESTARTBLOCK &&
680 whichfork == XFS_ATTR_FORK) {
681 /* came to the end of attribute fork */
682 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
683 goto out_free_map;
684 }
685
686 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
687 prealloced, bmvend,
688 map[i].br_startblock))
689 goto out_free_map;
690
691 bmv->bmv_offset =
692 out[cur_ext].bmv_offset +
693 out[cur_ext].bmv_length;
694 bmv->bmv_length =
695 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
696
697 /*
698 * In case we don't want to return the hole,
699 * don't increase cur_ext so that we can reuse
700 * it in the next loop.
701 */
702 if ((iflags & BMV_IF_NO_HOLES) &&
703 map[i].br_startblock == HOLESTARTBLOCK) {
704 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
705 continue;
706 }
707
708 nexleft--;
709 bmv->bmv_entries++;
710 cur_ext++;
711 }
712 } while (nmap && nexleft && bmv->bmv_length);
713
714 out_free_map:
715 kmem_free(map);
716 out_unlock_ilock:
717 xfs_iunlock(ip, lock);
718 out_unlock_iolock:
719 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
720
721 for (i = 0; i < cur_ext; i++) {
722 int full = 0; /* user array is full */
723
724 /* format results & advance arg */
725 error = formatter(&arg, &out[i], &full);
726 if (error || full)
727 break;
728 }
729
730 kmem_free(out);
731 return error;
732 }
733
734 /*
735 * dead simple method of punching delalyed allocation blocks from a range in
736 * the inode. Walks a block at a time so will be slow, but is only executed in
737 * rare error cases so the overhead is not critical. This will always punch out
738 * both the start and end blocks, even if the ranges only partially overlap
739 * them, so it is up to the caller to ensure that partial blocks are not
740 * passed in.
741 */
742 int
743 xfs_bmap_punch_delalloc_range(
744 struct xfs_inode *ip,
745 xfs_fileoff_t start_fsb,
746 xfs_fileoff_t length)
747 {
748 xfs_fileoff_t remaining = length;
749 int error = 0;
750
751 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
752
753 do {
754 int done;
755 xfs_bmbt_irec_t imap;
756 int nimaps = 1;
757 xfs_fsblock_t firstblock;
758 xfs_bmap_free_t flist;
759
760 /*
761 * Map the range first and check that it is a delalloc extent
762 * before trying to unmap the range. Otherwise we will be
763 * trying to remove a real extent (which requires a
764 * transaction) or a hole, which is probably a bad idea...
765 */
766 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
767 XFS_BMAPI_ENTIRE);
768
769 if (error) {
770 /* something screwed, just bail */
771 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
772 xfs_alert(ip->i_mount,
773 "Failed delalloc mapping lookup ino %lld fsb %lld.",
774 ip->i_ino, start_fsb);
775 }
776 break;
777 }
778 if (!nimaps) {
779 /* nothing there */
780 goto next_block;
781 }
782 if (imap.br_startblock != DELAYSTARTBLOCK) {
783 /* been converted, ignore */
784 goto next_block;
785 }
786 WARN_ON(imap.br_blockcount == 0);
787
788 /*
789 * Note: while we initialise the firstblock/flist pair, they
790 * should never be used because blocks should never be
791 * allocated or freed for a delalloc extent and hence we need
792 * don't cancel or finish them after the xfs_bunmapi() call.
793 */
794 xfs_bmap_init(&flist, &firstblock);
795 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
796 &flist, &done);
797 if (error)
798 break;
799
800 ASSERT(!flist.xbf_count && !flist.xbf_first);
801 next_block:
802 start_fsb++;
803 remaining--;
804 } while(remaining > 0);
805
806 return error;
807 }
808
809 /*
810 * Test whether it is appropriate to check an inode for and free post EOF
811 * blocks. The 'force' parameter determines whether we should also consider
812 * regular files that are marked preallocated or append-only.
813 */
814 bool
815 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
816 {
817 /* prealloc/delalloc exists only on regular files */
818 if (!S_ISREG(VFS_I(ip)->i_mode))
819 return false;
820
821 /*
822 * Zero sized files with no cached pages and delalloc blocks will not
823 * have speculative prealloc/delalloc blocks to remove.
824 */
825 if (VFS_I(ip)->i_size == 0 &&
826 VFS_I(ip)->i_mapping->nrpages == 0 &&
827 ip->i_delayed_blks == 0)
828 return false;
829
830 /* If we haven't read in the extent list, then don't do it now. */
831 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
832 return false;
833
834 /*
835 * Do not free real preallocated or append-only files unless the file
836 * has delalloc blocks and we are forced to remove them.
837 */
838 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
839 if (!force || ip->i_delayed_blks == 0)
840 return false;
841
842 return true;
843 }
844
845 /*
846 * This is called by xfs_inactive to free any blocks beyond eof
847 * when the link count isn't zero and by xfs_dm_punch_hole() when
848 * punching a hole to EOF.
849 */
850 int
851 xfs_free_eofblocks(
852 xfs_mount_t *mp,
853 xfs_inode_t *ip,
854 bool need_iolock)
855 {
856 xfs_trans_t *tp;
857 int error;
858 xfs_fileoff_t end_fsb;
859 xfs_fileoff_t last_fsb;
860 xfs_filblks_t map_len;
861 int nimaps;
862 xfs_bmbt_irec_t imap;
863
864 /*
865 * Figure out if there are any blocks beyond the end
866 * of the file. If not, then there is nothing to do.
867 */
868 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
869 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
870 if (last_fsb <= end_fsb)
871 return 0;
872 map_len = last_fsb - end_fsb;
873
874 nimaps = 1;
875 xfs_ilock(ip, XFS_ILOCK_SHARED);
876 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
877 xfs_iunlock(ip, XFS_ILOCK_SHARED);
878
879 if (!error && (nimaps != 0) &&
880 (imap.br_startblock != HOLESTARTBLOCK ||
881 ip->i_delayed_blks)) {
882 /*
883 * Attach the dquots to the inode up front.
884 */
885 error = xfs_qm_dqattach(ip, 0);
886 if (error)
887 return error;
888
889 /*
890 * There are blocks after the end of file.
891 * Free them up now by truncating the file to
892 * its current size.
893 */
894 if (need_iolock) {
895 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
896 return -EAGAIN;
897 }
898
899 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
900 &tp);
901 if (error) {
902 ASSERT(XFS_FORCED_SHUTDOWN(mp));
903 if (need_iolock)
904 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
905 return error;
906 }
907
908 xfs_ilock(ip, XFS_ILOCK_EXCL);
909 xfs_trans_ijoin(tp, ip, 0);
910
911 /*
912 * Do not update the on-disk file size. If we update the
913 * on-disk file size and then the system crashes before the
914 * contents of the file are flushed to disk then the files
915 * may be full of holes (ie NULL files bug).
916 */
917 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
918 XFS_ISIZE(ip));
919 if (error) {
920 /*
921 * If we get an error at this point we simply don't
922 * bother truncating the file.
923 */
924 xfs_trans_cancel(tp);
925 } else {
926 error = xfs_trans_commit(tp);
927 if (!error)
928 xfs_inode_clear_eofblocks_tag(ip);
929 }
930
931 xfs_iunlock(ip, XFS_ILOCK_EXCL);
932 if (need_iolock)
933 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
934 }
935 return error;
936 }
937
938 int
939 xfs_alloc_file_space(
940 struct xfs_inode *ip,
941 xfs_off_t offset,
942 xfs_off_t len,
943 int alloc_type)
944 {
945 xfs_mount_t *mp = ip->i_mount;
946 xfs_off_t count;
947 xfs_filblks_t allocated_fsb;
948 xfs_filblks_t allocatesize_fsb;
949 xfs_extlen_t extsz, temp;
950 xfs_fileoff_t startoffset_fsb;
951 xfs_fsblock_t firstfsb;
952 int nimaps;
953 int quota_flag;
954 int rt;
955 xfs_trans_t *tp;
956 xfs_bmbt_irec_t imaps[1], *imapp;
957 xfs_bmap_free_t free_list;
958 uint qblocks, resblks, resrtextents;
959 int error;
960
961 trace_xfs_alloc_file_space(ip);
962
963 if (XFS_FORCED_SHUTDOWN(mp))
964 return -EIO;
965
966 error = xfs_qm_dqattach(ip, 0);
967 if (error)
968 return error;
969
970 if (len <= 0)
971 return -EINVAL;
972
973 rt = XFS_IS_REALTIME_INODE(ip);
974 extsz = xfs_get_extsz_hint(ip);
975
976 count = len;
977 imapp = &imaps[0];
978 nimaps = 1;
979 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
980 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
981
982 /*
983 * Allocate file space until done or until there is an error
984 */
985 while (allocatesize_fsb && !error) {
986 xfs_fileoff_t s, e;
987
988 /*
989 * Determine space reservations for data/realtime.
990 */
991 if (unlikely(extsz)) {
992 s = startoffset_fsb;
993 do_div(s, extsz);
994 s *= extsz;
995 e = startoffset_fsb + allocatesize_fsb;
996 if ((temp = do_mod(startoffset_fsb, extsz)))
997 e += temp;
998 if ((temp = do_mod(e, extsz)))
999 e += extsz - temp;
1000 } else {
1001 s = 0;
1002 e = allocatesize_fsb;
1003 }
1004
1005 /*
1006 * The transaction reservation is limited to a 32-bit block
1007 * count, hence we need to limit the number of blocks we are
1008 * trying to reserve to avoid an overflow. We can't allocate
1009 * more than @nimaps extents, and an extent is limited on disk
1010 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1011 */
1012 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1013 if (unlikely(rt)) {
1014 resrtextents = qblocks = resblks;
1015 resrtextents /= mp->m_sb.sb_rextsize;
1016 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1017 quota_flag = XFS_QMOPT_RES_RTBLKS;
1018 } else {
1019 resrtextents = 0;
1020 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1021 quota_flag = XFS_QMOPT_RES_REGBLKS;
1022 }
1023
1024 /*
1025 * Allocate and setup the transaction.
1026 */
1027 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1028 resrtextents, 0, &tp);
1029
1030 /*
1031 * Check for running out of space
1032 */
1033 if (error) {
1034 /*
1035 * Free the transaction structure.
1036 */
1037 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1038 break;
1039 }
1040 xfs_ilock(ip, XFS_ILOCK_EXCL);
1041 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1042 0, quota_flag);
1043 if (error)
1044 goto error1;
1045
1046 xfs_trans_ijoin(tp, ip, 0);
1047
1048 xfs_bmap_init(&free_list, &firstfsb);
1049 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1050 allocatesize_fsb, alloc_type, &firstfsb,
1051 resblks, imapp, &nimaps, &free_list);
1052 if (error)
1053 goto error0;
1054
1055 /*
1056 * Complete the transaction
1057 */
1058 error = xfs_bmap_finish(&tp, &free_list, NULL);
1059 if (error)
1060 goto error0;
1061
1062 error = xfs_trans_commit(tp);
1063 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1064 if (error)
1065 break;
1066
1067 allocated_fsb = imapp->br_blockcount;
1068
1069 if (nimaps == 0) {
1070 error = -ENOSPC;
1071 break;
1072 }
1073
1074 startoffset_fsb += allocated_fsb;
1075 allocatesize_fsb -= allocated_fsb;
1076 }
1077
1078 return error;
1079
1080 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1081 xfs_bmap_cancel(&free_list);
1082 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1083
1084 error1: /* Just cancel transaction */
1085 xfs_trans_cancel(tp);
1086 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1087 return error;
1088 }
1089
1090 static int
1091 xfs_unmap_extent(
1092 struct xfs_inode *ip,
1093 xfs_fileoff_t startoffset_fsb,
1094 xfs_filblks_t len_fsb,
1095 int *done)
1096 {
1097 struct xfs_mount *mp = ip->i_mount;
1098 struct xfs_trans *tp;
1099 struct xfs_bmap_free free_list;
1100 xfs_fsblock_t firstfsb;
1101 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1102 int error;
1103
1104 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1105 if (error) {
1106 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1107 return error;
1108 }
1109
1110 xfs_ilock(ip, XFS_ILOCK_EXCL);
1111 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1112 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1113 if (error)
1114 goto out_trans_cancel;
1115
1116 xfs_trans_ijoin(tp, ip, 0);
1117
1118 xfs_bmap_init(&free_list, &firstfsb);
1119 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1120 &free_list, done);
1121 if (error)
1122 goto out_bmap_cancel;
1123
1124 error = xfs_bmap_finish(&tp, &free_list, NULL);
1125 if (error)
1126 goto out_bmap_cancel;
1127
1128 error = xfs_trans_commit(tp);
1129 out_unlock:
1130 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1131 return error;
1132
1133 out_bmap_cancel:
1134 xfs_bmap_cancel(&free_list);
1135 out_trans_cancel:
1136 xfs_trans_cancel(tp);
1137 goto out_unlock;
1138 }
1139
1140 static int
1141 xfs_adjust_extent_unmap_boundaries(
1142 struct xfs_inode *ip,
1143 xfs_fileoff_t *startoffset_fsb,
1144 xfs_fileoff_t *endoffset_fsb)
1145 {
1146 struct xfs_mount *mp = ip->i_mount;
1147 struct xfs_bmbt_irec imap;
1148 int nimap, error;
1149 xfs_extlen_t mod = 0;
1150
1151 nimap = 1;
1152 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1153 if (error)
1154 return error;
1155
1156 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1157 xfs_daddr_t block;
1158
1159 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1160 block = imap.br_startblock;
1161 mod = do_div(block, mp->m_sb.sb_rextsize);
1162 if (mod)
1163 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1164 }
1165
1166 nimap = 1;
1167 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1168 if (error)
1169 return error;
1170
1171 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1172 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1173 mod++;
1174 if (mod && mod != mp->m_sb.sb_rextsize)
1175 *endoffset_fsb -= mod;
1176 }
1177
1178 return 0;
1179 }
1180
1181 static int
1182 xfs_flush_unmap_range(
1183 struct xfs_inode *ip,
1184 xfs_off_t offset,
1185 xfs_off_t len)
1186 {
1187 struct xfs_mount *mp = ip->i_mount;
1188 struct inode *inode = VFS_I(ip);
1189 xfs_off_t rounding, start, end;
1190 int error;
1191
1192 /* wait for the completion of any pending DIOs */
1193 inode_dio_wait(inode);
1194
1195 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1196 start = round_down(offset, rounding);
1197 end = round_up(offset + len, rounding) - 1;
1198
1199 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1200 if (error)
1201 return error;
1202 truncate_pagecache_range(inode, start, end);
1203 return 0;
1204 }
1205
1206 int
1207 xfs_free_file_space(
1208 struct xfs_inode *ip,
1209 xfs_off_t offset,
1210 xfs_off_t len)
1211 {
1212 struct xfs_mount *mp = ip->i_mount;
1213 xfs_fileoff_t startoffset_fsb;
1214 xfs_fileoff_t endoffset_fsb;
1215 int done = 0, error;
1216
1217 trace_xfs_free_file_space(ip);
1218
1219 error = xfs_qm_dqattach(ip, 0);
1220 if (error)
1221 return error;
1222
1223 if (len <= 0) /* if nothing being freed */
1224 return 0;
1225
1226 error = xfs_flush_unmap_range(ip, offset, len);
1227 if (error)
1228 return error;
1229
1230 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1231 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1232
1233 /*
1234 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1235 * and we can't use unwritten extents then we actually need to ensure
1236 * to zero the whole extent, otherwise we just need to take of block
1237 * boundaries, and xfs_bunmapi will handle the rest.
1238 */
1239 if (XFS_IS_REALTIME_INODE(ip) &&
1240 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1241 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1242 &endoffset_fsb);
1243 if (error)
1244 return error;
1245 }
1246
1247 if (endoffset_fsb > startoffset_fsb) {
1248 while (!done) {
1249 error = xfs_unmap_extent(ip, startoffset_fsb,
1250 endoffset_fsb - startoffset_fsb, &done);
1251 if (error)
1252 return error;
1253 }
1254 }
1255
1256 /*
1257 * Now that we've unmap all full blocks we'll have to zero out any
1258 * partial block at the beginning and/or end. xfs_zero_range is
1259 * smart enough to skip any holes, including those we just created.
1260 */
1261 return xfs_zero_range(ip, offset, len, NULL);
1262 }
1263
1264 /*
1265 * Preallocate and zero a range of a file. This mechanism has the allocation
1266 * semantics of fallocate and in addition converts data in the range to zeroes.
1267 */
1268 int
1269 xfs_zero_file_space(
1270 struct xfs_inode *ip,
1271 xfs_off_t offset,
1272 xfs_off_t len)
1273 {
1274 struct xfs_mount *mp = ip->i_mount;
1275 uint blksize;
1276 int error;
1277
1278 trace_xfs_zero_file_space(ip);
1279
1280 blksize = 1 << mp->m_sb.sb_blocklog;
1281
1282 /*
1283 * Punch a hole and prealloc the range. We use hole punch rather than
1284 * unwritten extent conversion for two reasons:
1285 *
1286 * 1.) Hole punch handles partial block zeroing for us.
1287 *
1288 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1289 * by virtue of the hole punch.
1290 */
1291 error = xfs_free_file_space(ip, offset, len);
1292 if (error)
1293 goto out;
1294
1295 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1296 round_up(offset + len, blksize) -
1297 round_down(offset, blksize),
1298 XFS_BMAPI_PREALLOC);
1299 out:
1300 return error;
1301
1302 }
1303
1304 /*
1305 * @next_fsb will keep track of the extent currently undergoing shift.
1306 * @stop_fsb will keep track of the extent at which we have to stop.
1307 * If we are shifting left, we will start with block (offset + len) and
1308 * shift each extent till last extent.
1309 * If we are shifting right, we will start with last extent inside file space
1310 * and continue until we reach the block corresponding to offset.
1311 */
1312 static int
1313 xfs_shift_file_space(
1314 struct xfs_inode *ip,
1315 xfs_off_t offset,
1316 xfs_off_t len,
1317 enum shift_direction direction)
1318 {
1319 int done = 0;
1320 struct xfs_mount *mp = ip->i_mount;
1321 struct xfs_trans *tp;
1322 int error;
1323 struct xfs_bmap_free free_list;
1324 xfs_fsblock_t first_block;
1325 xfs_fileoff_t stop_fsb;
1326 xfs_fileoff_t next_fsb;
1327 xfs_fileoff_t shift_fsb;
1328
1329 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1330
1331 if (direction == SHIFT_LEFT) {
1332 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1333 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1334 } else {
1335 /*
1336 * If right shift, delegate the work of initialization of
1337 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1338 */
1339 next_fsb = NULLFSBLOCK;
1340 stop_fsb = XFS_B_TO_FSB(mp, offset);
1341 }
1342
1343 shift_fsb = XFS_B_TO_FSB(mp, len);
1344
1345 /*
1346 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1347 * into the accessible region of the file.
1348 */
1349 if (xfs_can_free_eofblocks(ip, true)) {
1350 error = xfs_free_eofblocks(mp, ip, false);
1351 if (error)
1352 return error;
1353 }
1354
1355 /*
1356 * Writeback and invalidate cache for the remainder of the file as we're
1357 * about to shift down every extent from offset to EOF.
1358 */
1359 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1360 offset, -1);
1361 if (error)
1362 return error;
1363 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1364 offset >> PAGE_SHIFT, -1);
1365 if (error)
1366 return error;
1367
1368 /*
1369 * The extent shiting code works on extent granularity. So, if
1370 * stop_fsb is not the starting block of extent, we need to split
1371 * the extent at stop_fsb.
1372 */
1373 if (direction == SHIFT_RIGHT) {
1374 error = xfs_bmap_split_extent(ip, stop_fsb);
1375 if (error)
1376 return error;
1377 }
1378
1379 while (!error && !done) {
1380 /*
1381 * We would need to reserve permanent block for transaction.
1382 * This will come into picture when after shifting extent into
1383 * hole we found that adjacent extents can be merged which
1384 * may lead to freeing of a block during record update.
1385 */
1386 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1387 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1388 if (error)
1389 break;
1390
1391 xfs_ilock(ip, XFS_ILOCK_EXCL);
1392 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1393 ip->i_gdquot, ip->i_pdquot,
1394 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1395 XFS_QMOPT_RES_REGBLKS);
1396 if (error)
1397 goto out_trans_cancel;
1398
1399 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1400
1401 xfs_bmap_init(&free_list, &first_block);
1402
1403 /*
1404 * We are using the write transaction in which max 2 bmbt
1405 * updates are allowed
1406 */
1407 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1408 &done, stop_fsb, &first_block, &free_list,
1409 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1410 if (error)
1411 goto out_bmap_cancel;
1412
1413 error = xfs_bmap_finish(&tp, &free_list, NULL);
1414 if (error)
1415 goto out_bmap_cancel;
1416
1417 error = xfs_trans_commit(tp);
1418 }
1419
1420 return error;
1421
1422 out_bmap_cancel:
1423 xfs_bmap_cancel(&free_list);
1424 out_trans_cancel:
1425 xfs_trans_cancel(tp);
1426 return error;
1427 }
1428
1429 /*
1430 * xfs_collapse_file_space()
1431 * This routine frees disk space and shift extent for the given file.
1432 * The first thing we do is to free data blocks in the specified range
1433 * by calling xfs_free_file_space(). It would also sync dirty data
1434 * and invalidate page cache over the region on which collapse range
1435 * is working. And Shift extent records to the left to cover a hole.
1436 * RETURNS:
1437 * 0 on success
1438 * errno on error
1439 *
1440 */
1441 int
1442 xfs_collapse_file_space(
1443 struct xfs_inode *ip,
1444 xfs_off_t offset,
1445 xfs_off_t len)
1446 {
1447 int error;
1448
1449 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1450 trace_xfs_collapse_file_space(ip);
1451
1452 error = xfs_free_file_space(ip, offset, len);
1453 if (error)
1454 return error;
1455
1456 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1457 }
1458
1459 /*
1460 * xfs_insert_file_space()
1461 * This routine create hole space by shifting extents for the given file.
1462 * The first thing we do is to sync dirty data and invalidate page cache
1463 * over the region on which insert range is working. And split an extent
1464 * to two extents at given offset by calling xfs_bmap_split_extent.
1465 * And shift all extent records which are laying between [offset,
1466 * last allocated extent] to the right to reserve hole range.
1467 * RETURNS:
1468 * 0 on success
1469 * errno on error
1470 */
1471 int
1472 xfs_insert_file_space(
1473 struct xfs_inode *ip,
1474 loff_t offset,
1475 loff_t len)
1476 {
1477 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1478 trace_xfs_insert_file_space(ip);
1479
1480 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1481 }
1482
1483 /*
1484 * We need to check that the format of the data fork in the temporary inode is
1485 * valid for the target inode before doing the swap. This is not a problem with
1486 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1487 * data fork depending on the space the attribute fork is taking so we can get
1488 * invalid formats on the target inode.
1489 *
1490 * E.g. target has space for 7 extents in extent format, temp inode only has
1491 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1492 * btree, but when swapped it needs to be in extent format. Hence we can't just
1493 * blindly swap data forks on attr2 filesystems.
1494 *
1495 * Note that we check the swap in both directions so that we don't end up with
1496 * a corrupt temporary inode, either.
1497 *
1498 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1499 * inode will prevent this situation from occurring, so all we do here is
1500 * reject and log the attempt. basically we are putting the responsibility on
1501 * userspace to get this right.
1502 */
1503 static int
1504 xfs_swap_extents_check_format(
1505 xfs_inode_t *ip, /* target inode */
1506 xfs_inode_t *tip) /* tmp inode */
1507 {
1508
1509 /* Should never get a local format */
1510 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1511 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1512 return -EINVAL;
1513
1514 /*
1515 * if the target inode has less extents that then temporary inode then
1516 * why did userspace call us?
1517 */
1518 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1519 return -EINVAL;
1520
1521 /*
1522 * if the target inode is in extent form and the temp inode is in btree
1523 * form then we will end up with the target inode in the wrong format
1524 * as we already know there are less extents in the temp inode.
1525 */
1526 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1527 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1528 return -EINVAL;
1529
1530 /* Check temp in extent form to max in target */
1531 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1532 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1533 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1534 return -EINVAL;
1535
1536 /* Check target in extent form to max in temp */
1537 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1538 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1539 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1540 return -EINVAL;
1541
1542 /*
1543 * If we are in a btree format, check that the temp root block will fit
1544 * in the target and that it has enough extents to be in btree format
1545 * in the target.
1546 *
1547 * Note that we have to be careful to allow btree->extent conversions
1548 * (a common defrag case) which will occur when the temp inode is in
1549 * extent format...
1550 */
1551 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1552 if (XFS_IFORK_BOFF(ip) &&
1553 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1554 return -EINVAL;
1555 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1556 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1557 return -EINVAL;
1558 }
1559
1560 /* Reciprocal target->temp btree format checks */
1561 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1562 if (XFS_IFORK_BOFF(tip) &&
1563 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1564 return -EINVAL;
1565 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1566 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1567 return -EINVAL;
1568 }
1569
1570 return 0;
1571 }
1572
1573 static int
1574 xfs_swap_extent_flush(
1575 struct xfs_inode *ip)
1576 {
1577 int error;
1578
1579 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1580 if (error)
1581 return error;
1582 truncate_pagecache_range(VFS_I(ip), 0, -1);
1583
1584 /* Verify O_DIRECT for ftmp */
1585 if (VFS_I(ip)->i_mapping->nrpages)
1586 return -EINVAL;
1587 return 0;
1588 }
1589
1590 int
1591 xfs_swap_extents(
1592 xfs_inode_t *ip, /* target inode */
1593 xfs_inode_t *tip, /* tmp inode */
1594 xfs_swapext_t *sxp)
1595 {
1596 xfs_mount_t *mp = ip->i_mount;
1597 xfs_trans_t *tp;
1598 xfs_bstat_t *sbp = &sxp->sx_stat;
1599 xfs_ifork_t *tempifp, *ifp, *tifp;
1600 int src_log_flags, target_log_flags;
1601 int error = 0;
1602 int aforkblks = 0;
1603 int taforkblks = 0;
1604 __uint64_t tmp;
1605 int lock_flags;
1606
1607 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1608 if (!tempifp) {
1609 error = -ENOMEM;
1610 goto out;
1611 }
1612
1613 /*
1614 * Lock the inodes against other IO, page faults and truncate to
1615 * begin with. Then we can ensure the inodes are flushed and have no
1616 * page cache safely. Once we have done this we can take the ilocks and
1617 * do the rest of the checks.
1618 */
1619 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1620 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1621 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1622
1623 /* Verify that both files have the same format */
1624 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1625 error = -EINVAL;
1626 goto out_unlock;
1627 }
1628
1629 /* Verify both files are either real-time or non-realtime */
1630 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1631 error = -EINVAL;
1632 goto out_unlock;
1633 }
1634
1635 error = xfs_swap_extent_flush(ip);
1636 if (error)
1637 goto out_unlock;
1638 error = xfs_swap_extent_flush(tip);
1639 if (error)
1640 goto out_unlock;
1641
1642 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1643 if (error)
1644 goto out_unlock;
1645
1646 /*
1647 * Lock and join the inodes to the tansaction so that transaction commit
1648 * or cancel will unlock the inodes from this point onwards.
1649 */
1650 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1651 lock_flags |= XFS_ILOCK_EXCL;
1652 xfs_trans_ijoin(tp, ip, lock_flags);
1653 xfs_trans_ijoin(tp, tip, lock_flags);
1654
1655
1656 /* Verify all data are being swapped */
1657 if (sxp->sx_offset != 0 ||
1658 sxp->sx_length != ip->i_d.di_size ||
1659 sxp->sx_length != tip->i_d.di_size) {
1660 error = -EFAULT;
1661 goto out_trans_cancel;
1662 }
1663
1664 trace_xfs_swap_extent_before(ip, 0);
1665 trace_xfs_swap_extent_before(tip, 1);
1666
1667 /* check inode formats now that data is flushed */
1668 error = xfs_swap_extents_check_format(ip, tip);
1669 if (error) {
1670 xfs_notice(mp,
1671 "%s: inode 0x%llx format is incompatible for exchanging.",
1672 __func__, ip->i_ino);
1673 goto out_trans_cancel;
1674 }
1675
1676 /*
1677 * Compare the current change & modify times with that
1678 * passed in. If they differ, we abort this swap.
1679 * This is the mechanism used to ensure the calling
1680 * process that the file was not changed out from
1681 * under it.
1682 */
1683 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1684 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1685 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1686 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1687 error = -EBUSY;
1688 goto out_trans_cancel;
1689 }
1690 /*
1691 * Count the number of extended attribute blocks
1692 */
1693 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1694 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1695 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1696 if (error)
1697 goto out_trans_cancel;
1698 }
1699 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1700 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1701 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1702 &taforkblks);
1703 if (error)
1704 goto out_trans_cancel;
1705 }
1706
1707 /*
1708 * Before we've swapped the forks, lets set the owners of the forks
1709 * appropriately. We have to do this as we are demand paging the btree
1710 * buffers, and so the validation done on read will expect the owner
1711 * field to be correctly set. Once we change the owners, we can swap the
1712 * inode forks.
1713 *
1714 * Note the trickiness in setting the log flags - we set the owner log
1715 * flag on the opposite inode (i.e. the inode we are setting the new
1716 * owner to be) because once we swap the forks and log that, log
1717 * recovery is going to see the fork as owned by the swapped inode,
1718 * not the pre-swapped inodes.
1719 */
1720 src_log_flags = XFS_ILOG_CORE;
1721 target_log_flags = XFS_ILOG_CORE;
1722 if (ip->i_d.di_version == 3 &&
1723 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1724 target_log_flags |= XFS_ILOG_DOWNER;
1725 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1726 tip->i_ino, NULL);
1727 if (error)
1728 goto out_trans_cancel;
1729 }
1730
1731 if (tip->i_d.di_version == 3 &&
1732 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1733 src_log_flags |= XFS_ILOG_DOWNER;
1734 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1735 ip->i_ino, NULL);
1736 if (error)
1737 goto out_trans_cancel;
1738 }
1739
1740 /*
1741 * Swap the data forks of the inodes
1742 */
1743 ifp = &ip->i_df;
1744 tifp = &tip->i_df;
1745 *tempifp = *ifp; /* struct copy */
1746 *ifp = *tifp; /* struct copy */
1747 *tifp = *tempifp; /* struct copy */
1748
1749 /*
1750 * Fix the on-disk inode values
1751 */
1752 tmp = (__uint64_t)ip->i_d.di_nblocks;
1753 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1754 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1755
1756 tmp = (__uint64_t) ip->i_d.di_nextents;
1757 ip->i_d.di_nextents = tip->i_d.di_nextents;
1758 tip->i_d.di_nextents = tmp;
1759
1760 tmp = (__uint64_t) ip->i_d.di_format;
1761 ip->i_d.di_format = tip->i_d.di_format;
1762 tip->i_d.di_format = tmp;
1763
1764 /*
1765 * The extents in the source inode could still contain speculative
1766 * preallocation beyond EOF (e.g. the file is open but not modified
1767 * while defrag is in progress). In that case, we need to copy over the
1768 * number of delalloc blocks the data fork in the source inode is
1769 * tracking beyond EOF so that when the fork is truncated away when the
1770 * temporary inode is unlinked we don't underrun the i_delayed_blks
1771 * counter on that inode.
1772 */
1773 ASSERT(tip->i_delayed_blks == 0);
1774 tip->i_delayed_blks = ip->i_delayed_blks;
1775 ip->i_delayed_blks = 0;
1776
1777 switch (ip->i_d.di_format) {
1778 case XFS_DINODE_FMT_EXTENTS:
1779 /* If the extents fit in the inode, fix the
1780 * pointer. Otherwise it's already NULL or
1781 * pointing to the extent.
1782 */
1783 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1784 ifp->if_u1.if_extents =
1785 ifp->if_u2.if_inline_ext;
1786 }
1787 src_log_flags |= XFS_ILOG_DEXT;
1788 break;
1789 case XFS_DINODE_FMT_BTREE:
1790 ASSERT(ip->i_d.di_version < 3 ||
1791 (src_log_flags & XFS_ILOG_DOWNER));
1792 src_log_flags |= XFS_ILOG_DBROOT;
1793 break;
1794 }
1795
1796 switch (tip->i_d.di_format) {
1797 case XFS_DINODE_FMT_EXTENTS:
1798 /* If the extents fit in the inode, fix the
1799 * pointer. Otherwise it's already NULL or
1800 * pointing to the extent.
1801 */
1802 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1803 tifp->if_u1.if_extents =
1804 tifp->if_u2.if_inline_ext;
1805 }
1806 target_log_flags |= XFS_ILOG_DEXT;
1807 break;
1808 case XFS_DINODE_FMT_BTREE:
1809 target_log_flags |= XFS_ILOG_DBROOT;
1810 ASSERT(tip->i_d.di_version < 3 ||
1811 (target_log_flags & XFS_ILOG_DOWNER));
1812 break;
1813 }
1814
1815 xfs_trans_log_inode(tp, ip, src_log_flags);
1816 xfs_trans_log_inode(tp, tip, target_log_flags);
1817
1818 /*
1819 * If this is a synchronous mount, make sure that the
1820 * transaction goes to disk before returning to the user.
1821 */
1822 if (mp->m_flags & XFS_MOUNT_WSYNC)
1823 xfs_trans_set_sync(tp);
1824
1825 error = xfs_trans_commit(tp);
1826
1827 trace_xfs_swap_extent_after(ip, 0);
1828 trace_xfs_swap_extent_after(tip, 1);
1829 out:
1830 kmem_free(tempifp);
1831 return error;
1832
1833 out_unlock:
1834 xfs_iunlock(ip, lock_flags);
1835 xfs_iunlock(tip, lock_flags);
1836 goto out;
1837
1838 out_trans_cancel:
1839 xfs_trans_cancel(tp);
1840 goto out;
1841 }