]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_buf.c
getxattr: use correct xattr length
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 #include "xfs_errortag.h"
46 #include "xfs_error.h"
47
48 static kmem_zone_t *xfs_buf_zone;
49
50 #ifdef XFS_BUF_LOCK_TRACKING
51 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54 #else
55 # define XB_SET_OWNER(bp) do { } while (0)
56 # define XB_CLEAR_OWNER(bp) do { } while (0)
57 # define XB_GET_OWNER(bp) do { } while (0)
58 #endif
59
60 #define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62
63
64 static inline int
65 xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67 {
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76 }
77
78 static inline int
79 xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81 {
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 }
84
85 /*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98 static inline void
99 xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101 {
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112 }
113
114 /*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118 static inline void
119 __xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121 {
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128 }
129
130 static inline void
131 xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133 {
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137 }
138
139 /*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147 void
148 xfs_buf_stale(
149 struct xfs_buf *bp)
150 {
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178 }
179
180 static int
181 xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184 {
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198 }
199
200 /*
201 * Frees b_pages if it was allocated.
202 */
203 static void
204 xfs_buf_free_maps(
205 struct xfs_buf *bp)
206 {
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211 }
212
213 struct xfs_buf *
214 _xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
219 {
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 sema_init(&bp->b_sema, 0); /* held, no waiters */
240 spin_lock_init(&bp->b_lock);
241 XB_SET_OWNER(bp);
242 bp->b_target = target;
243 bp->b_flags = flags;
244
245 /*
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
252 kmem_zone_free(xfs_buf_zone, bp);
253 return NULL;
254 }
255
256 bp->b_bn = map[0].bm_bn;
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
263 bp->b_io_length = bp->b_length;
264
265 atomic_set(&bp->b_pin_count, 0);
266 init_waitqueue_head(&bp->b_waiters);
267
268 XFS_STATS_INC(target->bt_mount, xb_create);
269 trace_xfs_buf_init(bp, _RET_IP_);
270
271 return bp;
272 }
273
274 /*
275 * Allocate a page array capable of holding a specified number
276 * of pages, and point the page buf at it.
277 */
278 STATIC int
279 _xfs_buf_get_pages(
280 xfs_buf_t *bp,
281 int page_count)
282 {
283 /* Make sure that we have a page list */
284 if (bp->b_pages == NULL) {
285 bp->b_page_count = page_count;
286 if (page_count <= XB_PAGES) {
287 bp->b_pages = bp->b_page_array;
288 } else {
289 bp->b_pages = kmem_alloc(sizeof(struct page *) *
290 page_count, KM_NOFS);
291 if (bp->b_pages == NULL)
292 return -ENOMEM;
293 }
294 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
295 }
296 return 0;
297 }
298
299 /*
300 * Frees b_pages if it was allocated.
301 */
302 STATIC void
303 _xfs_buf_free_pages(
304 xfs_buf_t *bp)
305 {
306 if (bp->b_pages != bp->b_page_array) {
307 kmem_free(bp->b_pages);
308 bp->b_pages = NULL;
309 }
310 }
311
312 /*
313 * Releases the specified buffer.
314 *
315 * The modification state of any associated pages is left unchanged.
316 * The buffer must not be on any hash - use xfs_buf_rele instead for
317 * hashed and refcounted buffers
318 */
319 void
320 xfs_buf_free(
321 xfs_buf_t *bp)
322 {
323 trace_xfs_buf_free(bp, _RET_IP_);
324
325 ASSERT(list_empty(&bp->b_lru));
326
327 if (bp->b_flags & _XBF_PAGES) {
328 uint i;
329
330 if (xfs_buf_is_vmapped(bp))
331 vm_unmap_ram(bp->b_addr - bp->b_offset,
332 bp->b_page_count);
333
334 for (i = 0; i < bp->b_page_count; i++) {
335 struct page *page = bp->b_pages[i];
336
337 __free_page(page);
338 }
339 } else if (bp->b_flags & _XBF_KMEM)
340 kmem_free(bp->b_addr);
341 _xfs_buf_free_pages(bp);
342 xfs_buf_free_maps(bp);
343 kmem_zone_free(xfs_buf_zone, bp);
344 }
345
346 /*
347 * Allocates all the pages for buffer in question and builds it's page list.
348 */
349 STATIC int
350 xfs_buf_allocate_memory(
351 xfs_buf_t *bp,
352 uint flags)
353 {
354 size_t size;
355 size_t nbytes, offset;
356 gfp_t gfp_mask = xb_to_gfp(flags);
357 unsigned short page_count, i;
358 xfs_off_t start, end;
359 int error;
360
361 /*
362 * for buffers that are contained within a single page, just allocate
363 * the memory from the heap - there's no need for the complexity of
364 * page arrays to keep allocation down to order 0.
365 */
366 size = BBTOB(bp->b_length);
367 if (size < PAGE_SIZE) {
368 bp->b_addr = kmem_alloc(size, KM_NOFS);
369 if (!bp->b_addr) {
370 /* low memory - use alloc_page loop instead */
371 goto use_alloc_page;
372 }
373
374 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
375 ((unsigned long)bp->b_addr & PAGE_MASK)) {
376 /* b_addr spans two pages - use alloc_page instead */
377 kmem_free(bp->b_addr);
378 bp->b_addr = NULL;
379 goto use_alloc_page;
380 }
381 bp->b_offset = offset_in_page(bp->b_addr);
382 bp->b_pages = bp->b_page_array;
383 bp->b_pages[0] = virt_to_page(bp->b_addr);
384 bp->b_page_count = 1;
385 bp->b_flags |= _XBF_KMEM;
386 return 0;
387 }
388
389 use_alloc_page:
390 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
391 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
392 >> PAGE_SHIFT;
393 page_count = end - start;
394 error = _xfs_buf_get_pages(bp, page_count);
395 if (unlikely(error))
396 return error;
397
398 offset = bp->b_offset;
399 bp->b_flags |= _XBF_PAGES;
400
401 for (i = 0; i < bp->b_page_count; i++) {
402 struct page *page;
403 uint retries = 0;
404 retry:
405 page = alloc_page(gfp_mask);
406 if (unlikely(page == NULL)) {
407 if (flags & XBF_READ_AHEAD) {
408 bp->b_page_count = i;
409 error = -ENOMEM;
410 goto out_free_pages;
411 }
412
413 /*
414 * This could deadlock.
415 *
416 * But until all the XFS lowlevel code is revamped to
417 * handle buffer allocation failures we can't do much.
418 */
419 if (!(++retries % 100))
420 xfs_err(NULL,
421 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
422 current->comm, current->pid,
423 __func__, gfp_mask);
424
425 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
426 congestion_wait(BLK_RW_ASYNC, HZ/50);
427 goto retry;
428 }
429
430 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
431
432 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
433 size -= nbytes;
434 bp->b_pages[i] = page;
435 offset = 0;
436 }
437 return 0;
438
439 out_free_pages:
440 for (i = 0; i < bp->b_page_count; i++)
441 __free_page(bp->b_pages[i]);
442 bp->b_flags &= ~_XBF_PAGES;
443 return error;
444 }
445
446 /*
447 * Map buffer into kernel address-space if necessary.
448 */
449 STATIC int
450 _xfs_buf_map_pages(
451 xfs_buf_t *bp,
452 uint flags)
453 {
454 ASSERT(bp->b_flags & _XBF_PAGES);
455 if (bp->b_page_count == 1) {
456 /* A single page buffer is always mappable */
457 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
458 } else if (flags & XBF_UNMAPPED) {
459 bp->b_addr = NULL;
460 } else {
461 int retried = 0;
462 unsigned nofs_flag;
463
464 /*
465 * vm_map_ram() will allocate auxillary structures (e.g.
466 * pagetables) with GFP_KERNEL, yet we are likely to be under
467 * GFP_NOFS context here. Hence we need to tell memory reclaim
468 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
469 * memory reclaim re-entering the filesystem here and
470 * potentially deadlocking.
471 */
472 nofs_flag = memalloc_nofs_save();
473 do {
474 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
475 -1, PAGE_KERNEL);
476 if (bp->b_addr)
477 break;
478 vm_unmap_aliases();
479 } while (retried++ <= 1);
480 memalloc_nofs_restore(nofs_flag);
481
482 if (!bp->b_addr)
483 return -ENOMEM;
484 bp->b_addr += bp->b_offset;
485 }
486
487 return 0;
488 }
489
490 /*
491 * Finding and Reading Buffers
492 */
493 static int
494 _xfs_buf_obj_cmp(
495 struct rhashtable_compare_arg *arg,
496 const void *obj)
497 {
498 const struct xfs_buf_map *map = arg->key;
499 const struct xfs_buf *bp = obj;
500
501 /*
502 * The key hashing in the lookup path depends on the key being the
503 * first element of the compare_arg, make sure to assert this.
504 */
505 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
506
507 if (bp->b_bn != map->bm_bn)
508 return 1;
509
510 if (unlikely(bp->b_length != map->bm_len)) {
511 /*
512 * found a block number match. If the range doesn't
513 * match, the only way this is allowed is if the buffer
514 * in the cache is stale and the transaction that made
515 * it stale has not yet committed. i.e. we are
516 * reallocating a busy extent. Skip this buffer and
517 * continue searching for an exact match.
518 */
519 ASSERT(bp->b_flags & XBF_STALE);
520 return 1;
521 }
522 return 0;
523 }
524
525 static const struct rhashtable_params xfs_buf_hash_params = {
526 .min_size = 32, /* empty AGs have minimal footprint */
527 .nelem_hint = 16,
528 .key_len = sizeof(xfs_daddr_t),
529 .key_offset = offsetof(struct xfs_buf, b_bn),
530 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
531 .automatic_shrinking = true,
532 .obj_cmpfn = _xfs_buf_obj_cmp,
533 };
534
535 int
536 xfs_buf_hash_init(
537 struct xfs_perag *pag)
538 {
539 spin_lock_init(&pag->pag_buf_lock);
540 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
541 }
542
543 void
544 xfs_buf_hash_destroy(
545 struct xfs_perag *pag)
546 {
547 rhashtable_destroy(&pag->pag_buf_hash);
548 }
549
550 /*
551 * Look up, and creates if absent, a lockable buffer for
552 * a given range of an inode. The buffer is returned
553 * locked. No I/O is implied by this call.
554 */
555 xfs_buf_t *
556 _xfs_buf_find(
557 struct xfs_buftarg *btp,
558 struct xfs_buf_map *map,
559 int nmaps,
560 xfs_buf_flags_t flags,
561 xfs_buf_t *new_bp)
562 {
563 struct xfs_perag *pag;
564 xfs_buf_t *bp;
565 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
566 xfs_daddr_t eofs;
567 int i;
568
569 for (i = 0; i < nmaps; i++)
570 cmap.bm_len += map[i].bm_len;
571
572 /* Check for IOs smaller than the sector size / not sector aligned */
573 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
574 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
575
576 /*
577 * Corrupted block numbers can get through to here, unfortunately, so we
578 * have to check that the buffer falls within the filesystem bounds.
579 */
580 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
581 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
582 /*
583 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
584 * but none of the higher level infrastructure supports
585 * returning a specific error on buffer lookup failures.
586 */
587 xfs_alert(btp->bt_mount,
588 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
589 __func__, cmap.bm_bn, eofs);
590 WARN_ON(1);
591 return NULL;
592 }
593
594 pag = xfs_perag_get(btp->bt_mount,
595 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
596
597 spin_lock(&pag->pag_buf_lock);
598 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
599 xfs_buf_hash_params);
600 if (bp) {
601 atomic_inc(&bp->b_hold);
602 goto found;
603 }
604
605 /* No match found */
606 if (new_bp) {
607 /* the buffer keeps the perag reference until it is freed */
608 new_bp->b_pag = pag;
609 rhashtable_insert_fast(&pag->pag_buf_hash,
610 &new_bp->b_rhash_head,
611 xfs_buf_hash_params);
612 spin_unlock(&pag->pag_buf_lock);
613 } else {
614 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
615 spin_unlock(&pag->pag_buf_lock);
616 xfs_perag_put(pag);
617 }
618 return new_bp;
619
620 found:
621 spin_unlock(&pag->pag_buf_lock);
622 xfs_perag_put(pag);
623
624 if (!xfs_buf_trylock(bp)) {
625 if (flags & XBF_TRYLOCK) {
626 xfs_buf_rele(bp);
627 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628 return NULL;
629 }
630 xfs_buf_lock(bp);
631 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632 }
633
634 /*
635 * if the buffer is stale, clear all the external state associated with
636 * it. We need to keep flags such as how we allocated the buffer memory
637 * intact here.
638 */
639 if (bp->b_flags & XBF_STALE) {
640 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641 ASSERT(bp->b_iodone == NULL);
642 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643 bp->b_ops = NULL;
644 }
645
646 trace_xfs_buf_find(bp, flags, _RET_IP_);
647 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648 return bp;
649 }
650
651 /*
652 * Assembles a buffer covering the specified range. The code is optimised for
653 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
654 * more hits than misses.
655 */
656 struct xfs_buf *
657 xfs_buf_get_map(
658 struct xfs_buftarg *target,
659 struct xfs_buf_map *map,
660 int nmaps,
661 xfs_buf_flags_t flags)
662 {
663 struct xfs_buf *bp;
664 struct xfs_buf *new_bp;
665 int error = 0;
666
667 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
668 if (likely(bp))
669 goto found;
670
671 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
672 if (unlikely(!new_bp))
673 return NULL;
674
675 error = xfs_buf_allocate_memory(new_bp, flags);
676 if (error) {
677 xfs_buf_free(new_bp);
678 return NULL;
679 }
680
681 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
682 if (!bp) {
683 xfs_buf_free(new_bp);
684 return NULL;
685 }
686
687 if (bp != new_bp)
688 xfs_buf_free(new_bp);
689
690 found:
691 if (!bp->b_addr) {
692 error = _xfs_buf_map_pages(bp, flags);
693 if (unlikely(error)) {
694 xfs_warn(target->bt_mount,
695 "%s: failed to map pagesn", __func__);
696 xfs_buf_relse(bp);
697 return NULL;
698 }
699 }
700
701 /*
702 * Clear b_error if this is a lookup from a caller that doesn't expect
703 * valid data to be found in the buffer.
704 */
705 if (!(flags & XBF_READ))
706 xfs_buf_ioerror(bp, 0);
707
708 XFS_STATS_INC(target->bt_mount, xb_get);
709 trace_xfs_buf_get(bp, flags, _RET_IP_);
710 return bp;
711 }
712
713 STATIC int
714 _xfs_buf_read(
715 xfs_buf_t *bp,
716 xfs_buf_flags_t flags)
717 {
718 ASSERT(!(flags & XBF_WRITE));
719 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
720
721 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
722 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
723
724 if (flags & XBF_ASYNC) {
725 xfs_buf_submit(bp);
726 return 0;
727 }
728 return xfs_buf_submit_wait(bp);
729 }
730
731 xfs_buf_t *
732 xfs_buf_read_map(
733 struct xfs_buftarg *target,
734 struct xfs_buf_map *map,
735 int nmaps,
736 xfs_buf_flags_t flags,
737 const struct xfs_buf_ops *ops)
738 {
739 struct xfs_buf *bp;
740
741 flags |= XBF_READ;
742
743 bp = xfs_buf_get_map(target, map, nmaps, flags);
744 if (bp) {
745 trace_xfs_buf_read(bp, flags, _RET_IP_);
746
747 if (!(bp->b_flags & XBF_DONE)) {
748 XFS_STATS_INC(target->bt_mount, xb_get_read);
749 bp->b_ops = ops;
750 _xfs_buf_read(bp, flags);
751 } else if (flags & XBF_ASYNC) {
752 /*
753 * Read ahead call which is already satisfied,
754 * drop the buffer
755 */
756 xfs_buf_relse(bp);
757 return NULL;
758 } else {
759 /* We do not want read in the flags */
760 bp->b_flags &= ~XBF_READ;
761 }
762 }
763
764 return bp;
765 }
766
767 /*
768 * If we are not low on memory then do the readahead in a deadlock
769 * safe manner.
770 */
771 void
772 xfs_buf_readahead_map(
773 struct xfs_buftarg *target,
774 struct xfs_buf_map *map,
775 int nmaps,
776 const struct xfs_buf_ops *ops)
777 {
778 if (bdi_read_congested(target->bt_bdev->bd_bdi))
779 return;
780
781 xfs_buf_read_map(target, map, nmaps,
782 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
783 }
784
785 /*
786 * Read an uncached buffer from disk. Allocates and returns a locked
787 * buffer containing the disk contents or nothing.
788 */
789 int
790 xfs_buf_read_uncached(
791 struct xfs_buftarg *target,
792 xfs_daddr_t daddr,
793 size_t numblks,
794 int flags,
795 struct xfs_buf **bpp,
796 const struct xfs_buf_ops *ops)
797 {
798 struct xfs_buf *bp;
799
800 *bpp = NULL;
801
802 bp = xfs_buf_get_uncached(target, numblks, flags);
803 if (!bp)
804 return -ENOMEM;
805
806 /* set up the buffer for a read IO */
807 ASSERT(bp->b_map_count == 1);
808 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
809 bp->b_maps[0].bm_bn = daddr;
810 bp->b_flags |= XBF_READ;
811 bp->b_ops = ops;
812
813 xfs_buf_submit_wait(bp);
814 if (bp->b_error) {
815 int error = bp->b_error;
816 xfs_buf_relse(bp);
817 return error;
818 }
819
820 *bpp = bp;
821 return 0;
822 }
823
824 /*
825 * Return a buffer allocated as an empty buffer and associated to external
826 * memory via xfs_buf_associate_memory() back to it's empty state.
827 */
828 void
829 xfs_buf_set_empty(
830 struct xfs_buf *bp,
831 size_t numblks)
832 {
833 if (bp->b_pages)
834 _xfs_buf_free_pages(bp);
835
836 bp->b_pages = NULL;
837 bp->b_page_count = 0;
838 bp->b_addr = NULL;
839 bp->b_length = numblks;
840 bp->b_io_length = numblks;
841
842 ASSERT(bp->b_map_count == 1);
843 bp->b_bn = XFS_BUF_DADDR_NULL;
844 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_len = bp->b_length;
846 }
847
848 static inline struct page *
849 mem_to_page(
850 void *addr)
851 {
852 if ((!is_vmalloc_addr(addr))) {
853 return virt_to_page(addr);
854 } else {
855 return vmalloc_to_page(addr);
856 }
857 }
858
859 int
860 xfs_buf_associate_memory(
861 xfs_buf_t *bp,
862 void *mem,
863 size_t len)
864 {
865 int rval;
866 int i = 0;
867 unsigned long pageaddr;
868 unsigned long offset;
869 size_t buflen;
870 int page_count;
871
872 pageaddr = (unsigned long)mem & PAGE_MASK;
873 offset = (unsigned long)mem - pageaddr;
874 buflen = PAGE_ALIGN(len + offset);
875 page_count = buflen >> PAGE_SHIFT;
876
877 /* Free any previous set of page pointers */
878 if (bp->b_pages)
879 _xfs_buf_free_pages(bp);
880
881 bp->b_pages = NULL;
882 bp->b_addr = mem;
883
884 rval = _xfs_buf_get_pages(bp, page_count);
885 if (rval)
886 return rval;
887
888 bp->b_offset = offset;
889
890 for (i = 0; i < bp->b_page_count; i++) {
891 bp->b_pages[i] = mem_to_page((void *)pageaddr);
892 pageaddr += PAGE_SIZE;
893 }
894
895 bp->b_io_length = BTOBB(len);
896 bp->b_length = BTOBB(buflen);
897
898 return 0;
899 }
900
901 xfs_buf_t *
902 xfs_buf_get_uncached(
903 struct xfs_buftarg *target,
904 size_t numblks,
905 int flags)
906 {
907 unsigned long page_count;
908 int error, i;
909 struct xfs_buf *bp;
910 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
911
912 /* flags might contain irrelevant bits, pass only what we care about */
913 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
914 if (unlikely(bp == NULL))
915 goto fail;
916
917 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
918 error = _xfs_buf_get_pages(bp, page_count);
919 if (error)
920 goto fail_free_buf;
921
922 for (i = 0; i < page_count; i++) {
923 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
924 if (!bp->b_pages[i])
925 goto fail_free_mem;
926 }
927 bp->b_flags |= _XBF_PAGES;
928
929 error = _xfs_buf_map_pages(bp, 0);
930 if (unlikely(error)) {
931 xfs_warn(target->bt_mount,
932 "%s: failed to map pages", __func__);
933 goto fail_free_mem;
934 }
935
936 trace_xfs_buf_get_uncached(bp, _RET_IP_);
937 return bp;
938
939 fail_free_mem:
940 while (--i >= 0)
941 __free_page(bp->b_pages[i]);
942 _xfs_buf_free_pages(bp);
943 fail_free_buf:
944 xfs_buf_free_maps(bp);
945 kmem_zone_free(xfs_buf_zone, bp);
946 fail:
947 return NULL;
948 }
949
950 /*
951 * Increment reference count on buffer, to hold the buffer concurrently
952 * with another thread which may release (free) the buffer asynchronously.
953 * Must hold the buffer already to call this function.
954 */
955 void
956 xfs_buf_hold(
957 xfs_buf_t *bp)
958 {
959 trace_xfs_buf_hold(bp, _RET_IP_);
960 atomic_inc(&bp->b_hold);
961 }
962
963 /*
964 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
965 * placed on LRU or freed (depending on b_lru_ref).
966 */
967 void
968 xfs_buf_rele(
969 xfs_buf_t *bp)
970 {
971 struct xfs_perag *pag = bp->b_pag;
972 bool release;
973 bool freebuf = false;
974
975 trace_xfs_buf_rele(bp, _RET_IP_);
976
977 if (!pag) {
978 ASSERT(list_empty(&bp->b_lru));
979 if (atomic_dec_and_test(&bp->b_hold)) {
980 xfs_buf_ioacct_dec(bp);
981 xfs_buf_free(bp);
982 }
983 return;
984 }
985
986 ASSERT(atomic_read(&bp->b_hold) > 0);
987
988 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
989 spin_lock(&bp->b_lock);
990 if (!release) {
991 /*
992 * Drop the in-flight state if the buffer is already on the LRU
993 * and it holds the only reference. This is racy because we
994 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
995 * ensures the decrement occurs only once per-buf.
996 */
997 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
998 __xfs_buf_ioacct_dec(bp);
999 goto out_unlock;
1000 }
1001
1002 /* the last reference has been dropped ... */
1003 __xfs_buf_ioacct_dec(bp);
1004 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1005 /*
1006 * If the buffer is added to the LRU take a new reference to the
1007 * buffer for the LRU and clear the (now stale) dispose list
1008 * state flag
1009 */
1010 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1011 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1012 atomic_inc(&bp->b_hold);
1013 }
1014 spin_unlock(&pag->pag_buf_lock);
1015 } else {
1016 /*
1017 * most of the time buffers will already be removed from the
1018 * LRU, so optimise that case by checking for the
1019 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1020 * was on was the disposal list
1021 */
1022 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1023 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1024 } else {
1025 ASSERT(list_empty(&bp->b_lru));
1026 }
1027
1028 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1029 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1030 xfs_buf_hash_params);
1031 spin_unlock(&pag->pag_buf_lock);
1032 xfs_perag_put(pag);
1033 freebuf = true;
1034 }
1035
1036 out_unlock:
1037 spin_unlock(&bp->b_lock);
1038
1039 if (freebuf)
1040 xfs_buf_free(bp);
1041 }
1042
1043
1044 /*
1045 * Lock a buffer object, if it is not already locked.
1046 *
1047 * If we come across a stale, pinned, locked buffer, we know that we are
1048 * being asked to lock a buffer that has been reallocated. Because it is
1049 * pinned, we know that the log has not been pushed to disk and hence it
1050 * will still be locked. Rather than continuing to have trylock attempts
1051 * fail until someone else pushes the log, push it ourselves before
1052 * returning. This means that the xfsaild will not get stuck trying
1053 * to push on stale inode buffers.
1054 */
1055 int
1056 xfs_buf_trylock(
1057 struct xfs_buf *bp)
1058 {
1059 int locked;
1060
1061 locked = down_trylock(&bp->b_sema) == 0;
1062 if (locked) {
1063 XB_SET_OWNER(bp);
1064 trace_xfs_buf_trylock(bp, _RET_IP_);
1065 } else {
1066 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1067 }
1068 return locked;
1069 }
1070
1071 /*
1072 * Lock a buffer object.
1073 *
1074 * If we come across a stale, pinned, locked buffer, we know that we
1075 * are being asked to lock a buffer that has been reallocated. Because
1076 * it is pinned, we know that the log has not been pushed to disk and
1077 * hence it will still be locked. Rather than sleeping until someone
1078 * else pushes the log, push it ourselves before trying to get the lock.
1079 */
1080 void
1081 xfs_buf_lock(
1082 struct xfs_buf *bp)
1083 {
1084 trace_xfs_buf_lock(bp, _RET_IP_);
1085
1086 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1087 xfs_log_force(bp->b_target->bt_mount, 0);
1088 down(&bp->b_sema);
1089 XB_SET_OWNER(bp);
1090
1091 trace_xfs_buf_lock_done(bp, _RET_IP_);
1092 }
1093
1094 void
1095 xfs_buf_unlock(
1096 struct xfs_buf *bp)
1097 {
1098 ASSERT(xfs_buf_islocked(bp));
1099
1100 XB_CLEAR_OWNER(bp);
1101 up(&bp->b_sema);
1102
1103 trace_xfs_buf_unlock(bp, _RET_IP_);
1104 }
1105
1106 STATIC void
1107 xfs_buf_wait_unpin(
1108 xfs_buf_t *bp)
1109 {
1110 DECLARE_WAITQUEUE (wait, current);
1111
1112 if (atomic_read(&bp->b_pin_count) == 0)
1113 return;
1114
1115 add_wait_queue(&bp->b_waiters, &wait);
1116 for (;;) {
1117 set_current_state(TASK_UNINTERRUPTIBLE);
1118 if (atomic_read(&bp->b_pin_count) == 0)
1119 break;
1120 io_schedule();
1121 }
1122 remove_wait_queue(&bp->b_waiters, &wait);
1123 set_current_state(TASK_RUNNING);
1124 }
1125
1126 /*
1127 * Buffer Utility Routines
1128 */
1129
1130 void
1131 xfs_buf_ioend(
1132 struct xfs_buf *bp)
1133 {
1134 bool read = bp->b_flags & XBF_READ;
1135
1136 trace_xfs_buf_iodone(bp, _RET_IP_);
1137
1138 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1139
1140 /*
1141 * Pull in IO completion errors now. We are guaranteed to be running
1142 * single threaded, so we don't need the lock to read b_io_error.
1143 */
1144 if (!bp->b_error && bp->b_io_error)
1145 xfs_buf_ioerror(bp, bp->b_io_error);
1146
1147 /* Only validate buffers that were read without errors */
1148 if (read && !bp->b_error && bp->b_ops) {
1149 ASSERT(!bp->b_iodone);
1150 bp->b_ops->verify_read(bp);
1151 }
1152
1153 if (!bp->b_error)
1154 bp->b_flags |= XBF_DONE;
1155
1156 if (bp->b_iodone)
1157 (*(bp->b_iodone))(bp);
1158 else if (bp->b_flags & XBF_ASYNC)
1159 xfs_buf_relse(bp);
1160 else
1161 complete(&bp->b_iowait);
1162 }
1163
1164 static void
1165 xfs_buf_ioend_work(
1166 struct work_struct *work)
1167 {
1168 struct xfs_buf *bp =
1169 container_of(work, xfs_buf_t, b_ioend_work);
1170
1171 xfs_buf_ioend(bp);
1172 }
1173
1174 static void
1175 xfs_buf_ioend_async(
1176 struct xfs_buf *bp)
1177 {
1178 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1179 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1180 }
1181
1182 void
1183 xfs_buf_ioerror(
1184 xfs_buf_t *bp,
1185 int error)
1186 {
1187 ASSERT(error <= 0 && error >= -1000);
1188 bp->b_error = error;
1189 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1190 }
1191
1192 void
1193 xfs_buf_ioerror_alert(
1194 struct xfs_buf *bp,
1195 const char *func)
1196 {
1197 xfs_alert(bp->b_target->bt_mount,
1198 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1199 (uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1200 }
1201
1202 int
1203 xfs_bwrite(
1204 struct xfs_buf *bp)
1205 {
1206 int error;
1207
1208 ASSERT(xfs_buf_islocked(bp));
1209
1210 bp->b_flags |= XBF_WRITE;
1211 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1212 XBF_WRITE_FAIL | XBF_DONE);
1213
1214 error = xfs_buf_submit_wait(bp);
1215 if (error) {
1216 xfs_force_shutdown(bp->b_target->bt_mount,
1217 SHUTDOWN_META_IO_ERROR);
1218 }
1219 return error;
1220 }
1221
1222 static void
1223 xfs_buf_bio_end_io(
1224 struct bio *bio)
1225 {
1226 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1227
1228 /*
1229 * don't overwrite existing errors - otherwise we can lose errors on
1230 * buffers that require multiple bios to complete.
1231 */
1232 if (bio->bi_status) {
1233 int error = blk_status_to_errno(bio->bi_status);
1234
1235 cmpxchg(&bp->b_io_error, 0, error);
1236 }
1237
1238 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1239 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1240
1241 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1242 xfs_buf_ioend_async(bp);
1243 bio_put(bio);
1244 }
1245
1246 static void
1247 xfs_buf_ioapply_map(
1248 struct xfs_buf *bp,
1249 int map,
1250 int *buf_offset,
1251 int *count,
1252 int op,
1253 int op_flags)
1254 {
1255 int page_index;
1256 int total_nr_pages = bp->b_page_count;
1257 int nr_pages;
1258 struct bio *bio;
1259 sector_t sector = bp->b_maps[map].bm_bn;
1260 int size;
1261 int offset;
1262
1263 /* skip the pages in the buffer before the start offset */
1264 page_index = 0;
1265 offset = *buf_offset;
1266 while (offset >= PAGE_SIZE) {
1267 page_index++;
1268 offset -= PAGE_SIZE;
1269 }
1270
1271 /*
1272 * Limit the IO size to the length of the current vector, and update the
1273 * remaining IO count for the next time around.
1274 */
1275 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1276 *count -= size;
1277 *buf_offset += size;
1278
1279 next_chunk:
1280 atomic_inc(&bp->b_io_remaining);
1281 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1282
1283 bio = bio_alloc(GFP_NOIO, nr_pages);
1284 bio_set_dev(bio, bp->b_target->bt_bdev);
1285 bio->bi_iter.bi_sector = sector;
1286 bio->bi_end_io = xfs_buf_bio_end_io;
1287 bio->bi_private = bp;
1288 bio_set_op_attrs(bio, op, op_flags);
1289
1290 for (; size && nr_pages; nr_pages--, page_index++) {
1291 int rbytes, nbytes = PAGE_SIZE - offset;
1292
1293 if (nbytes > size)
1294 nbytes = size;
1295
1296 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1297 offset);
1298 if (rbytes < nbytes)
1299 break;
1300
1301 offset = 0;
1302 sector += BTOBB(nbytes);
1303 size -= nbytes;
1304 total_nr_pages--;
1305 }
1306
1307 if (likely(bio->bi_iter.bi_size)) {
1308 if (xfs_buf_is_vmapped(bp)) {
1309 flush_kernel_vmap_range(bp->b_addr,
1310 xfs_buf_vmap_len(bp));
1311 }
1312 submit_bio(bio);
1313 if (size)
1314 goto next_chunk;
1315 } else {
1316 /*
1317 * This is guaranteed not to be the last io reference count
1318 * because the caller (xfs_buf_submit) holds a count itself.
1319 */
1320 atomic_dec(&bp->b_io_remaining);
1321 xfs_buf_ioerror(bp, -EIO);
1322 bio_put(bio);
1323 }
1324
1325 }
1326
1327 STATIC void
1328 _xfs_buf_ioapply(
1329 struct xfs_buf *bp)
1330 {
1331 struct blk_plug plug;
1332 int op;
1333 int op_flags = 0;
1334 int offset;
1335 int size;
1336 int i;
1337
1338 /*
1339 * Make sure we capture only current IO errors rather than stale errors
1340 * left over from previous use of the buffer (e.g. failed readahead).
1341 */
1342 bp->b_error = 0;
1343
1344 /*
1345 * Initialize the I/O completion workqueue if we haven't yet or the
1346 * submitter has not opted to specify a custom one.
1347 */
1348 if (!bp->b_ioend_wq)
1349 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1350
1351 if (bp->b_flags & XBF_WRITE) {
1352 op = REQ_OP_WRITE;
1353 if (bp->b_flags & XBF_SYNCIO)
1354 op_flags = REQ_SYNC;
1355 if (bp->b_flags & XBF_FUA)
1356 op_flags |= REQ_FUA;
1357 if (bp->b_flags & XBF_FLUSH)
1358 op_flags |= REQ_PREFLUSH;
1359
1360 /*
1361 * Run the write verifier callback function if it exists. If
1362 * this function fails it will mark the buffer with an error and
1363 * the IO should not be dispatched.
1364 */
1365 if (bp->b_ops) {
1366 bp->b_ops->verify_write(bp);
1367 if (bp->b_error) {
1368 xfs_force_shutdown(bp->b_target->bt_mount,
1369 SHUTDOWN_CORRUPT_INCORE);
1370 return;
1371 }
1372 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1373 struct xfs_mount *mp = bp->b_target->bt_mount;
1374
1375 /*
1376 * non-crc filesystems don't attach verifiers during
1377 * log recovery, so don't warn for such filesystems.
1378 */
1379 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1380 xfs_warn(mp,
1381 "%s: no ops on block 0x%llx/0x%x",
1382 __func__, bp->b_bn, bp->b_length);
1383 xfs_hex_dump(bp->b_addr, 64);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_io_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414 }
1415
1416 /*
1417 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1418 * the current reference to the IO. It is not safe to reference the buffer after
1419 * a call to this function unless the caller holds an additional reference
1420 * itself.
1421 */
1422 void
1423 xfs_buf_submit(
1424 struct xfs_buf *bp)
1425 {
1426 trace_xfs_buf_submit(bp, _RET_IP_);
1427
1428 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429 ASSERT(bp->b_flags & XBF_ASYNC);
1430
1431 /* on shutdown we stale and complete the buffer immediately */
1432 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1433 xfs_buf_ioerror(bp, -EIO);
1434 bp->b_flags &= ~XBF_DONE;
1435 xfs_buf_stale(bp);
1436 xfs_buf_ioend(bp);
1437 return;
1438 }
1439
1440 if (bp->b_flags & XBF_WRITE)
1441 xfs_buf_wait_unpin(bp);
1442
1443 /* clear the internal error state to avoid spurious errors */
1444 bp->b_io_error = 0;
1445
1446 /*
1447 * The caller's reference is released during I/O completion.
1448 * This occurs some time after the last b_io_remaining reference is
1449 * released, so after we drop our Io reference we have to have some
1450 * other reference to ensure the buffer doesn't go away from underneath
1451 * us. Take a direct reference to ensure we have safe access to the
1452 * buffer until we are finished with it.
1453 */
1454 xfs_buf_hold(bp);
1455
1456 /*
1457 * Set the count to 1 initially, this will stop an I/O completion
1458 * callout which happens before we have started all the I/O from calling
1459 * xfs_buf_ioend too early.
1460 */
1461 atomic_set(&bp->b_io_remaining, 1);
1462 xfs_buf_ioacct_inc(bp);
1463 _xfs_buf_ioapply(bp);
1464
1465 /*
1466 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1467 * reference we took above. If we drop it to zero, run completion so
1468 * that we don't return to the caller with completion still pending.
1469 */
1470 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1471 if (bp->b_error)
1472 xfs_buf_ioend(bp);
1473 else
1474 xfs_buf_ioend_async(bp);
1475 }
1476
1477 xfs_buf_rele(bp);
1478 /* Note: it is not safe to reference bp now we've dropped our ref */
1479 }
1480
1481 /*
1482 * Synchronous buffer IO submission path, read or write.
1483 */
1484 int
1485 xfs_buf_submit_wait(
1486 struct xfs_buf *bp)
1487 {
1488 int error;
1489
1490 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1491
1492 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1493
1494 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1495 xfs_buf_ioerror(bp, -EIO);
1496 xfs_buf_stale(bp);
1497 bp->b_flags &= ~XBF_DONE;
1498 return -EIO;
1499 }
1500
1501 if (bp->b_flags & XBF_WRITE)
1502 xfs_buf_wait_unpin(bp);
1503
1504 /* clear the internal error state to avoid spurious errors */
1505 bp->b_io_error = 0;
1506
1507 /*
1508 * For synchronous IO, the IO does not inherit the submitters reference
1509 * count, nor the buffer lock. Hence we cannot release the reference we
1510 * are about to take until we've waited for all IO completion to occur,
1511 * including any xfs_buf_ioend_async() work that may be pending.
1512 */
1513 xfs_buf_hold(bp);
1514
1515 /*
1516 * Set the count to 1 initially, this will stop an I/O completion
1517 * callout which happens before we have started all the I/O from calling
1518 * xfs_buf_ioend too early.
1519 */
1520 atomic_set(&bp->b_io_remaining, 1);
1521 _xfs_buf_ioapply(bp);
1522
1523 /*
1524 * make sure we run completion synchronously if it raced with us and is
1525 * already complete.
1526 */
1527 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1528 xfs_buf_ioend(bp);
1529
1530 /* wait for completion before gathering the error from the buffer */
1531 trace_xfs_buf_iowait(bp, _RET_IP_);
1532 wait_for_completion(&bp->b_iowait);
1533 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 error = bp->b_error;
1535
1536 /*
1537 * all done now, we can release the hold that keeps the buffer
1538 * referenced for the entire IO.
1539 */
1540 xfs_buf_rele(bp);
1541 return error;
1542 }
1543
1544 void *
1545 xfs_buf_offset(
1546 struct xfs_buf *bp,
1547 size_t offset)
1548 {
1549 struct page *page;
1550
1551 if (bp->b_addr)
1552 return bp->b_addr + offset;
1553
1554 offset += bp->b_offset;
1555 page = bp->b_pages[offset >> PAGE_SHIFT];
1556 return page_address(page) + (offset & (PAGE_SIZE-1));
1557 }
1558
1559 /*
1560 * Move data into or out of a buffer.
1561 */
1562 void
1563 xfs_buf_iomove(
1564 xfs_buf_t *bp, /* buffer to process */
1565 size_t boff, /* starting buffer offset */
1566 size_t bsize, /* length to copy */
1567 void *data, /* data address */
1568 xfs_buf_rw_t mode) /* read/write/zero flag */
1569 {
1570 size_t bend;
1571
1572 bend = boff + bsize;
1573 while (boff < bend) {
1574 struct page *page;
1575 int page_index, page_offset, csize;
1576
1577 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1578 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1579 page = bp->b_pages[page_index];
1580 csize = min_t(size_t, PAGE_SIZE - page_offset,
1581 BBTOB(bp->b_io_length) - boff);
1582
1583 ASSERT((csize + page_offset) <= PAGE_SIZE);
1584
1585 switch (mode) {
1586 case XBRW_ZERO:
1587 memset(page_address(page) + page_offset, 0, csize);
1588 break;
1589 case XBRW_READ:
1590 memcpy(data, page_address(page) + page_offset, csize);
1591 break;
1592 case XBRW_WRITE:
1593 memcpy(page_address(page) + page_offset, data, csize);
1594 }
1595
1596 boff += csize;
1597 data += csize;
1598 }
1599 }
1600
1601 /*
1602 * Handling of buffer targets (buftargs).
1603 */
1604
1605 /*
1606 * Wait for any bufs with callbacks that have been submitted but have not yet
1607 * returned. These buffers will have an elevated hold count, so wait on those
1608 * while freeing all the buffers only held by the LRU.
1609 */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 struct list_head *item,
1613 struct list_lru_one *lru,
1614 spinlock_t *lru_lock,
1615 void *arg)
1616
1617 {
1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1619 struct list_head *dispose = arg;
1620
1621 if (atomic_read(&bp->b_hold) > 1) {
1622 /* need to wait, so skip it this pass */
1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 return LRU_SKIP;
1625 }
1626 if (!spin_trylock(&bp->b_lock))
1627 return LRU_SKIP;
1628
1629 /*
1630 * clear the LRU reference count so the buffer doesn't get
1631 * ignored in xfs_buf_rele().
1632 */
1633 atomic_set(&bp->b_lru_ref, 0);
1634 bp->b_state |= XFS_BSTATE_DISPOSE;
1635 list_lru_isolate_move(lru, item, dispose);
1636 spin_unlock(&bp->b_lock);
1637 return LRU_REMOVED;
1638 }
1639
1640 void
1641 xfs_wait_buftarg(
1642 struct xfs_buftarg *btp)
1643 {
1644 LIST_HEAD(dispose);
1645 int loop = 0;
1646
1647 /*
1648 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 * released. This is critical as new buffers do not make the LRU until
1650 * they are released.
1651 *
1652 * Next, flush the buffer workqueue to ensure all completion processing
1653 * has finished. Just waiting on buffer locks is not sufficient for
1654 * async IO as the reference count held over IO is not released until
1655 * after the buffer lock is dropped. Hence we need to ensure here that
1656 * all reference counts have been dropped before we start walking the
1657 * LRU list.
1658 */
1659 while (percpu_counter_sum(&btp->bt_io_count))
1660 delay(100);
1661 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662
1663 /* loop until there is nothing left on the lru list. */
1664 while (list_lru_count(&btp->bt_lru)) {
1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 &dispose, LONG_MAX);
1667
1668 while (!list_empty(&dispose)) {
1669 struct xfs_buf *bp;
1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 list_del_init(&bp->b_lru);
1672 if (bp->b_flags & XBF_WRITE_FAIL) {
1673 xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1675 (long long)bp->b_bn);
1676 xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 }
1679 xfs_buf_rele(bp);
1680 }
1681 if (loop++ != 0)
1682 delay(100);
1683 }
1684 }
1685
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 struct list_head *item,
1689 struct list_lru_one *lru,
1690 spinlock_t *lru_lock,
1691 void *arg)
1692 {
1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1694 struct list_head *dispose = arg;
1695
1696 /*
1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 * If we fail to get the lock, just skip it.
1699 */
1700 if (!spin_trylock(&bp->b_lock))
1701 return LRU_SKIP;
1702 /*
1703 * Decrement the b_lru_ref count unless the value is already
1704 * zero. If the value is already zero, we need to reclaim the
1705 * buffer, otherwise it gets another trip through the LRU.
1706 */
1707 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 spin_unlock(&bp->b_lock);
1709 return LRU_ROTATE;
1710 }
1711
1712 bp->b_state |= XFS_BSTATE_DISPOSE;
1713 list_lru_isolate_move(lru, item, dispose);
1714 spin_unlock(&bp->b_lock);
1715 return LRU_REMOVED;
1716 }
1717
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 struct shrinker *shrink,
1721 struct shrink_control *sc)
1722 {
1723 struct xfs_buftarg *btp = container_of(shrink,
1724 struct xfs_buftarg, bt_shrinker);
1725 LIST_HEAD(dispose);
1726 unsigned long freed;
1727
1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 xfs_buftarg_isolate, &dispose);
1730
1731 while (!list_empty(&dispose)) {
1732 struct xfs_buf *bp;
1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 list_del_init(&bp->b_lru);
1735 xfs_buf_rele(bp);
1736 }
1737
1738 return freed;
1739 }
1740
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 struct shrinker *shrink,
1744 struct shrink_control *sc)
1745 {
1746 struct xfs_buftarg *btp = container_of(shrink,
1747 struct xfs_buftarg, bt_shrinker);
1748 return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750
1751 void
1752 xfs_free_buftarg(
1753 struct xfs_mount *mp,
1754 struct xfs_buftarg *btp)
1755 {
1756 unregister_shrinker(&btp->bt_shrinker);
1757 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1758 percpu_counter_destroy(&btp->bt_io_count);
1759 list_lru_destroy(&btp->bt_lru);
1760
1761 xfs_blkdev_issue_flush(btp);
1762
1763 kmem_free(btp);
1764 }
1765
1766 int
1767 xfs_setsize_buftarg(
1768 xfs_buftarg_t *btp,
1769 unsigned int sectorsize)
1770 {
1771 /* Set up metadata sector size info */
1772 btp->bt_meta_sectorsize = sectorsize;
1773 btp->bt_meta_sectormask = sectorsize - 1;
1774
1775 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1776 xfs_warn(btp->bt_mount,
1777 "Cannot set_blocksize to %u on device %pg",
1778 sectorsize, btp->bt_bdev);
1779 return -EINVAL;
1780 }
1781
1782 /* Set up device logical sector size mask */
1783 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1784 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1785
1786 return 0;
1787 }
1788
1789 /*
1790 * When allocating the initial buffer target we have not yet
1791 * read in the superblock, so don't know what sized sectors
1792 * are being used at this early stage. Play safe.
1793 */
1794 STATIC int
1795 xfs_setsize_buftarg_early(
1796 xfs_buftarg_t *btp,
1797 struct block_device *bdev)
1798 {
1799 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1800 }
1801
1802 xfs_buftarg_t *
1803 xfs_alloc_buftarg(
1804 struct xfs_mount *mp,
1805 struct block_device *bdev,
1806 struct dax_device *dax_dev)
1807 {
1808 xfs_buftarg_t *btp;
1809
1810 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1811
1812 btp->bt_mount = mp;
1813 btp->bt_dev = bdev->bd_dev;
1814 btp->bt_bdev = bdev;
1815 btp->bt_daxdev = dax_dev;
1816
1817 if (xfs_setsize_buftarg_early(btp, bdev))
1818 goto error_free;
1819
1820 if (list_lru_init(&btp->bt_lru))
1821 goto error_free;
1822
1823 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1824 goto error_lru;
1825
1826 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1827 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1828 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1829 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1830 if (register_shrinker(&btp->bt_shrinker))
1831 goto error_pcpu;
1832 return btp;
1833
1834 error_pcpu:
1835 percpu_counter_destroy(&btp->bt_io_count);
1836 error_lru:
1837 list_lru_destroy(&btp->bt_lru);
1838 error_free:
1839 kmem_free(btp);
1840 return NULL;
1841 }
1842
1843 /*
1844 * Cancel a delayed write list.
1845 *
1846 * Remove each buffer from the list, clear the delwri queue flag and drop the
1847 * associated buffer reference.
1848 */
1849 void
1850 xfs_buf_delwri_cancel(
1851 struct list_head *list)
1852 {
1853 struct xfs_buf *bp;
1854
1855 while (!list_empty(list)) {
1856 bp = list_first_entry(list, struct xfs_buf, b_list);
1857
1858 xfs_buf_lock(bp);
1859 bp->b_flags &= ~_XBF_DELWRI_Q;
1860 list_del_init(&bp->b_list);
1861 xfs_buf_relse(bp);
1862 }
1863 }
1864
1865 /*
1866 * Add a buffer to the delayed write list.
1867 *
1868 * This queues a buffer for writeout if it hasn't already been. Note that
1869 * neither this routine nor the buffer list submission functions perform
1870 * any internal synchronization. It is expected that the lists are thread-local
1871 * to the callers.
1872 *
1873 * Returns true if we queued up the buffer, or false if it already had
1874 * been on the buffer list.
1875 */
1876 bool
1877 xfs_buf_delwri_queue(
1878 struct xfs_buf *bp,
1879 struct list_head *list)
1880 {
1881 ASSERT(xfs_buf_islocked(bp));
1882 ASSERT(!(bp->b_flags & XBF_READ));
1883
1884 /*
1885 * If the buffer is already marked delwri it already is queued up
1886 * by someone else for imediate writeout. Just ignore it in that
1887 * case.
1888 */
1889 if (bp->b_flags & _XBF_DELWRI_Q) {
1890 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1891 return false;
1892 }
1893
1894 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1895
1896 /*
1897 * If a buffer gets written out synchronously or marked stale while it
1898 * is on a delwri list we lazily remove it. To do this, the other party
1899 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1900 * It remains referenced and on the list. In a rare corner case it
1901 * might get readded to a delwri list after the synchronous writeout, in
1902 * which case we need just need to re-add the flag here.
1903 */
1904 bp->b_flags |= _XBF_DELWRI_Q;
1905 if (list_empty(&bp->b_list)) {
1906 atomic_inc(&bp->b_hold);
1907 list_add_tail(&bp->b_list, list);
1908 }
1909
1910 return true;
1911 }
1912
1913 /*
1914 * Compare function is more complex than it needs to be because
1915 * the return value is only 32 bits and we are doing comparisons
1916 * on 64 bit values
1917 */
1918 static int
1919 xfs_buf_cmp(
1920 void *priv,
1921 struct list_head *a,
1922 struct list_head *b)
1923 {
1924 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1925 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1926 xfs_daddr_t diff;
1927
1928 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1929 if (diff < 0)
1930 return -1;
1931 if (diff > 0)
1932 return 1;
1933 return 0;
1934 }
1935
1936 /*
1937 * submit buffers for write.
1938 *
1939 * When we have a large buffer list, we do not want to hold all the buffers
1940 * locked while we block on the request queue waiting for IO dispatch. To avoid
1941 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1942 * the lock hold times for lists which may contain thousands of objects.
1943 *
1944 * To do this, we sort the buffer list before we walk the list to lock and
1945 * submit buffers, and we plug and unplug around each group of buffers we
1946 * submit.
1947 */
1948 static int
1949 xfs_buf_delwri_submit_buffers(
1950 struct list_head *buffer_list,
1951 struct list_head *wait_list)
1952 {
1953 struct xfs_buf *bp, *n;
1954 LIST_HEAD (submit_list);
1955 int pinned = 0;
1956 struct blk_plug plug;
1957
1958 list_sort(NULL, buffer_list, xfs_buf_cmp);
1959
1960 blk_start_plug(&plug);
1961 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1962 if (!wait_list) {
1963 if (xfs_buf_ispinned(bp)) {
1964 pinned++;
1965 continue;
1966 }
1967 if (!xfs_buf_trylock(bp))
1968 continue;
1969 } else {
1970 xfs_buf_lock(bp);
1971 }
1972
1973 /*
1974 * Someone else might have written the buffer synchronously or
1975 * marked it stale in the meantime. In that case only the
1976 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1977 * reference and remove it from the list here.
1978 */
1979 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1980 list_del_init(&bp->b_list);
1981 xfs_buf_relse(bp);
1982 continue;
1983 }
1984
1985 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1986
1987 /*
1988 * We do all IO submission async. This means if we need
1989 * to wait for IO completion we need to take an extra
1990 * reference so the buffer is still valid on the other
1991 * side. We need to move the buffer onto the io_list
1992 * at this point so the caller can still access it.
1993 */
1994 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1995 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1996 if (wait_list) {
1997 xfs_buf_hold(bp);
1998 list_move_tail(&bp->b_list, wait_list);
1999 } else
2000 list_del_init(&bp->b_list);
2001
2002 xfs_buf_submit(bp);
2003 }
2004 blk_finish_plug(&plug);
2005
2006 return pinned;
2007 }
2008
2009 /*
2010 * Write out a buffer list asynchronously.
2011 *
2012 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2013 * out and not wait for I/O completion on any of the buffers. This interface
2014 * is only safely useable for callers that can track I/O completion by higher
2015 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2016 * function.
2017 */
2018 int
2019 xfs_buf_delwri_submit_nowait(
2020 struct list_head *buffer_list)
2021 {
2022 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2023 }
2024
2025 /*
2026 * Write out a buffer list synchronously.
2027 *
2028 * This will take the @buffer_list, write all buffers out and wait for I/O
2029 * completion on all of the buffers. @buffer_list is consumed by the function,
2030 * so callers must have some other way of tracking buffers if they require such
2031 * functionality.
2032 */
2033 int
2034 xfs_buf_delwri_submit(
2035 struct list_head *buffer_list)
2036 {
2037 LIST_HEAD (wait_list);
2038 int error = 0, error2;
2039 struct xfs_buf *bp;
2040
2041 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2042
2043 /* Wait for IO to complete. */
2044 while (!list_empty(&wait_list)) {
2045 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2046
2047 list_del_init(&bp->b_list);
2048
2049 /* locking the buffer will wait for async IO completion. */
2050 xfs_buf_lock(bp);
2051 error2 = bp->b_error;
2052 xfs_buf_relse(bp);
2053 if (!error)
2054 error = error2;
2055 }
2056
2057 return error;
2058 }
2059
2060 /*
2061 * Push a single buffer on a delwri queue.
2062 *
2063 * The purpose of this function is to submit a single buffer of a delwri queue
2064 * and return with the buffer still on the original queue. The waiting delwri
2065 * buffer submission infrastructure guarantees transfer of the delwri queue
2066 * buffer reference to a temporary wait list. We reuse this infrastructure to
2067 * transfer the buffer back to the original queue.
2068 *
2069 * Note the buffer transitions from the queued state, to the submitted and wait
2070 * listed state and back to the queued state during this call. The buffer
2071 * locking and queue management logic between _delwri_pushbuf() and
2072 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2073 * before returning.
2074 */
2075 int
2076 xfs_buf_delwri_pushbuf(
2077 struct xfs_buf *bp,
2078 struct list_head *buffer_list)
2079 {
2080 LIST_HEAD (submit_list);
2081 int error;
2082
2083 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2084
2085 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2086
2087 /*
2088 * Isolate the buffer to a new local list so we can submit it for I/O
2089 * independently from the rest of the original list.
2090 */
2091 xfs_buf_lock(bp);
2092 list_move(&bp->b_list, &submit_list);
2093 xfs_buf_unlock(bp);
2094
2095 /*
2096 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2097 * the buffer on the wait list with an associated reference. Rather than
2098 * bounce the buffer from a local wait list back to the original list
2099 * after I/O completion, reuse the original list as the wait list.
2100 */
2101 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2102
2103 /*
2104 * The buffer is now under I/O and wait listed as during typical delwri
2105 * submission. Lock the buffer to wait for I/O completion. Rather than
2106 * remove the buffer from the wait list and release the reference, we
2107 * want to return with the buffer queued to the original list. The
2108 * buffer already sits on the original list with a wait list reference,
2109 * however. If we let the queue inherit that wait list reference, all we
2110 * need to do is reset the DELWRI_Q flag.
2111 */
2112 xfs_buf_lock(bp);
2113 error = bp->b_error;
2114 bp->b_flags |= _XBF_DELWRI_Q;
2115 xfs_buf_unlock(bp);
2116
2117 return error;
2118 }
2119
2120 int __init
2121 xfs_buf_init(void)
2122 {
2123 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2124 KM_ZONE_HWALIGN, NULL);
2125 if (!xfs_buf_zone)
2126 goto out;
2127
2128 return 0;
2129
2130 out:
2131 return -ENOMEM;
2132 }
2133
2134 void
2135 xfs_buf_terminate(void)
2136 {
2137 kmem_zone_destroy(xfs_buf_zone);
2138 }
2139
2140 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2141 {
2142 /*
2143 * Set the lru reference count to 0 based on the error injection tag.
2144 * This allows userspace to disrupt buffer caching for debug/testing
2145 * purposes.
2146 */
2147 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2148 XFS_ERRTAG_BUF_LRU_REF))
2149 lru_ref = 0;
2150
2151 atomic_set(&bp->b_lru_ref, lru_ref);
2152 }