]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_buf.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45
46 static kmem_zone_t *xfs_buf_zone;
47
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
56 #endif
57
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
60
61
62 static inline int
63 xfs_buf_is_vmapped(
64 struct xfs_buf *bp)
65 {
66 /*
67 * Return true if the buffer is vmapped.
68 *
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
72 */
73 return bp->b_addr && bp->b_page_count > 1;
74 }
75
76 static inline int
77 xfs_buf_vmap_len(
78 struct xfs_buf *bp)
79 {
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81 }
82
83 /*
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90 * in-flight buffers.
91 *
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
95 */
96 static inline void
97 xfs_buf_ioacct_inc(
98 struct xfs_buf *bp)
99 {
100 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
101 return;
102
103 ASSERT(bp->b_flags & XBF_ASYNC);
104 bp->b_flags |= _XBF_IN_FLIGHT;
105 percpu_counter_inc(&bp->b_target->bt_io_count);
106 }
107
108 /*
109 * Clear the in-flight state on a buffer about to be released to the LRU or
110 * freed and unaccount from the buftarg.
111 */
112 static inline void
113 xfs_buf_ioacct_dec(
114 struct xfs_buf *bp)
115 {
116 if (!(bp->b_flags & _XBF_IN_FLIGHT))
117 return;
118
119 bp->b_flags &= ~_XBF_IN_FLIGHT;
120 percpu_counter_dec(&bp->b_target->bt_io_count);
121 }
122
123 /*
124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125 * b_lru_ref count so that the buffer is freed immediately when the buffer
126 * reference count falls to zero. If the buffer is already on the LRU, we need
127 * to remove the reference that LRU holds on the buffer.
128 *
129 * This prevents build-up of stale buffers on the LRU.
130 */
131 void
132 xfs_buf_stale(
133 struct xfs_buf *bp)
134 {
135 ASSERT(xfs_buf_islocked(bp));
136
137 bp->b_flags |= XBF_STALE;
138
139 /*
140 * Clear the delwri status so that a delwri queue walker will not
141 * flush this buffer to disk now that it is stale. The delwri queue has
142 * a reference to the buffer, so this is safe to do.
143 */
144 bp->b_flags &= ~_XBF_DELWRI_Q;
145
146 /*
147 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 * could reset b_flags. There is no guarantee that the buffer is
149 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 * status now to preserve accounting consistency.
151 */
152 xfs_buf_ioacct_dec(bp);
153
154 spin_lock(&bp->b_lock);
155 atomic_set(&bp->b_lru_ref, 0);
156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 atomic_dec(&bp->b_hold);
159
160 ASSERT(atomic_read(&bp->b_hold) >= 1);
161 spin_unlock(&bp->b_lock);
162 }
163
164 static int
165 xfs_buf_get_maps(
166 struct xfs_buf *bp,
167 int map_count)
168 {
169 ASSERT(bp->b_maps == NULL);
170 bp->b_map_count = map_count;
171
172 if (map_count == 1) {
173 bp->b_maps = &bp->__b_map;
174 return 0;
175 }
176
177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 KM_NOFS);
179 if (!bp->b_maps)
180 return -ENOMEM;
181 return 0;
182 }
183
184 /*
185 * Frees b_pages if it was allocated.
186 */
187 static void
188 xfs_buf_free_maps(
189 struct xfs_buf *bp)
190 {
191 if (bp->b_maps != &bp->__b_map) {
192 kmem_free(bp->b_maps);
193 bp->b_maps = NULL;
194 }
195 }
196
197 struct xfs_buf *
198 _xfs_buf_alloc(
199 struct xfs_buftarg *target,
200 struct xfs_buf_map *map,
201 int nmaps,
202 xfs_buf_flags_t flags)
203 {
204 struct xfs_buf *bp;
205 int error;
206 int i;
207
208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
209 if (unlikely(!bp))
210 return NULL;
211
212 /*
213 * We don't want certain flags to appear in b_flags unless they are
214 * specifically set by later operations on the buffer.
215 */
216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
217
218 atomic_set(&bp->b_hold, 1);
219 atomic_set(&bp->b_lru_ref, 1);
220 init_completion(&bp->b_iowait);
221 INIT_LIST_HEAD(&bp->b_lru);
222 INIT_LIST_HEAD(&bp->b_list);
223 sema_init(&bp->b_sema, 0); /* held, no waiters */
224 spin_lock_init(&bp->b_lock);
225 XB_SET_OWNER(bp);
226 bp->b_target = target;
227 bp->b_flags = flags;
228
229 /*
230 * Set length and io_length to the same value initially.
231 * I/O routines should use io_length, which will be the same in
232 * most cases but may be reset (e.g. XFS recovery).
233 */
234 error = xfs_buf_get_maps(bp, nmaps);
235 if (error) {
236 kmem_zone_free(xfs_buf_zone, bp);
237 return NULL;
238 }
239
240 bp->b_bn = map[0].bm_bn;
241 bp->b_length = 0;
242 for (i = 0; i < nmaps; i++) {
243 bp->b_maps[i].bm_bn = map[i].bm_bn;
244 bp->b_maps[i].bm_len = map[i].bm_len;
245 bp->b_length += map[i].bm_len;
246 }
247 bp->b_io_length = bp->b_length;
248
249 atomic_set(&bp->b_pin_count, 0);
250 init_waitqueue_head(&bp->b_waiters);
251
252 XFS_STATS_INC(target->bt_mount, xb_create);
253 trace_xfs_buf_init(bp, _RET_IP_);
254
255 return bp;
256 }
257
258 /*
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
261 */
262 STATIC int
263 _xfs_buf_get_pages(
264 xfs_buf_t *bp,
265 int page_count)
266 {
267 /* Make sure that we have a page list */
268 if (bp->b_pages == NULL) {
269 bp->b_page_count = page_count;
270 if (page_count <= XB_PAGES) {
271 bp->b_pages = bp->b_page_array;
272 } else {
273 bp->b_pages = kmem_alloc(sizeof(struct page *) *
274 page_count, KM_NOFS);
275 if (bp->b_pages == NULL)
276 return -ENOMEM;
277 }
278 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
279 }
280 return 0;
281 }
282
283 /*
284 * Frees b_pages if it was allocated.
285 */
286 STATIC void
287 _xfs_buf_free_pages(
288 xfs_buf_t *bp)
289 {
290 if (bp->b_pages != bp->b_page_array) {
291 kmem_free(bp->b_pages);
292 bp->b_pages = NULL;
293 }
294 }
295
296 /*
297 * Releases the specified buffer.
298 *
299 * The modification state of any associated pages is left unchanged.
300 * The buffer must not be on any hash - use xfs_buf_rele instead for
301 * hashed and refcounted buffers
302 */
303 void
304 xfs_buf_free(
305 xfs_buf_t *bp)
306 {
307 trace_xfs_buf_free(bp, _RET_IP_);
308
309 ASSERT(list_empty(&bp->b_lru));
310
311 if (bp->b_flags & _XBF_PAGES) {
312 uint i;
313
314 if (xfs_buf_is_vmapped(bp))
315 vm_unmap_ram(bp->b_addr - bp->b_offset,
316 bp->b_page_count);
317
318 for (i = 0; i < bp->b_page_count; i++) {
319 struct page *page = bp->b_pages[i];
320
321 __free_page(page);
322 }
323 } else if (bp->b_flags & _XBF_KMEM)
324 kmem_free(bp->b_addr);
325 _xfs_buf_free_pages(bp);
326 xfs_buf_free_maps(bp);
327 kmem_zone_free(xfs_buf_zone, bp);
328 }
329
330 /*
331 * Allocates all the pages for buffer in question and builds it's page list.
332 */
333 STATIC int
334 xfs_buf_allocate_memory(
335 xfs_buf_t *bp,
336 uint flags)
337 {
338 size_t size;
339 size_t nbytes, offset;
340 gfp_t gfp_mask = xb_to_gfp(flags);
341 unsigned short page_count, i;
342 xfs_off_t start, end;
343 int error;
344
345 /*
346 * for buffers that are contained within a single page, just allocate
347 * the memory from the heap - there's no need for the complexity of
348 * page arrays to keep allocation down to order 0.
349 */
350 size = BBTOB(bp->b_length);
351 if (size < PAGE_SIZE) {
352 bp->b_addr = kmem_alloc(size, KM_NOFS);
353 if (!bp->b_addr) {
354 /* low memory - use alloc_page loop instead */
355 goto use_alloc_page;
356 }
357
358 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
359 ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 /* b_addr spans two pages - use alloc_page instead */
361 kmem_free(bp->b_addr);
362 bp->b_addr = NULL;
363 goto use_alloc_page;
364 }
365 bp->b_offset = offset_in_page(bp->b_addr);
366 bp->b_pages = bp->b_page_array;
367 bp->b_pages[0] = virt_to_page(bp->b_addr);
368 bp->b_page_count = 1;
369 bp->b_flags |= _XBF_KMEM;
370 return 0;
371 }
372
373 use_alloc_page:
374 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
376 >> PAGE_SHIFT;
377 page_count = end - start;
378 error = _xfs_buf_get_pages(bp, page_count);
379 if (unlikely(error))
380 return error;
381
382 offset = bp->b_offset;
383 bp->b_flags |= _XBF_PAGES;
384
385 for (i = 0; i < bp->b_page_count; i++) {
386 struct page *page;
387 uint retries = 0;
388 retry:
389 page = alloc_page(gfp_mask);
390 if (unlikely(page == NULL)) {
391 if (flags & XBF_READ_AHEAD) {
392 bp->b_page_count = i;
393 error = -ENOMEM;
394 goto out_free_pages;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 xfs_err(NULL,
405 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 current->comm, current->pid,
407 __func__, gfp_mask);
408
409 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
410 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 goto retry;
412 }
413
414 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
415
416 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
417 size -= nbytes;
418 bp->b_pages[i] = page;
419 offset = 0;
420 }
421 return 0;
422
423 out_free_pages:
424 for (i = 0; i < bp->b_page_count; i++)
425 __free_page(bp->b_pages[i]);
426 bp->b_flags &= ~_XBF_PAGES;
427 return error;
428 }
429
430 /*
431 * Map buffer into kernel address-space if necessary.
432 */
433 STATIC int
434 _xfs_buf_map_pages(
435 xfs_buf_t *bp,
436 uint flags)
437 {
438 ASSERT(bp->b_flags & _XBF_PAGES);
439 if (bp->b_page_count == 1) {
440 /* A single page buffer is always mappable */
441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
442 } else if (flags & XBF_UNMAPPED) {
443 bp->b_addr = NULL;
444 } else {
445 int retried = 0;
446 unsigned nofs_flag;
447
448 /*
449 * vm_map_ram() will allocate auxillary structures (e.g.
450 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
453 * memory reclaim re-entering the filesystem here and
454 * potentially deadlocking.
455 */
456 nofs_flag = memalloc_nofs_save();
457 do {
458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 -1, PAGE_KERNEL);
460 if (bp->b_addr)
461 break;
462 vm_unmap_aliases();
463 } while (retried++ <= 1);
464 memalloc_nofs_restore(nofs_flag);
465
466 if (!bp->b_addr)
467 return -ENOMEM;
468 bp->b_addr += bp->b_offset;
469 }
470
471 return 0;
472 }
473
474 /*
475 * Finding and Reading Buffers
476 */
477 static int
478 _xfs_buf_obj_cmp(
479 struct rhashtable_compare_arg *arg,
480 const void *obj)
481 {
482 const struct xfs_buf_map *map = arg->key;
483 const struct xfs_buf *bp = obj;
484
485 /*
486 * The key hashing in the lookup path depends on the key being the
487 * first element of the compare_arg, make sure to assert this.
488 */
489 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
490
491 if (bp->b_bn != map->bm_bn)
492 return 1;
493
494 if (unlikely(bp->b_length != map->bm_len)) {
495 /*
496 * found a block number match. If the range doesn't
497 * match, the only way this is allowed is if the buffer
498 * in the cache is stale and the transaction that made
499 * it stale has not yet committed. i.e. we are
500 * reallocating a busy extent. Skip this buffer and
501 * continue searching for an exact match.
502 */
503 ASSERT(bp->b_flags & XBF_STALE);
504 return 1;
505 }
506 return 0;
507 }
508
509 static const struct rhashtable_params xfs_buf_hash_params = {
510 .min_size = 32, /* empty AGs have minimal footprint */
511 .nelem_hint = 16,
512 .key_len = sizeof(xfs_daddr_t),
513 .key_offset = offsetof(struct xfs_buf, b_bn),
514 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
515 .automatic_shrinking = true,
516 .obj_cmpfn = _xfs_buf_obj_cmp,
517 };
518
519 int
520 xfs_buf_hash_init(
521 struct xfs_perag *pag)
522 {
523 spin_lock_init(&pag->pag_buf_lock);
524 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
525 }
526
527 void
528 xfs_buf_hash_destroy(
529 struct xfs_perag *pag)
530 {
531 rhashtable_destroy(&pag->pag_buf_hash);
532 }
533
534 /*
535 * Look up, and creates if absent, a lockable buffer for
536 * a given range of an inode. The buffer is returned
537 * locked. No I/O is implied by this call.
538 */
539 xfs_buf_t *
540 _xfs_buf_find(
541 struct xfs_buftarg *btp,
542 struct xfs_buf_map *map,
543 int nmaps,
544 xfs_buf_flags_t flags,
545 xfs_buf_t *new_bp)
546 {
547 struct xfs_perag *pag;
548 xfs_buf_t *bp;
549 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
550 xfs_daddr_t eofs;
551 int i;
552
553 for (i = 0; i < nmaps; i++)
554 cmap.bm_len += map[i].bm_len;
555
556 /* Check for IOs smaller than the sector size / not sector aligned */
557 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
558 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
559
560 /*
561 * Corrupted block numbers can get through to here, unfortunately, so we
562 * have to check that the buffer falls within the filesystem bounds.
563 */
564 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
565 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
566 /*
567 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
568 * but none of the higher level infrastructure supports
569 * returning a specific error on buffer lookup failures.
570 */
571 xfs_alert(btp->bt_mount,
572 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
573 __func__, cmap.bm_bn, eofs);
574 WARN_ON(1);
575 return NULL;
576 }
577
578 pag = xfs_perag_get(btp->bt_mount,
579 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
580
581 spin_lock(&pag->pag_buf_lock);
582 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
583 xfs_buf_hash_params);
584 if (bp) {
585 atomic_inc(&bp->b_hold);
586 goto found;
587 }
588
589 /* No match found */
590 if (new_bp) {
591 /* the buffer keeps the perag reference until it is freed */
592 new_bp->b_pag = pag;
593 rhashtable_insert_fast(&pag->pag_buf_hash,
594 &new_bp->b_rhash_head,
595 xfs_buf_hash_params);
596 spin_unlock(&pag->pag_buf_lock);
597 } else {
598 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
599 spin_unlock(&pag->pag_buf_lock);
600 xfs_perag_put(pag);
601 }
602 return new_bp;
603
604 found:
605 spin_unlock(&pag->pag_buf_lock);
606 xfs_perag_put(pag);
607
608 if (!xfs_buf_trylock(bp)) {
609 if (flags & XBF_TRYLOCK) {
610 xfs_buf_rele(bp);
611 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
612 return NULL;
613 }
614 xfs_buf_lock(bp);
615 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
616 }
617
618 /*
619 * if the buffer is stale, clear all the external state associated with
620 * it. We need to keep flags such as how we allocated the buffer memory
621 * intact here.
622 */
623 if (bp->b_flags & XBF_STALE) {
624 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
625 ASSERT(bp->b_iodone == NULL);
626 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
627 bp->b_ops = NULL;
628 }
629
630 trace_xfs_buf_find(bp, flags, _RET_IP_);
631 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
632 return bp;
633 }
634
635 /*
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
639 */
640 struct xfs_buf *
641 xfs_buf_get_map(
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
644 int nmaps,
645 xfs_buf_flags_t flags)
646 {
647 struct xfs_buf *bp;
648 struct xfs_buf *new_bp;
649 int error = 0;
650
651 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
652 if (likely(bp))
653 goto found;
654
655 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
656 if (unlikely(!new_bp))
657 return NULL;
658
659 error = xfs_buf_allocate_memory(new_bp, flags);
660 if (error) {
661 xfs_buf_free(new_bp);
662 return NULL;
663 }
664
665 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
666 if (!bp) {
667 xfs_buf_free(new_bp);
668 return NULL;
669 }
670
671 if (bp != new_bp)
672 xfs_buf_free(new_bp);
673
674 found:
675 if (!bp->b_addr) {
676 error = _xfs_buf_map_pages(bp, flags);
677 if (unlikely(error)) {
678 xfs_warn(target->bt_mount,
679 "%s: failed to map pagesn", __func__);
680 xfs_buf_relse(bp);
681 return NULL;
682 }
683 }
684
685 /*
686 * Clear b_error if this is a lookup from a caller that doesn't expect
687 * valid data to be found in the buffer.
688 */
689 if (!(flags & XBF_READ))
690 xfs_buf_ioerror(bp, 0);
691
692 XFS_STATS_INC(target->bt_mount, xb_get);
693 trace_xfs_buf_get(bp, flags, _RET_IP_);
694 return bp;
695 }
696
697 STATIC int
698 _xfs_buf_read(
699 xfs_buf_t *bp,
700 xfs_buf_flags_t flags)
701 {
702 ASSERT(!(flags & XBF_WRITE));
703 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
704
705 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
706 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
707
708 if (flags & XBF_ASYNC) {
709 xfs_buf_submit(bp);
710 return 0;
711 }
712 return xfs_buf_submit_wait(bp);
713 }
714
715 xfs_buf_t *
716 xfs_buf_read_map(
717 struct xfs_buftarg *target,
718 struct xfs_buf_map *map,
719 int nmaps,
720 xfs_buf_flags_t flags,
721 const struct xfs_buf_ops *ops)
722 {
723 struct xfs_buf *bp;
724
725 flags |= XBF_READ;
726
727 bp = xfs_buf_get_map(target, map, nmaps, flags);
728 if (bp) {
729 trace_xfs_buf_read(bp, flags, _RET_IP_);
730
731 if (!(bp->b_flags & XBF_DONE)) {
732 XFS_STATS_INC(target->bt_mount, xb_get_read);
733 bp->b_ops = ops;
734 _xfs_buf_read(bp, flags);
735 } else if (flags & XBF_ASYNC) {
736 /*
737 * Read ahead call which is already satisfied,
738 * drop the buffer
739 */
740 xfs_buf_relse(bp);
741 return NULL;
742 } else {
743 /* We do not want read in the flags */
744 bp->b_flags &= ~XBF_READ;
745 }
746 }
747
748 return bp;
749 }
750
751 /*
752 * If we are not low on memory then do the readahead in a deadlock
753 * safe manner.
754 */
755 void
756 xfs_buf_readahead_map(
757 struct xfs_buftarg *target,
758 struct xfs_buf_map *map,
759 int nmaps,
760 const struct xfs_buf_ops *ops)
761 {
762 if (bdi_read_congested(target->bt_bdev->bd_bdi))
763 return;
764
765 xfs_buf_read_map(target, map, nmaps,
766 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
767 }
768
769 /*
770 * Read an uncached buffer from disk. Allocates and returns a locked
771 * buffer containing the disk contents or nothing.
772 */
773 int
774 xfs_buf_read_uncached(
775 struct xfs_buftarg *target,
776 xfs_daddr_t daddr,
777 size_t numblks,
778 int flags,
779 struct xfs_buf **bpp,
780 const struct xfs_buf_ops *ops)
781 {
782 struct xfs_buf *bp;
783
784 *bpp = NULL;
785
786 bp = xfs_buf_get_uncached(target, numblks, flags);
787 if (!bp)
788 return -ENOMEM;
789
790 /* set up the buffer for a read IO */
791 ASSERT(bp->b_map_count == 1);
792 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
793 bp->b_maps[0].bm_bn = daddr;
794 bp->b_flags |= XBF_READ;
795 bp->b_ops = ops;
796
797 xfs_buf_submit_wait(bp);
798 if (bp->b_error) {
799 int error = bp->b_error;
800 xfs_buf_relse(bp);
801 return error;
802 }
803
804 *bpp = bp;
805 return 0;
806 }
807
808 /*
809 * Return a buffer allocated as an empty buffer and associated to external
810 * memory via xfs_buf_associate_memory() back to it's empty state.
811 */
812 void
813 xfs_buf_set_empty(
814 struct xfs_buf *bp,
815 size_t numblks)
816 {
817 if (bp->b_pages)
818 _xfs_buf_free_pages(bp);
819
820 bp->b_pages = NULL;
821 bp->b_page_count = 0;
822 bp->b_addr = NULL;
823 bp->b_length = numblks;
824 bp->b_io_length = numblks;
825
826 ASSERT(bp->b_map_count == 1);
827 bp->b_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
829 bp->b_maps[0].bm_len = bp->b_length;
830 }
831
832 static inline struct page *
833 mem_to_page(
834 void *addr)
835 {
836 if ((!is_vmalloc_addr(addr))) {
837 return virt_to_page(addr);
838 } else {
839 return vmalloc_to_page(addr);
840 }
841 }
842
843 int
844 xfs_buf_associate_memory(
845 xfs_buf_t *bp,
846 void *mem,
847 size_t len)
848 {
849 int rval;
850 int i = 0;
851 unsigned long pageaddr;
852 unsigned long offset;
853 size_t buflen;
854 int page_count;
855
856 pageaddr = (unsigned long)mem & PAGE_MASK;
857 offset = (unsigned long)mem - pageaddr;
858 buflen = PAGE_ALIGN(len + offset);
859 page_count = buflen >> PAGE_SHIFT;
860
861 /* Free any previous set of page pointers */
862 if (bp->b_pages)
863 _xfs_buf_free_pages(bp);
864
865 bp->b_pages = NULL;
866 bp->b_addr = mem;
867
868 rval = _xfs_buf_get_pages(bp, page_count);
869 if (rval)
870 return rval;
871
872 bp->b_offset = offset;
873
874 for (i = 0; i < bp->b_page_count; i++) {
875 bp->b_pages[i] = mem_to_page((void *)pageaddr);
876 pageaddr += PAGE_SIZE;
877 }
878
879 bp->b_io_length = BTOBB(len);
880 bp->b_length = BTOBB(buflen);
881
882 return 0;
883 }
884
885 xfs_buf_t *
886 xfs_buf_get_uncached(
887 struct xfs_buftarg *target,
888 size_t numblks,
889 int flags)
890 {
891 unsigned long page_count;
892 int error, i;
893 struct xfs_buf *bp;
894 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
895
896 /* flags might contain irrelevant bits, pass only what we care about */
897 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
898 if (unlikely(bp == NULL))
899 goto fail;
900
901 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
902 error = _xfs_buf_get_pages(bp, page_count);
903 if (error)
904 goto fail_free_buf;
905
906 for (i = 0; i < page_count; i++) {
907 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
908 if (!bp->b_pages[i])
909 goto fail_free_mem;
910 }
911 bp->b_flags |= _XBF_PAGES;
912
913 error = _xfs_buf_map_pages(bp, 0);
914 if (unlikely(error)) {
915 xfs_warn(target->bt_mount,
916 "%s: failed to map pages", __func__);
917 goto fail_free_mem;
918 }
919
920 trace_xfs_buf_get_uncached(bp, _RET_IP_);
921 return bp;
922
923 fail_free_mem:
924 while (--i >= 0)
925 __free_page(bp->b_pages[i]);
926 _xfs_buf_free_pages(bp);
927 fail_free_buf:
928 xfs_buf_free_maps(bp);
929 kmem_zone_free(xfs_buf_zone, bp);
930 fail:
931 return NULL;
932 }
933
934 /*
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
937 * Must hold the buffer already to call this function.
938 */
939 void
940 xfs_buf_hold(
941 xfs_buf_t *bp)
942 {
943 trace_xfs_buf_hold(bp, _RET_IP_);
944 atomic_inc(&bp->b_hold);
945 }
946
947 /*
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
950 */
951 void
952 xfs_buf_rele(
953 xfs_buf_t *bp)
954 {
955 struct xfs_perag *pag = bp->b_pag;
956 bool release;
957 bool freebuf = false;
958
959 trace_xfs_buf_rele(bp, _RET_IP_);
960
961 if (!pag) {
962 ASSERT(list_empty(&bp->b_lru));
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
965 xfs_buf_free(bp);
966 }
967 return;
968 }
969
970 ASSERT(atomic_read(&bp->b_hold) > 0);
971
972 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
973 spin_lock(&bp->b_lock);
974 if (!release) {
975 /*
976 * Drop the in-flight state if the buffer is already on the LRU
977 * and it holds the only reference. This is racy because we
978 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
979 * ensures the decrement occurs only once per-buf.
980 */
981 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
982 xfs_buf_ioacct_dec(bp);
983 goto out_unlock;
984 }
985
986 /* the last reference has been dropped ... */
987 xfs_buf_ioacct_dec(bp);
988 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
989 /*
990 * If the buffer is added to the LRU take a new reference to the
991 * buffer for the LRU and clear the (now stale) dispose list
992 * state flag
993 */
994 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
995 bp->b_state &= ~XFS_BSTATE_DISPOSE;
996 atomic_inc(&bp->b_hold);
997 }
998 spin_unlock(&pag->pag_buf_lock);
999 } else {
1000 /*
1001 * most of the time buffers will already be removed from the
1002 * LRU, so optimise that case by checking for the
1003 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1004 * was on was the disposal list
1005 */
1006 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1007 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1008 } else {
1009 ASSERT(list_empty(&bp->b_lru));
1010 }
1011
1012 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1013 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1014 xfs_buf_hash_params);
1015 spin_unlock(&pag->pag_buf_lock);
1016 xfs_perag_put(pag);
1017 freebuf = true;
1018 }
1019
1020 out_unlock:
1021 spin_unlock(&bp->b_lock);
1022
1023 if (freebuf)
1024 xfs_buf_free(bp);
1025 }
1026
1027
1028 /*
1029 * Lock a buffer object, if it is not already locked.
1030 *
1031 * If we come across a stale, pinned, locked buffer, we know that we are
1032 * being asked to lock a buffer that has been reallocated. Because it is
1033 * pinned, we know that the log has not been pushed to disk and hence it
1034 * will still be locked. Rather than continuing to have trylock attempts
1035 * fail until someone else pushes the log, push it ourselves before
1036 * returning. This means that the xfsaild will not get stuck trying
1037 * to push on stale inode buffers.
1038 */
1039 int
1040 xfs_buf_trylock(
1041 struct xfs_buf *bp)
1042 {
1043 int locked;
1044
1045 locked = down_trylock(&bp->b_sema) == 0;
1046 if (locked) {
1047 XB_SET_OWNER(bp);
1048 trace_xfs_buf_trylock(bp, _RET_IP_);
1049 } else {
1050 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1051 }
1052 return locked;
1053 }
1054
1055 /*
1056 * Lock a buffer object.
1057 *
1058 * If we come across a stale, pinned, locked buffer, we know that we
1059 * are being asked to lock a buffer that has been reallocated. Because
1060 * it is pinned, we know that the log has not been pushed to disk and
1061 * hence it will still be locked. Rather than sleeping until someone
1062 * else pushes the log, push it ourselves before trying to get the lock.
1063 */
1064 void
1065 xfs_buf_lock(
1066 struct xfs_buf *bp)
1067 {
1068 trace_xfs_buf_lock(bp, _RET_IP_);
1069
1070 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1071 xfs_log_force(bp->b_target->bt_mount, 0);
1072 down(&bp->b_sema);
1073 XB_SET_OWNER(bp);
1074
1075 trace_xfs_buf_lock_done(bp, _RET_IP_);
1076 }
1077
1078 void
1079 xfs_buf_unlock(
1080 struct xfs_buf *bp)
1081 {
1082 ASSERT(xfs_buf_islocked(bp));
1083
1084 XB_CLEAR_OWNER(bp);
1085 up(&bp->b_sema);
1086
1087 trace_xfs_buf_unlock(bp, _RET_IP_);
1088 }
1089
1090 STATIC void
1091 xfs_buf_wait_unpin(
1092 xfs_buf_t *bp)
1093 {
1094 DECLARE_WAITQUEUE (wait, current);
1095
1096 if (atomic_read(&bp->b_pin_count) == 0)
1097 return;
1098
1099 add_wait_queue(&bp->b_waiters, &wait);
1100 for (;;) {
1101 set_current_state(TASK_UNINTERRUPTIBLE);
1102 if (atomic_read(&bp->b_pin_count) == 0)
1103 break;
1104 io_schedule();
1105 }
1106 remove_wait_queue(&bp->b_waiters, &wait);
1107 set_current_state(TASK_RUNNING);
1108 }
1109
1110 /*
1111 * Buffer Utility Routines
1112 */
1113
1114 void
1115 xfs_buf_ioend(
1116 struct xfs_buf *bp)
1117 {
1118 bool read = bp->b_flags & XBF_READ;
1119
1120 trace_xfs_buf_iodone(bp, _RET_IP_);
1121
1122 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1123
1124 /*
1125 * Pull in IO completion errors now. We are guaranteed to be running
1126 * single threaded, so we don't need the lock to read b_io_error.
1127 */
1128 if (!bp->b_error && bp->b_io_error)
1129 xfs_buf_ioerror(bp, bp->b_io_error);
1130
1131 /* Only validate buffers that were read without errors */
1132 if (read && !bp->b_error && bp->b_ops) {
1133 ASSERT(!bp->b_iodone);
1134 bp->b_ops->verify_read(bp);
1135 }
1136
1137 if (!bp->b_error)
1138 bp->b_flags |= XBF_DONE;
1139
1140 if (bp->b_iodone)
1141 (*(bp->b_iodone))(bp);
1142 else if (bp->b_flags & XBF_ASYNC)
1143 xfs_buf_relse(bp);
1144 else
1145 complete(&bp->b_iowait);
1146 }
1147
1148 static void
1149 xfs_buf_ioend_work(
1150 struct work_struct *work)
1151 {
1152 struct xfs_buf *bp =
1153 container_of(work, xfs_buf_t, b_ioend_work);
1154
1155 xfs_buf_ioend(bp);
1156 }
1157
1158 static void
1159 xfs_buf_ioend_async(
1160 struct xfs_buf *bp)
1161 {
1162 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1163 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1164 }
1165
1166 void
1167 xfs_buf_ioerror(
1168 xfs_buf_t *bp,
1169 int error)
1170 {
1171 ASSERT(error <= 0 && error >= -1000);
1172 bp->b_error = error;
1173 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1174 }
1175
1176 void
1177 xfs_buf_ioerror_alert(
1178 struct xfs_buf *bp,
1179 const char *func)
1180 {
1181 xfs_alert(bp->b_target->bt_mount,
1182 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1183 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1184 }
1185
1186 int
1187 xfs_bwrite(
1188 struct xfs_buf *bp)
1189 {
1190 int error;
1191
1192 ASSERT(xfs_buf_islocked(bp));
1193
1194 bp->b_flags |= XBF_WRITE;
1195 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1196 XBF_WRITE_FAIL | XBF_DONE);
1197
1198 error = xfs_buf_submit_wait(bp);
1199 if (error) {
1200 xfs_force_shutdown(bp->b_target->bt_mount,
1201 SHUTDOWN_META_IO_ERROR);
1202 }
1203 return error;
1204 }
1205
1206 static void
1207 xfs_buf_bio_end_io(
1208 struct bio *bio)
1209 {
1210 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1211
1212 /*
1213 * don't overwrite existing errors - otherwise we can lose errors on
1214 * buffers that require multiple bios to complete.
1215 */
1216 if (bio->bi_error)
1217 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1218
1219 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1220 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1221
1222 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1223 xfs_buf_ioend_async(bp);
1224 bio_put(bio);
1225 }
1226
1227 static void
1228 xfs_buf_ioapply_map(
1229 struct xfs_buf *bp,
1230 int map,
1231 int *buf_offset,
1232 int *count,
1233 int op,
1234 int op_flags)
1235 {
1236 int page_index;
1237 int total_nr_pages = bp->b_page_count;
1238 int nr_pages;
1239 struct bio *bio;
1240 sector_t sector = bp->b_maps[map].bm_bn;
1241 int size;
1242 int offset;
1243
1244 total_nr_pages = bp->b_page_count;
1245
1246 /* skip the pages in the buffer before the start offset */
1247 page_index = 0;
1248 offset = *buf_offset;
1249 while (offset >= PAGE_SIZE) {
1250 page_index++;
1251 offset -= PAGE_SIZE;
1252 }
1253
1254 /*
1255 * Limit the IO size to the length of the current vector, and update the
1256 * remaining IO count for the next time around.
1257 */
1258 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1259 *count -= size;
1260 *buf_offset += size;
1261
1262 next_chunk:
1263 atomic_inc(&bp->b_io_remaining);
1264 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1265
1266 bio = bio_alloc(GFP_NOIO, nr_pages);
1267 bio->bi_bdev = bp->b_target->bt_bdev;
1268 bio->bi_iter.bi_sector = sector;
1269 bio->bi_end_io = xfs_buf_bio_end_io;
1270 bio->bi_private = bp;
1271 bio_set_op_attrs(bio, op, op_flags);
1272
1273 for (; size && nr_pages; nr_pages--, page_index++) {
1274 int rbytes, nbytes = PAGE_SIZE - offset;
1275
1276 if (nbytes > size)
1277 nbytes = size;
1278
1279 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1280 offset);
1281 if (rbytes < nbytes)
1282 break;
1283
1284 offset = 0;
1285 sector += BTOBB(nbytes);
1286 size -= nbytes;
1287 total_nr_pages--;
1288 }
1289
1290 if (likely(bio->bi_iter.bi_size)) {
1291 if (xfs_buf_is_vmapped(bp)) {
1292 flush_kernel_vmap_range(bp->b_addr,
1293 xfs_buf_vmap_len(bp));
1294 }
1295 submit_bio(bio);
1296 if (size)
1297 goto next_chunk;
1298 } else {
1299 /*
1300 * This is guaranteed not to be the last io reference count
1301 * because the caller (xfs_buf_submit) holds a count itself.
1302 */
1303 atomic_dec(&bp->b_io_remaining);
1304 xfs_buf_ioerror(bp, -EIO);
1305 bio_put(bio);
1306 }
1307
1308 }
1309
1310 STATIC void
1311 _xfs_buf_ioapply(
1312 struct xfs_buf *bp)
1313 {
1314 struct blk_plug plug;
1315 int op;
1316 int op_flags = 0;
1317 int offset;
1318 int size;
1319 int i;
1320
1321 /*
1322 * Make sure we capture only current IO errors rather than stale errors
1323 * left over from previous use of the buffer (e.g. failed readahead).
1324 */
1325 bp->b_error = 0;
1326
1327 /*
1328 * Initialize the I/O completion workqueue if we haven't yet or the
1329 * submitter has not opted to specify a custom one.
1330 */
1331 if (!bp->b_ioend_wq)
1332 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1333
1334 if (bp->b_flags & XBF_WRITE) {
1335 op = REQ_OP_WRITE;
1336 if (bp->b_flags & XBF_SYNCIO)
1337 op_flags = REQ_SYNC;
1338 if (bp->b_flags & XBF_FUA)
1339 op_flags |= REQ_FUA;
1340 if (bp->b_flags & XBF_FLUSH)
1341 op_flags |= REQ_PREFLUSH;
1342
1343 /*
1344 * Run the write verifier callback function if it exists. If
1345 * this function fails it will mark the buffer with an error and
1346 * the IO should not be dispatched.
1347 */
1348 if (bp->b_ops) {
1349 bp->b_ops->verify_write(bp);
1350 if (bp->b_error) {
1351 xfs_force_shutdown(bp->b_target->bt_mount,
1352 SHUTDOWN_CORRUPT_INCORE);
1353 return;
1354 }
1355 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1356 struct xfs_mount *mp = bp->b_target->bt_mount;
1357
1358 /*
1359 * non-crc filesystems don't attach verifiers during
1360 * log recovery, so don't warn for such filesystems.
1361 */
1362 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1363 xfs_warn(mp,
1364 "%s: no ops on block 0x%llx/0x%x",
1365 __func__, bp->b_bn, bp->b_length);
1366 xfs_hex_dump(bp->b_addr, 64);
1367 dump_stack();
1368 }
1369 }
1370 } else if (bp->b_flags & XBF_READ_AHEAD) {
1371 op = REQ_OP_READ;
1372 op_flags = REQ_RAHEAD;
1373 } else {
1374 op = REQ_OP_READ;
1375 }
1376
1377 /* we only use the buffer cache for meta-data */
1378 op_flags |= REQ_META;
1379
1380 /*
1381 * Walk all the vectors issuing IO on them. Set up the initial offset
1382 * into the buffer and the desired IO size before we start -
1383 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1384 * subsequent call.
1385 */
1386 offset = bp->b_offset;
1387 size = BBTOB(bp->b_io_length);
1388 blk_start_plug(&plug);
1389 for (i = 0; i < bp->b_map_count; i++) {
1390 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1391 if (bp->b_error)
1392 break;
1393 if (size <= 0)
1394 break; /* all done */
1395 }
1396 blk_finish_plug(&plug);
1397 }
1398
1399 /*
1400 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1401 * the current reference to the IO. It is not safe to reference the buffer after
1402 * a call to this function unless the caller holds an additional reference
1403 * itself.
1404 */
1405 void
1406 xfs_buf_submit(
1407 struct xfs_buf *bp)
1408 {
1409 trace_xfs_buf_submit(bp, _RET_IP_);
1410
1411 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1412 ASSERT(bp->b_flags & XBF_ASYNC);
1413
1414 /* on shutdown we stale and complete the buffer immediately */
1415 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1416 xfs_buf_ioerror(bp, -EIO);
1417 bp->b_flags &= ~XBF_DONE;
1418 xfs_buf_stale(bp);
1419 xfs_buf_ioend(bp);
1420 return;
1421 }
1422
1423 if (bp->b_flags & XBF_WRITE)
1424 xfs_buf_wait_unpin(bp);
1425
1426 /* clear the internal error state to avoid spurious errors */
1427 bp->b_io_error = 0;
1428
1429 /*
1430 * The caller's reference is released during I/O completion.
1431 * This occurs some time after the last b_io_remaining reference is
1432 * released, so after we drop our Io reference we have to have some
1433 * other reference to ensure the buffer doesn't go away from underneath
1434 * us. Take a direct reference to ensure we have safe access to the
1435 * buffer until we are finished with it.
1436 */
1437 xfs_buf_hold(bp);
1438
1439 /*
1440 * Set the count to 1 initially, this will stop an I/O completion
1441 * callout which happens before we have started all the I/O from calling
1442 * xfs_buf_ioend too early.
1443 */
1444 atomic_set(&bp->b_io_remaining, 1);
1445 xfs_buf_ioacct_inc(bp);
1446 _xfs_buf_ioapply(bp);
1447
1448 /*
1449 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1450 * reference we took above. If we drop it to zero, run completion so
1451 * that we don't return to the caller with completion still pending.
1452 */
1453 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1454 if (bp->b_error)
1455 xfs_buf_ioend(bp);
1456 else
1457 xfs_buf_ioend_async(bp);
1458 }
1459
1460 xfs_buf_rele(bp);
1461 /* Note: it is not safe to reference bp now we've dropped our ref */
1462 }
1463
1464 /*
1465 * Synchronous buffer IO submission path, read or write.
1466 */
1467 int
1468 xfs_buf_submit_wait(
1469 struct xfs_buf *bp)
1470 {
1471 int error;
1472
1473 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1474
1475 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1476
1477 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1478 xfs_buf_ioerror(bp, -EIO);
1479 xfs_buf_stale(bp);
1480 bp->b_flags &= ~XBF_DONE;
1481 return -EIO;
1482 }
1483
1484 if (bp->b_flags & XBF_WRITE)
1485 xfs_buf_wait_unpin(bp);
1486
1487 /* clear the internal error state to avoid spurious errors */
1488 bp->b_io_error = 0;
1489
1490 /*
1491 * For synchronous IO, the IO does not inherit the submitters reference
1492 * count, nor the buffer lock. Hence we cannot release the reference we
1493 * are about to take until we've waited for all IO completion to occur,
1494 * including any xfs_buf_ioend_async() work that may be pending.
1495 */
1496 xfs_buf_hold(bp);
1497
1498 /*
1499 * Set the count to 1 initially, this will stop an I/O completion
1500 * callout which happens before we have started all the I/O from calling
1501 * xfs_buf_ioend too early.
1502 */
1503 atomic_set(&bp->b_io_remaining, 1);
1504 _xfs_buf_ioapply(bp);
1505
1506 /*
1507 * make sure we run completion synchronously if it raced with us and is
1508 * already complete.
1509 */
1510 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1511 xfs_buf_ioend(bp);
1512
1513 /* wait for completion before gathering the error from the buffer */
1514 trace_xfs_buf_iowait(bp, _RET_IP_);
1515 wait_for_completion(&bp->b_iowait);
1516 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1517 error = bp->b_error;
1518
1519 /*
1520 * all done now, we can release the hold that keeps the buffer
1521 * referenced for the entire IO.
1522 */
1523 xfs_buf_rele(bp);
1524 return error;
1525 }
1526
1527 void *
1528 xfs_buf_offset(
1529 struct xfs_buf *bp,
1530 size_t offset)
1531 {
1532 struct page *page;
1533
1534 if (bp->b_addr)
1535 return bp->b_addr + offset;
1536
1537 offset += bp->b_offset;
1538 page = bp->b_pages[offset >> PAGE_SHIFT];
1539 return page_address(page) + (offset & (PAGE_SIZE-1));
1540 }
1541
1542 /*
1543 * Move data into or out of a buffer.
1544 */
1545 void
1546 xfs_buf_iomove(
1547 xfs_buf_t *bp, /* buffer to process */
1548 size_t boff, /* starting buffer offset */
1549 size_t bsize, /* length to copy */
1550 void *data, /* data address */
1551 xfs_buf_rw_t mode) /* read/write/zero flag */
1552 {
1553 size_t bend;
1554
1555 bend = boff + bsize;
1556 while (boff < bend) {
1557 struct page *page;
1558 int page_index, page_offset, csize;
1559
1560 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1561 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1562 page = bp->b_pages[page_index];
1563 csize = min_t(size_t, PAGE_SIZE - page_offset,
1564 BBTOB(bp->b_io_length) - boff);
1565
1566 ASSERT((csize + page_offset) <= PAGE_SIZE);
1567
1568 switch (mode) {
1569 case XBRW_ZERO:
1570 memset(page_address(page) + page_offset, 0, csize);
1571 break;
1572 case XBRW_READ:
1573 memcpy(data, page_address(page) + page_offset, csize);
1574 break;
1575 case XBRW_WRITE:
1576 memcpy(page_address(page) + page_offset, data, csize);
1577 }
1578
1579 boff += csize;
1580 data += csize;
1581 }
1582 }
1583
1584 /*
1585 * Handling of buffer targets (buftargs).
1586 */
1587
1588 /*
1589 * Wait for any bufs with callbacks that have been submitted but have not yet
1590 * returned. These buffers will have an elevated hold count, so wait on those
1591 * while freeing all the buffers only held by the LRU.
1592 */
1593 static enum lru_status
1594 xfs_buftarg_wait_rele(
1595 struct list_head *item,
1596 struct list_lru_one *lru,
1597 spinlock_t *lru_lock,
1598 void *arg)
1599
1600 {
1601 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1602 struct list_head *dispose = arg;
1603
1604 if (atomic_read(&bp->b_hold) > 1) {
1605 /* need to wait, so skip it this pass */
1606 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1607 return LRU_SKIP;
1608 }
1609 if (!spin_trylock(&bp->b_lock))
1610 return LRU_SKIP;
1611
1612 /*
1613 * clear the LRU reference count so the buffer doesn't get
1614 * ignored in xfs_buf_rele().
1615 */
1616 atomic_set(&bp->b_lru_ref, 0);
1617 bp->b_state |= XFS_BSTATE_DISPOSE;
1618 list_lru_isolate_move(lru, item, dispose);
1619 spin_unlock(&bp->b_lock);
1620 return LRU_REMOVED;
1621 }
1622
1623 void
1624 xfs_wait_buftarg(
1625 struct xfs_buftarg *btp)
1626 {
1627 LIST_HEAD(dispose);
1628 int loop = 0;
1629
1630 /*
1631 * First wait on the buftarg I/O count for all in-flight buffers to be
1632 * released. This is critical as new buffers do not make the LRU until
1633 * they are released.
1634 *
1635 * Next, flush the buffer workqueue to ensure all completion processing
1636 * has finished. Just waiting on buffer locks is not sufficient for
1637 * async IO as the reference count held over IO is not released until
1638 * after the buffer lock is dropped. Hence we need to ensure here that
1639 * all reference counts have been dropped before we start walking the
1640 * LRU list.
1641 */
1642 while (percpu_counter_sum(&btp->bt_io_count))
1643 delay(100);
1644 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1645
1646 /* loop until there is nothing left on the lru list. */
1647 while (list_lru_count(&btp->bt_lru)) {
1648 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1649 &dispose, LONG_MAX);
1650
1651 while (!list_empty(&dispose)) {
1652 struct xfs_buf *bp;
1653 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1654 list_del_init(&bp->b_lru);
1655 if (bp->b_flags & XBF_WRITE_FAIL) {
1656 xfs_alert(btp->bt_mount,
1657 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1658 (long long)bp->b_bn);
1659 xfs_alert(btp->bt_mount,
1660 "Please run xfs_repair to determine the extent of the problem.");
1661 }
1662 xfs_buf_rele(bp);
1663 }
1664 if (loop++ != 0)
1665 delay(100);
1666 }
1667 }
1668
1669 static enum lru_status
1670 xfs_buftarg_isolate(
1671 struct list_head *item,
1672 struct list_lru_one *lru,
1673 spinlock_t *lru_lock,
1674 void *arg)
1675 {
1676 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1677 struct list_head *dispose = arg;
1678
1679 /*
1680 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1681 * If we fail to get the lock, just skip it.
1682 */
1683 if (!spin_trylock(&bp->b_lock))
1684 return LRU_SKIP;
1685 /*
1686 * Decrement the b_lru_ref count unless the value is already
1687 * zero. If the value is already zero, we need to reclaim the
1688 * buffer, otherwise it gets another trip through the LRU.
1689 */
1690 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1691 spin_unlock(&bp->b_lock);
1692 return LRU_ROTATE;
1693 }
1694
1695 bp->b_state |= XFS_BSTATE_DISPOSE;
1696 list_lru_isolate_move(lru, item, dispose);
1697 spin_unlock(&bp->b_lock);
1698 return LRU_REMOVED;
1699 }
1700
1701 static unsigned long
1702 xfs_buftarg_shrink_scan(
1703 struct shrinker *shrink,
1704 struct shrink_control *sc)
1705 {
1706 struct xfs_buftarg *btp = container_of(shrink,
1707 struct xfs_buftarg, bt_shrinker);
1708 LIST_HEAD(dispose);
1709 unsigned long freed;
1710
1711 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1712 xfs_buftarg_isolate, &dispose);
1713
1714 while (!list_empty(&dispose)) {
1715 struct xfs_buf *bp;
1716 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1717 list_del_init(&bp->b_lru);
1718 xfs_buf_rele(bp);
1719 }
1720
1721 return freed;
1722 }
1723
1724 static unsigned long
1725 xfs_buftarg_shrink_count(
1726 struct shrinker *shrink,
1727 struct shrink_control *sc)
1728 {
1729 struct xfs_buftarg *btp = container_of(shrink,
1730 struct xfs_buftarg, bt_shrinker);
1731 return list_lru_shrink_count(&btp->bt_lru, sc);
1732 }
1733
1734 void
1735 xfs_free_buftarg(
1736 struct xfs_mount *mp,
1737 struct xfs_buftarg *btp)
1738 {
1739 unregister_shrinker(&btp->bt_shrinker);
1740 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1741 percpu_counter_destroy(&btp->bt_io_count);
1742 list_lru_destroy(&btp->bt_lru);
1743
1744 xfs_blkdev_issue_flush(btp);
1745
1746 kmem_free(btp);
1747 }
1748
1749 int
1750 xfs_setsize_buftarg(
1751 xfs_buftarg_t *btp,
1752 unsigned int sectorsize)
1753 {
1754 /* Set up metadata sector size info */
1755 btp->bt_meta_sectorsize = sectorsize;
1756 btp->bt_meta_sectormask = sectorsize - 1;
1757
1758 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1759 xfs_warn(btp->bt_mount,
1760 "Cannot set_blocksize to %u on device %pg",
1761 sectorsize, btp->bt_bdev);
1762 return -EINVAL;
1763 }
1764
1765 /* Set up device logical sector size mask */
1766 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1767 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * When allocating the initial buffer target we have not yet
1774 * read in the superblock, so don't know what sized sectors
1775 * are being used at this early stage. Play safe.
1776 */
1777 STATIC int
1778 xfs_setsize_buftarg_early(
1779 xfs_buftarg_t *btp,
1780 struct block_device *bdev)
1781 {
1782 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1783 }
1784
1785 xfs_buftarg_t *
1786 xfs_alloc_buftarg(
1787 struct xfs_mount *mp,
1788 struct block_device *bdev)
1789 {
1790 xfs_buftarg_t *btp;
1791
1792 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1793
1794 btp->bt_mount = mp;
1795 btp->bt_dev = bdev->bd_dev;
1796 btp->bt_bdev = bdev;
1797
1798 if (xfs_setsize_buftarg_early(btp, bdev))
1799 goto error;
1800
1801 if (list_lru_init(&btp->bt_lru))
1802 goto error;
1803
1804 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1805 goto error;
1806
1807 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1808 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1809 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1810 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1811 register_shrinker(&btp->bt_shrinker);
1812 return btp;
1813
1814 error:
1815 kmem_free(btp);
1816 return NULL;
1817 }
1818
1819 /*
1820 * Cancel a delayed write list.
1821 *
1822 * Remove each buffer from the list, clear the delwri queue flag and drop the
1823 * associated buffer reference.
1824 */
1825 void
1826 xfs_buf_delwri_cancel(
1827 struct list_head *list)
1828 {
1829 struct xfs_buf *bp;
1830
1831 while (!list_empty(list)) {
1832 bp = list_first_entry(list, struct xfs_buf, b_list);
1833
1834 xfs_buf_lock(bp);
1835 bp->b_flags &= ~_XBF_DELWRI_Q;
1836 list_del_init(&bp->b_list);
1837 xfs_buf_relse(bp);
1838 }
1839 }
1840
1841 /*
1842 * Add a buffer to the delayed write list.
1843 *
1844 * This queues a buffer for writeout if it hasn't already been. Note that
1845 * neither this routine nor the buffer list submission functions perform
1846 * any internal synchronization. It is expected that the lists are thread-local
1847 * to the callers.
1848 *
1849 * Returns true if we queued up the buffer, or false if it already had
1850 * been on the buffer list.
1851 */
1852 bool
1853 xfs_buf_delwri_queue(
1854 struct xfs_buf *bp,
1855 struct list_head *list)
1856 {
1857 ASSERT(xfs_buf_islocked(bp));
1858 ASSERT(!(bp->b_flags & XBF_READ));
1859
1860 /*
1861 * If the buffer is already marked delwri it already is queued up
1862 * by someone else for imediate writeout. Just ignore it in that
1863 * case.
1864 */
1865 if (bp->b_flags & _XBF_DELWRI_Q) {
1866 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1867 return false;
1868 }
1869
1870 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1871
1872 /*
1873 * If a buffer gets written out synchronously or marked stale while it
1874 * is on a delwri list we lazily remove it. To do this, the other party
1875 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1876 * It remains referenced and on the list. In a rare corner case it
1877 * might get readded to a delwri list after the synchronous writeout, in
1878 * which case we need just need to re-add the flag here.
1879 */
1880 bp->b_flags |= _XBF_DELWRI_Q;
1881 if (list_empty(&bp->b_list)) {
1882 atomic_inc(&bp->b_hold);
1883 list_add_tail(&bp->b_list, list);
1884 }
1885
1886 return true;
1887 }
1888
1889 /*
1890 * Compare function is more complex than it needs to be because
1891 * the return value is only 32 bits and we are doing comparisons
1892 * on 64 bit values
1893 */
1894 static int
1895 xfs_buf_cmp(
1896 void *priv,
1897 struct list_head *a,
1898 struct list_head *b)
1899 {
1900 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1901 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1902 xfs_daddr_t diff;
1903
1904 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1905 if (diff < 0)
1906 return -1;
1907 if (diff > 0)
1908 return 1;
1909 return 0;
1910 }
1911
1912 /*
1913 * submit buffers for write.
1914 *
1915 * When we have a large buffer list, we do not want to hold all the buffers
1916 * locked while we block on the request queue waiting for IO dispatch. To avoid
1917 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1918 * the lock hold times for lists which may contain thousands of objects.
1919 *
1920 * To do this, we sort the buffer list before we walk the list to lock and
1921 * submit buffers, and we plug and unplug around each group of buffers we
1922 * submit.
1923 */
1924 static int
1925 xfs_buf_delwri_submit_buffers(
1926 struct list_head *buffer_list,
1927 struct list_head *wait_list)
1928 {
1929 struct xfs_buf *bp, *n;
1930 LIST_HEAD (submit_list);
1931 int pinned = 0;
1932 struct blk_plug plug;
1933
1934 list_sort(NULL, buffer_list, xfs_buf_cmp);
1935
1936 blk_start_plug(&plug);
1937 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1938 if (!wait_list) {
1939 if (xfs_buf_ispinned(bp)) {
1940 pinned++;
1941 continue;
1942 }
1943 if (!xfs_buf_trylock(bp))
1944 continue;
1945 } else {
1946 xfs_buf_lock(bp);
1947 }
1948
1949 /*
1950 * Someone else might have written the buffer synchronously or
1951 * marked it stale in the meantime. In that case only the
1952 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1953 * reference and remove it from the list here.
1954 */
1955 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1956 list_del_init(&bp->b_list);
1957 xfs_buf_relse(bp);
1958 continue;
1959 }
1960
1961 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1962
1963 /*
1964 * We do all IO submission async. This means if we need
1965 * to wait for IO completion we need to take an extra
1966 * reference so the buffer is still valid on the other
1967 * side. We need to move the buffer onto the io_list
1968 * at this point so the caller can still access it.
1969 */
1970 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1971 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1972 if (wait_list) {
1973 xfs_buf_hold(bp);
1974 list_move_tail(&bp->b_list, wait_list);
1975 } else
1976 list_del_init(&bp->b_list);
1977
1978 xfs_buf_submit(bp);
1979 }
1980 blk_finish_plug(&plug);
1981
1982 return pinned;
1983 }
1984
1985 /*
1986 * Write out a buffer list asynchronously.
1987 *
1988 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1989 * out and not wait for I/O completion on any of the buffers. This interface
1990 * is only safely useable for callers that can track I/O completion by higher
1991 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1992 * function.
1993 */
1994 int
1995 xfs_buf_delwri_submit_nowait(
1996 struct list_head *buffer_list)
1997 {
1998 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1999 }
2000
2001 /*
2002 * Write out a buffer list synchronously.
2003 *
2004 * This will take the @buffer_list, write all buffers out and wait for I/O
2005 * completion on all of the buffers. @buffer_list is consumed by the function,
2006 * so callers must have some other way of tracking buffers if they require such
2007 * functionality.
2008 */
2009 int
2010 xfs_buf_delwri_submit(
2011 struct list_head *buffer_list)
2012 {
2013 LIST_HEAD (wait_list);
2014 int error = 0, error2;
2015 struct xfs_buf *bp;
2016
2017 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2018
2019 /* Wait for IO to complete. */
2020 while (!list_empty(&wait_list)) {
2021 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2022
2023 list_del_init(&bp->b_list);
2024
2025 /* locking the buffer will wait for async IO completion. */
2026 xfs_buf_lock(bp);
2027 error2 = bp->b_error;
2028 xfs_buf_relse(bp);
2029 if (!error)
2030 error = error2;
2031 }
2032
2033 return error;
2034 }
2035
2036 int __init
2037 xfs_buf_init(void)
2038 {
2039 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2040 KM_ZONE_HWALIGN, NULL);
2041 if (!xfs_buf_zone)
2042 goto out;
2043
2044 return 0;
2045
2046 out:
2047 return -ENOMEM;
2048 }
2049
2050 void
2051 xfs_buf_terminate(void)
2052 {
2053 kmem_zone_destroy(xfs_buf_zone);
2054 }