]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_buf.c
fs: use block_device name vsprintf helper
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90 void
91 xfs_buf_stale(
92 struct xfs_buf *bp)
93 {
94 ASSERT(xfs_buf_islocked(bp));
95
96 bp->b_flags |= XBF_STALE;
97
98 /*
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
102 */
103 bp->b_flags &= ~_XBF_DELWRI_Q;
104
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
110
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
113 }
114
115 static int
116 xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
119 {
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
122
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
125 return 0;
126 }
127
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
131 return -ENOMEM;
132 return 0;
133 }
134
135 /*
136 * Frees b_pages if it was allocated.
137 */
138 static void
139 xfs_buf_free_maps(
140 struct xfs_buf *bp)
141 {
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
145 }
146 }
147
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
152 int nmaps,
153 xfs_buf_flags_t flags)
154 {
155 struct xfs_buf *bp;
156 int error;
157 int i;
158
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 if (unlikely(!bp))
161 return NULL;
162
163 /*
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
166 */
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
179 bp->b_flags = flags;
180
181 /*
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
185 */
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
190 }
191
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
198 }
199 bp->b_io_length = bp->b_length;
200
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(target->bt_mount, xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
206
207 return bp;
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count)
218 {
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
224 } else {
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
228 return -ENOMEM;
229 }
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 }
232 return 0;
233 }
234
235 /*
236 * Frees b_pages if it was allocated.
237 */
238 STATIC void
239 _xfs_buf_free_pages(
240 xfs_buf_t *bp)
241 {
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
244 bp->b_pages = NULL;
245 }
246 }
247
248 /*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
254 */
255 void
256 xfs_buf_free(
257 xfs_buf_t *bp)
258 {
259 trace_xfs_buf_free(bp, _RET_IP_);
260
261 ASSERT(list_empty(&bp->b_lru));
262
263 if (bp->b_flags & _XBF_PAGES) {
264 uint i;
265
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
269
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
272
273 __free_page(page);
274 }
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
280 }
281
282 /*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
289 {
290 size_t size;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
295 int error;
296
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
322 return 0;
323 }
324
325 use_alloc_page:
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 >> PAGE_SHIFT;
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
331 if (unlikely(error))
332 return error;
333
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = -ENOMEM;
346 goto out_free_pages;
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358 current->comm, current->pid,
359 __func__, gfp_mask);
360
361 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
362 congestion_wait(BLK_RW_ASYNC, HZ/50);
363 goto retry;
364 }
365
366 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
367
368 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 size -= nbytes;
370 bp->b_pages[i] = page;
371 offset = 0;
372 }
373 return 0;
374
375 out_free_pages:
376 for (i = 0; i < bp->b_page_count; i++)
377 __free_page(bp->b_pages[i]);
378 return error;
379 }
380
381 /*
382 * Map buffer into kernel address-space if necessary.
383 */
384 STATIC int
385 _xfs_buf_map_pages(
386 xfs_buf_t *bp,
387 uint flags)
388 {
389 ASSERT(bp->b_flags & _XBF_PAGES);
390 if (bp->b_page_count == 1) {
391 /* A single page buffer is always mappable */
392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 } else if (flags & XBF_UNMAPPED) {
394 bp->b_addr = NULL;
395 } else {
396 int retried = 0;
397 unsigned noio_flag;
398
399 /*
400 * vm_map_ram() will allocate auxillary structures (e.g.
401 * pagetables) with GFP_KERNEL, yet we are likely to be under
402 * GFP_NOFS context here. Hence we need to tell memory reclaim
403 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404 * memory reclaim re-entering the filesystem here and
405 * potentially deadlocking.
406 */
407 noio_flag = memalloc_noio_save();
408 do {
409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 -1, PAGE_KERNEL);
411 if (bp->b_addr)
412 break;
413 vm_unmap_aliases();
414 } while (retried++ <= 1);
415 memalloc_noio_restore(noio_flag);
416
417 if (!bp->b_addr)
418 return -ENOMEM;
419 bp->b_addr += bp->b_offset;
420 }
421
422 return 0;
423 }
424
425 /*
426 * Finding and Reading Buffers
427 */
428
429 /*
430 * Look up, and creates if absent, a lockable buffer for
431 * a given range of an inode. The buffer is returned
432 * locked. No I/O is implied by this call.
433 */
434 xfs_buf_t *
435 _xfs_buf_find(
436 struct xfs_buftarg *btp,
437 struct xfs_buf_map *map,
438 int nmaps,
439 xfs_buf_flags_t flags,
440 xfs_buf_t *new_bp)
441 {
442 struct xfs_perag *pag;
443 struct rb_node **rbp;
444 struct rb_node *parent;
445 xfs_buf_t *bp;
446 xfs_daddr_t blkno = map[0].bm_bn;
447 xfs_daddr_t eofs;
448 int numblks = 0;
449 int i;
450
451 for (i = 0; i < nmaps; i++)
452 numblks += map[i].bm_len;
453
454 /* Check for IOs smaller than the sector size / not sector aligned */
455 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
456 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
457
458 /*
459 * Corrupted block numbers can get through to here, unfortunately, so we
460 * have to check that the buffer falls within the filesystem bounds.
461 */
462 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
463 if (blkno < 0 || blkno >= eofs) {
464 /*
465 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
466 * but none of the higher level infrastructure supports
467 * returning a specific error on buffer lookup failures.
468 */
469 xfs_alert(btp->bt_mount,
470 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471 __func__, blkno, eofs);
472 WARN_ON(1);
473 return NULL;
474 }
475
476 /* get tree root */
477 pag = xfs_perag_get(btp->bt_mount,
478 xfs_daddr_to_agno(btp->bt_mount, blkno));
479
480 /* walk tree */
481 spin_lock(&pag->pag_buf_lock);
482 rbp = &pag->pag_buf_tree.rb_node;
483 parent = NULL;
484 bp = NULL;
485 while (*rbp) {
486 parent = *rbp;
487 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488
489 if (blkno < bp->b_bn)
490 rbp = &(*rbp)->rb_left;
491 else if (blkno > bp->b_bn)
492 rbp = &(*rbp)->rb_right;
493 else {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching to the right for an exact match.
501 */
502 if (bp->b_length != numblks) {
503 ASSERT(bp->b_flags & XBF_STALE);
504 rbp = &(*rbp)->rb_right;
505 continue;
506 }
507 atomic_inc(&bp->b_hold);
508 goto found;
509 }
510 }
511
512 /* No match found */
513 if (new_bp) {
514 rb_link_node(&new_bp->b_rbnode, parent, rbp);
515 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516 /* the buffer keeps the perag reference until it is freed */
517 new_bp->b_pag = pag;
518 spin_unlock(&pag->pag_buf_lock);
519 } else {
520 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
521 spin_unlock(&pag->pag_buf_lock);
522 xfs_perag_put(pag);
523 }
524 return new_bp;
525
526 found:
527 spin_unlock(&pag->pag_buf_lock);
528 xfs_perag_put(pag);
529
530 if (!xfs_buf_trylock(bp)) {
531 if (flags & XBF_TRYLOCK) {
532 xfs_buf_rele(bp);
533 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
534 return NULL;
535 }
536 xfs_buf_lock(bp);
537 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
538 }
539
540 /*
541 * if the buffer is stale, clear all the external state associated with
542 * it. We need to keep flags such as how we allocated the buffer memory
543 * intact here.
544 */
545 if (bp->b_flags & XBF_STALE) {
546 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
547 ASSERT(bp->b_iodone == NULL);
548 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
549 bp->b_ops = NULL;
550 }
551
552 trace_xfs_buf_find(bp, flags, _RET_IP_);
553 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
554 return bp;
555 }
556
557 /*
558 * Assembles a buffer covering the specified range. The code is optimised for
559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560 * more hits than misses.
561 */
562 struct xfs_buf *
563 xfs_buf_get_map(
564 struct xfs_buftarg *target,
565 struct xfs_buf_map *map,
566 int nmaps,
567 xfs_buf_flags_t flags)
568 {
569 struct xfs_buf *bp;
570 struct xfs_buf *new_bp;
571 int error = 0;
572
573 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
574 if (likely(bp))
575 goto found;
576
577 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
578 if (unlikely(!new_bp))
579 return NULL;
580
581 error = xfs_buf_allocate_memory(new_bp, flags);
582 if (error) {
583 xfs_buf_free(new_bp);
584 return NULL;
585 }
586
587 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588 if (!bp) {
589 xfs_buf_free(new_bp);
590 return NULL;
591 }
592
593 if (bp != new_bp)
594 xfs_buf_free(new_bp);
595
596 found:
597 if (!bp->b_addr) {
598 error = _xfs_buf_map_pages(bp, flags);
599 if (unlikely(error)) {
600 xfs_warn(target->bt_mount,
601 "%s: failed to map pagesn", __func__);
602 xfs_buf_relse(bp);
603 return NULL;
604 }
605 }
606
607 XFS_STATS_INC(target->bt_mount, xb_get);
608 trace_xfs_buf_get(bp, flags, _RET_IP_);
609 return bp;
610 }
611
612 STATIC int
613 _xfs_buf_read(
614 xfs_buf_t *bp,
615 xfs_buf_flags_t flags)
616 {
617 ASSERT(!(flags & XBF_WRITE));
618 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
619
620 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
621 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
622
623 if (flags & XBF_ASYNC) {
624 xfs_buf_submit(bp);
625 return 0;
626 }
627 return xfs_buf_submit_wait(bp);
628 }
629
630 xfs_buf_t *
631 xfs_buf_read_map(
632 struct xfs_buftarg *target,
633 struct xfs_buf_map *map,
634 int nmaps,
635 xfs_buf_flags_t flags,
636 const struct xfs_buf_ops *ops)
637 {
638 struct xfs_buf *bp;
639
640 flags |= XBF_READ;
641
642 bp = xfs_buf_get_map(target, map, nmaps, flags);
643 if (bp) {
644 trace_xfs_buf_read(bp, flags, _RET_IP_);
645
646 if (!XFS_BUF_ISDONE(bp)) {
647 XFS_STATS_INC(target->bt_mount, xb_get_read);
648 bp->b_ops = ops;
649 _xfs_buf_read(bp, flags);
650 } else if (flags & XBF_ASYNC) {
651 /*
652 * Read ahead call which is already satisfied,
653 * drop the buffer
654 */
655 xfs_buf_relse(bp);
656 return NULL;
657 } else {
658 /* We do not want read in the flags */
659 bp->b_flags &= ~XBF_READ;
660 }
661 }
662
663 return bp;
664 }
665
666 /*
667 * If we are not low on memory then do the readahead in a deadlock
668 * safe manner.
669 */
670 void
671 xfs_buf_readahead_map(
672 struct xfs_buftarg *target,
673 struct xfs_buf_map *map,
674 int nmaps,
675 const struct xfs_buf_ops *ops)
676 {
677 if (bdi_read_congested(target->bt_bdi))
678 return;
679
680 xfs_buf_read_map(target, map, nmaps,
681 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
682 }
683
684 /*
685 * Read an uncached buffer from disk. Allocates and returns a locked
686 * buffer containing the disk contents or nothing.
687 */
688 int
689 xfs_buf_read_uncached(
690 struct xfs_buftarg *target,
691 xfs_daddr_t daddr,
692 size_t numblks,
693 int flags,
694 struct xfs_buf **bpp,
695 const struct xfs_buf_ops *ops)
696 {
697 struct xfs_buf *bp;
698
699 *bpp = NULL;
700
701 bp = xfs_buf_get_uncached(target, numblks, flags);
702 if (!bp)
703 return -ENOMEM;
704
705 /* set up the buffer for a read IO */
706 ASSERT(bp->b_map_count == 1);
707 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
708 bp->b_maps[0].bm_bn = daddr;
709 bp->b_flags |= XBF_READ;
710 bp->b_ops = ops;
711
712 xfs_buf_submit_wait(bp);
713 if (bp->b_error) {
714 int error = bp->b_error;
715 xfs_buf_relse(bp);
716 return error;
717 }
718
719 *bpp = bp;
720 return 0;
721 }
722
723 /*
724 * Return a buffer allocated as an empty buffer and associated to external
725 * memory via xfs_buf_associate_memory() back to it's empty state.
726 */
727 void
728 xfs_buf_set_empty(
729 struct xfs_buf *bp,
730 size_t numblks)
731 {
732 if (bp->b_pages)
733 _xfs_buf_free_pages(bp);
734
735 bp->b_pages = NULL;
736 bp->b_page_count = 0;
737 bp->b_addr = NULL;
738 bp->b_length = numblks;
739 bp->b_io_length = numblks;
740
741 ASSERT(bp->b_map_count == 1);
742 bp->b_bn = XFS_BUF_DADDR_NULL;
743 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
744 bp->b_maps[0].bm_len = bp->b_length;
745 }
746
747 static inline struct page *
748 mem_to_page(
749 void *addr)
750 {
751 if ((!is_vmalloc_addr(addr))) {
752 return virt_to_page(addr);
753 } else {
754 return vmalloc_to_page(addr);
755 }
756 }
757
758 int
759 xfs_buf_associate_memory(
760 xfs_buf_t *bp,
761 void *mem,
762 size_t len)
763 {
764 int rval;
765 int i = 0;
766 unsigned long pageaddr;
767 unsigned long offset;
768 size_t buflen;
769 int page_count;
770
771 pageaddr = (unsigned long)mem & PAGE_MASK;
772 offset = (unsigned long)mem - pageaddr;
773 buflen = PAGE_ALIGN(len + offset);
774 page_count = buflen >> PAGE_SHIFT;
775
776 /* Free any previous set of page pointers */
777 if (bp->b_pages)
778 _xfs_buf_free_pages(bp);
779
780 bp->b_pages = NULL;
781 bp->b_addr = mem;
782
783 rval = _xfs_buf_get_pages(bp, page_count);
784 if (rval)
785 return rval;
786
787 bp->b_offset = offset;
788
789 for (i = 0; i < bp->b_page_count; i++) {
790 bp->b_pages[i] = mem_to_page((void *)pageaddr);
791 pageaddr += PAGE_SIZE;
792 }
793
794 bp->b_io_length = BTOBB(len);
795 bp->b_length = BTOBB(buflen);
796
797 return 0;
798 }
799
800 xfs_buf_t *
801 xfs_buf_get_uncached(
802 struct xfs_buftarg *target,
803 size_t numblks,
804 int flags)
805 {
806 unsigned long page_count;
807 int error, i;
808 struct xfs_buf *bp;
809 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
810
811 bp = _xfs_buf_alloc(target, &map, 1, 0);
812 if (unlikely(bp == NULL))
813 goto fail;
814
815 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
816 error = _xfs_buf_get_pages(bp, page_count);
817 if (error)
818 goto fail_free_buf;
819
820 for (i = 0; i < page_count; i++) {
821 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
822 if (!bp->b_pages[i])
823 goto fail_free_mem;
824 }
825 bp->b_flags |= _XBF_PAGES;
826
827 error = _xfs_buf_map_pages(bp, 0);
828 if (unlikely(error)) {
829 xfs_warn(target->bt_mount,
830 "%s: failed to map pages", __func__);
831 goto fail_free_mem;
832 }
833
834 trace_xfs_buf_get_uncached(bp, _RET_IP_);
835 return bp;
836
837 fail_free_mem:
838 while (--i >= 0)
839 __free_page(bp->b_pages[i]);
840 _xfs_buf_free_pages(bp);
841 fail_free_buf:
842 xfs_buf_free_maps(bp);
843 kmem_zone_free(xfs_buf_zone, bp);
844 fail:
845 return NULL;
846 }
847
848 /*
849 * Increment reference count on buffer, to hold the buffer concurrently
850 * with another thread which may release (free) the buffer asynchronously.
851 * Must hold the buffer already to call this function.
852 */
853 void
854 xfs_buf_hold(
855 xfs_buf_t *bp)
856 {
857 trace_xfs_buf_hold(bp, _RET_IP_);
858 atomic_inc(&bp->b_hold);
859 }
860
861 /*
862 * Releases a hold on the specified buffer. If the
863 * the hold count is 1, calls xfs_buf_free.
864 */
865 void
866 xfs_buf_rele(
867 xfs_buf_t *bp)
868 {
869 struct xfs_perag *pag = bp->b_pag;
870
871 trace_xfs_buf_rele(bp, _RET_IP_);
872
873 if (!pag) {
874 ASSERT(list_empty(&bp->b_lru));
875 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
876 if (atomic_dec_and_test(&bp->b_hold))
877 xfs_buf_free(bp);
878 return;
879 }
880
881 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
882
883 ASSERT(atomic_read(&bp->b_hold) > 0);
884 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
885 spin_lock(&bp->b_lock);
886 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
887 /*
888 * If the buffer is added to the LRU take a new
889 * reference to the buffer for the LRU and clear the
890 * (now stale) dispose list state flag
891 */
892 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
893 bp->b_state &= ~XFS_BSTATE_DISPOSE;
894 atomic_inc(&bp->b_hold);
895 }
896 spin_unlock(&bp->b_lock);
897 spin_unlock(&pag->pag_buf_lock);
898 } else {
899 /*
900 * most of the time buffers will already be removed from
901 * the LRU, so optimise that case by checking for the
902 * XFS_BSTATE_DISPOSE flag indicating the last list the
903 * buffer was on was the disposal list
904 */
905 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
906 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
907 } else {
908 ASSERT(list_empty(&bp->b_lru));
909 }
910 spin_unlock(&bp->b_lock);
911
912 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
913 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
914 spin_unlock(&pag->pag_buf_lock);
915 xfs_perag_put(pag);
916 xfs_buf_free(bp);
917 }
918 }
919 }
920
921
922 /*
923 * Lock a buffer object, if it is not already locked.
924 *
925 * If we come across a stale, pinned, locked buffer, we know that we are
926 * being asked to lock a buffer that has been reallocated. Because it is
927 * pinned, we know that the log has not been pushed to disk and hence it
928 * will still be locked. Rather than continuing to have trylock attempts
929 * fail until someone else pushes the log, push it ourselves before
930 * returning. This means that the xfsaild will not get stuck trying
931 * to push on stale inode buffers.
932 */
933 int
934 xfs_buf_trylock(
935 struct xfs_buf *bp)
936 {
937 int locked;
938
939 locked = down_trylock(&bp->b_sema) == 0;
940 if (locked)
941 XB_SET_OWNER(bp);
942
943 trace_xfs_buf_trylock(bp, _RET_IP_);
944 return locked;
945 }
946
947 /*
948 * Lock a buffer object.
949 *
950 * If we come across a stale, pinned, locked buffer, we know that we
951 * are being asked to lock a buffer that has been reallocated. Because
952 * it is pinned, we know that the log has not been pushed to disk and
953 * hence it will still be locked. Rather than sleeping until someone
954 * else pushes the log, push it ourselves before trying to get the lock.
955 */
956 void
957 xfs_buf_lock(
958 struct xfs_buf *bp)
959 {
960 trace_xfs_buf_lock(bp, _RET_IP_);
961
962 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
963 xfs_log_force(bp->b_target->bt_mount, 0);
964 down(&bp->b_sema);
965 XB_SET_OWNER(bp);
966
967 trace_xfs_buf_lock_done(bp, _RET_IP_);
968 }
969
970 void
971 xfs_buf_unlock(
972 struct xfs_buf *bp)
973 {
974 XB_CLEAR_OWNER(bp);
975 up(&bp->b_sema);
976
977 trace_xfs_buf_unlock(bp, _RET_IP_);
978 }
979
980 STATIC void
981 xfs_buf_wait_unpin(
982 xfs_buf_t *bp)
983 {
984 DECLARE_WAITQUEUE (wait, current);
985
986 if (atomic_read(&bp->b_pin_count) == 0)
987 return;
988
989 add_wait_queue(&bp->b_waiters, &wait);
990 for (;;) {
991 set_current_state(TASK_UNINTERRUPTIBLE);
992 if (atomic_read(&bp->b_pin_count) == 0)
993 break;
994 io_schedule();
995 }
996 remove_wait_queue(&bp->b_waiters, &wait);
997 set_current_state(TASK_RUNNING);
998 }
999
1000 /*
1001 * Buffer Utility Routines
1002 */
1003
1004 void
1005 xfs_buf_ioend(
1006 struct xfs_buf *bp)
1007 {
1008 bool read = bp->b_flags & XBF_READ;
1009
1010 trace_xfs_buf_iodone(bp, _RET_IP_);
1011
1012 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1013
1014 /*
1015 * Pull in IO completion errors now. We are guaranteed to be running
1016 * single threaded, so we don't need the lock to read b_io_error.
1017 */
1018 if (!bp->b_error && bp->b_io_error)
1019 xfs_buf_ioerror(bp, bp->b_io_error);
1020
1021 /* Only validate buffers that were read without errors */
1022 if (read && !bp->b_error && bp->b_ops) {
1023 ASSERT(!bp->b_iodone);
1024 bp->b_ops->verify_read(bp);
1025 }
1026
1027 if (!bp->b_error)
1028 bp->b_flags |= XBF_DONE;
1029
1030 if (bp->b_iodone)
1031 (*(bp->b_iodone))(bp);
1032 else if (bp->b_flags & XBF_ASYNC)
1033 xfs_buf_relse(bp);
1034 else
1035 complete(&bp->b_iowait);
1036 }
1037
1038 static void
1039 xfs_buf_ioend_work(
1040 struct work_struct *work)
1041 {
1042 struct xfs_buf *bp =
1043 container_of(work, xfs_buf_t, b_ioend_work);
1044
1045 xfs_buf_ioend(bp);
1046 }
1047
1048 void
1049 xfs_buf_ioend_async(
1050 struct xfs_buf *bp)
1051 {
1052 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1053 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1054 }
1055
1056 void
1057 xfs_buf_ioerror(
1058 xfs_buf_t *bp,
1059 int error)
1060 {
1061 ASSERT(error <= 0 && error >= -1000);
1062 bp->b_error = error;
1063 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1064 }
1065
1066 void
1067 xfs_buf_ioerror_alert(
1068 struct xfs_buf *bp,
1069 const char *func)
1070 {
1071 xfs_alert(bp->b_target->bt_mount,
1072 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1073 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1074 }
1075
1076 int
1077 xfs_bwrite(
1078 struct xfs_buf *bp)
1079 {
1080 int error;
1081
1082 ASSERT(xfs_buf_islocked(bp));
1083
1084 bp->b_flags |= XBF_WRITE;
1085 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1086 XBF_WRITE_FAIL | XBF_DONE);
1087
1088 error = xfs_buf_submit_wait(bp);
1089 if (error) {
1090 xfs_force_shutdown(bp->b_target->bt_mount,
1091 SHUTDOWN_META_IO_ERROR);
1092 }
1093 return error;
1094 }
1095
1096 STATIC void
1097 xfs_buf_bio_end_io(
1098 struct bio *bio)
1099 {
1100 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1101
1102 /*
1103 * don't overwrite existing errors - otherwise we can lose errors on
1104 * buffers that require multiple bios to complete.
1105 */
1106 if (bio->bi_error) {
1107 spin_lock(&bp->b_lock);
1108 if (!bp->b_io_error)
1109 bp->b_io_error = bio->bi_error;
1110 spin_unlock(&bp->b_lock);
1111 }
1112
1113 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1114 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1115
1116 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1117 xfs_buf_ioend_async(bp);
1118 bio_put(bio);
1119 }
1120
1121 static void
1122 xfs_buf_ioapply_map(
1123 struct xfs_buf *bp,
1124 int map,
1125 int *buf_offset,
1126 int *count,
1127 int rw)
1128 {
1129 int page_index;
1130 int total_nr_pages = bp->b_page_count;
1131 int nr_pages;
1132 struct bio *bio;
1133 sector_t sector = bp->b_maps[map].bm_bn;
1134 int size;
1135 int offset;
1136
1137 total_nr_pages = bp->b_page_count;
1138
1139 /* skip the pages in the buffer before the start offset */
1140 page_index = 0;
1141 offset = *buf_offset;
1142 while (offset >= PAGE_SIZE) {
1143 page_index++;
1144 offset -= PAGE_SIZE;
1145 }
1146
1147 /*
1148 * Limit the IO size to the length of the current vector, and update the
1149 * remaining IO count for the next time around.
1150 */
1151 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1152 *count -= size;
1153 *buf_offset += size;
1154
1155 next_chunk:
1156 atomic_inc(&bp->b_io_remaining);
1157 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1158 if (nr_pages > total_nr_pages)
1159 nr_pages = total_nr_pages;
1160
1161 bio = bio_alloc(GFP_NOIO, nr_pages);
1162 bio->bi_bdev = bp->b_target->bt_bdev;
1163 bio->bi_iter.bi_sector = sector;
1164 bio->bi_end_io = xfs_buf_bio_end_io;
1165 bio->bi_private = bp;
1166
1167
1168 for (; size && nr_pages; nr_pages--, page_index++) {
1169 int rbytes, nbytes = PAGE_SIZE - offset;
1170
1171 if (nbytes > size)
1172 nbytes = size;
1173
1174 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1175 offset);
1176 if (rbytes < nbytes)
1177 break;
1178
1179 offset = 0;
1180 sector += BTOBB(nbytes);
1181 size -= nbytes;
1182 total_nr_pages--;
1183 }
1184
1185 if (likely(bio->bi_iter.bi_size)) {
1186 if (xfs_buf_is_vmapped(bp)) {
1187 flush_kernel_vmap_range(bp->b_addr,
1188 xfs_buf_vmap_len(bp));
1189 }
1190 submit_bio(rw, bio);
1191 if (size)
1192 goto next_chunk;
1193 } else {
1194 /*
1195 * This is guaranteed not to be the last io reference count
1196 * because the caller (xfs_buf_submit) holds a count itself.
1197 */
1198 atomic_dec(&bp->b_io_remaining);
1199 xfs_buf_ioerror(bp, -EIO);
1200 bio_put(bio);
1201 }
1202
1203 }
1204
1205 STATIC void
1206 _xfs_buf_ioapply(
1207 struct xfs_buf *bp)
1208 {
1209 struct blk_plug plug;
1210 int rw;
1211 int offset;
1212 int size;
1213 int i;
1214
1215 /*
1216 * Make sure we capture only current IO errors rather than stale errors
1217 * left over from previous use of the buffer (e.g. failed readahead).
1218 */
1219 bp->b_error = 0;
1220
1221 /*
1222 * Initialize the I/O completion workqueue if we haven't yet or the
1223 * submitter has not opted to specify a custom one.
1224 */
1225 if (!bp->b_ioend_wq)
1226 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1227
1228 if (bp->b_flags & XBF_WRITE) {
1229 if (bp->b_flags & XBF_SYNCIO)
1230 rw = WRITE_SYNC;
1231 else
1232 rw = WRITE;
1233 if (bp->b_flags & XBF_FUA)
1234 rw |= REQ_FUA;
1235 if (bp->b_flags & XBF_FLUSH)
1236 rw |= REQ_FLUSH;
1237
1238 /*
1239 * Run the write verifier callback function if it exists. If
1240 * this function fails it will mark the buffer with an error and
1241 * the IO should not be dispatched.
1242 */
1243 if (bp->b_ops) {
1244 bp->b_ops->verify_write(bp);
1245 if (bp->b_error) {
1246 xfs_force_shutdown(bp->b_target->bt_mount,
1247 SHUTDOWN_CORRUPT_INCORE);
1248 return;
1249 }
1250 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1251 struct xfs_mount *mp = bp->b_target->bt_mount;
1252
1253 /*
1254 * non-crc filesystems don't attach verifiers during
1255 * log recovery, so don't warn for such filesystems.
1256 */
1257 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1258 xfs_warn(mp,
1259 "%s: no ops on block 0x%llx/0x%x",
1260 __func__, bp->b_bn, bp->b_length);
1261 xfs_hex_dump(bp->b_addr, 64);
1262 dump_stack();
1263 }
1264 }
1265 } else if (bp->b_flags & XBF_READ_AHEAD) {
1266 rw = READA;
1267 } else {
1268 rw = READ;
1269 }
1270
1271 /* we only use the buffer cache for meta-data */
1272 rw |= REQ_META;
1273
1274 /*
1275 * Walk all the vectors issuing IO on them. Set up the initial offset
1276 * into the buffer and the desired IO size before we start -
1277 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1278 * subsequent call.
1279 */
1280 offset = bp->b_offset;
1281 size = BBTOB(bp->b_io_length);
1282 blk_start_plug(&plug);
1283 for (i = 0; i < bp->b_map_count; i++) {
1284 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1285 if (bp->b_error)
1286 break;
1287 if (size <= 0)
1288 break; /* all done */
1289 }
1290 blk_finish_plug(&plug);
1291 }
1292
1293 /*
1294 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1295 * the current reference to the IO. It is not safe to reference the buffer after
1296 * a call to this function unless the caller holds an additional reference
1297 * itself.
1298 */
1299 void
1300 xfs_buf_submit(
1301 struct xfs_buf *bp)
1302 {
1303 trace_xfs_buf_submit(bp, _RET_IP_);
1304
1305 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1306 ASSERT(bp->b_flags & XBF_ASYNC);
1307
1308 /* on shutdown we stale and complete the buffer immediately */
1309 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1310 xfs_buf_ioerror(bp, -EIO);
1311 bp->b_flags &= ~XBF_DONE;
1312 xfs_buf_stale(bp);
1313 xfs_buf_ioend(bp);
1314 return;
1315 }
1316
1317 if (bp->b_flags & XBF_WRITE)
1318 xfs_buf_wait_unpin(bp);
1319
1320 /* clear the internal error state to avoid spurious errors */
1321 bp->b_io_error = 0;
1322
1323 /*
1324 * The caller's reference is released during I/O completion.
1325 * This occurs some time after the last b_io_remaining reference is
1326 * released, so after we drop our Io reference we have to have some
1327 * other reference to ensure the buffer doesn't go away from underneath
1328 * us. Take a direct reference to ensure we have safe access to the
1329 * buffer until we are finished with it.
1330 */
1331 xfs_buf_hold(bp);
1332
1333 /*
1334 * Set the count to 1 initially, this will stop an I/O completion
1335 * callout which happens before we have started all the I/O from calling
1336 * xfs_buf_ioend too early.
1337 */
1338 atomic_set(&bp->b_io_remaining, 1);
1339 _xfs_buf_ioapply(bp);
1340
1341 /*
1342 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1343 * reference we took above. If we drop it to zero, run completion so
1344 * that we don't return to the caller with completion still pending.
1345 */
1346 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1347 if (bp->b_error)
1348 xfs_buf_ioend(bp);
1349 else
1350 xfs_buf_ioend_async(bp);
1351 }
1352
1353 xfs_buf_rele(bp);
1354 /* Note: it is not safe to reference bp now we've dropped our ref */
1355 }
1356
1357 /*
1358 * Synchronous buffer IO submission path, read or write.
1359 */
1360 int
1361 xfs_buf_submit_wait(
1362 struct xfs_buf *bp)
1363 {
1364 int error;
1365
1366 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1367
1368 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1369
1370 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1371 xfs_buf_ioerror(bp, -EIO);
1372 xfs_buf_stale(bp);
1373 bp->b_flags &= ~XBF_DONE;
1374 return -EIO;
1375 }
1376
1377 if (bp->b_flags & XBF_WRITE)
1378 xfs_buf_wait_unpin(bp);
1379
1380 /* clear the internal error state to avoid spurious errors */
1381 bp->b_io_error = 0;
1382
1383 /*
1384 * For synchronous IO, the IO does not inherit the submitters reference
1385 * count, nor the buffer lock. Hence we cannot release the reference we
1386 * are about to take until we've waited for all IO completion to occur,
1387 * including any xfs_buf_ioend_async() work that may be pending.
1388 */
1389 xfs_buf_hold(bp);
1390
1391 /*
1392 * Set the count to 1 initially, this will stop an I/O completion
1393 * callout which happens before we have started all the I/O from calling
1394 * xfs_buf_ioend too early.
1395 */
1396 atomic_set(&bp->b_io_remaining, 1);
1397 _xfs_buf_ioapply(bp);
1398
1399 /*
1400 * make sure we run completion synchronously if it raced with us and is
1401 * already complete.
1402 */
1403 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1404 xfs_buf_ioend(bp);
1405
1406 /* wait for completion before gathering the error from the buffer */
1407 trace_xfs_buf_iowait(bp, _RET_IP_);
1408 wait_for_completion(&bp->b_iowait);
1409 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1410 error = bp->b_error;
1411
1412 /*
1413 * all done now, we can release the hold that keeps the buffer
1414 * referenced for the entire IO.
1415 */
1416 xfs_buf_rele(bp);
1417 return error;
1418 }
1419
1420 void *
1421 xfs_buf_offset(
1422 struct xfs_buf *bp,
1423 size_t offset)
1424 {
1425 struct page *page;
1426
1427 if (bp->b_addr)
1428 return bp->b_addr + offset;
1429
1430 offset += bp->b_offset;
1431 page = bp->b_pages[offset >> PAGE_SHIFT];
1432 return page_address(page) + (offset & (PAGE_SIZE-1));
1433 }
1434
1435 /*
1436 * Move data into or out of a buffer.
1437 */
1438 void
1439 xfs_buf_iomove(
1440 xfs_buf_t *bp, /* buffer to process */
1441 size_t boff, /* starting buffer offset */
1442 size_t bsize, /* length to copy */
1443 void *data, /* data address */
1444 xfs_buf_rw_t mode) /* read/write/zero flag */
1445 {
1446 size_t bend;
1447
1448 bend = boff + bsize;
1449 while (boff < bend) {
1450 struct page *page;
1451 int page_index, page_offset, csize;
1452
1453 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1454 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1455 page = bp->b_pages[page_index];
1456 csize = min_t(size_t, PAGE_SIZE - page_offset,
1457 BBTOB(bp->b_io_length) - boff);
1458
1459 ASSERT((csize + page_offset) <= PAGE_SIZE);
1460
1461 switch (mode) {
1462 case XBRW_ZERO:
1463 memset(page_address(page) + page_offset, 0, csize);
1464 break;
1465 case XBRW_READ:
1466 memcpy(data, page_address(page) + page_offset, csize);
1467 break;
1468 case XBRW_WRITE:
1469 memcpy(page_address(page) + page_offset, data, csize);
1470 }
1471
1472 boff += csize;
1473 data += csize;
1474 }
1475 }
1476
1477 /*
1478 * Handling of buffer targets (buftargs).
1479 */
1480
1481 /*
1482 * Wait for any bufs with callbacks that have been submitted but have not yet
1483 * returned. These buffers will have an elevated hold count, so wait on those
1484 * while freeing all the buffers only held by the LRU.
1485 */
1486 static enum lru_status
1487 xfs_buftarg_wait_rele(
1488 struct list_head *item,
1489 struct list_lru_one *lru,
1490 spinlock_t *lru_lock,
1491 void *arg)
1492
1493 {
1494 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1495 struct list_head *dispose = arg;
1496
1497 if (atomic_read(&bp->b_hold) > 1) {
1498 /* need to wait, so skip it this pass */
1499 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1500 return LRU_SKIP;
1501 }
1502 if (!spin_trylock(&bp->b_lock))
1503 return LRU_SKIP;
1504
1505 /*
1506 * clear the LRU reference count so the buffer doesn't get
1507 * ignored in xfs_buf_rele().
1508 */
1509 atomic_set(&bp->b_lru_ref, 0);
1510 bp->b_state |= XFS_BSTATE_DISPOSE;
1511 list_lru_isolate_move(lru, item, dispose);
1512 spin_unlock(&bp->b_lock);
1513 return LRU_REMOVED;
1514 }
1515
1516 void
1517 xfs_wait_buftarg(
1518 struct xfs_buftarg *btp)
1519 {
1520 LIST_HEAD(dispose);
1521 int loop = 0;
1522
1523 /* loop until there is nothing left on the lru list. */
1524 while (list_lru_count(&btp->bt_lru)) {
1525 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1526 &dispose, LONG_MAX);
1527
1528 while (!list_empty(&dispose)) {
1529 struct xfs_buf *bp;
1530 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1531 list_del_init(&bp->b_lru);
1532 if (bp->b_flags & XBF_WRITE_FAIL) {
1533 xfs_alert(btp->bt_mount,
1534 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1535 (long long)bp->b_bn);
1536 xfs_alert(btp->bt_mount,
1537 "Please run xfs_repair to determine the extent of the problem.");
1538 }
1539 xfs_buf_rele(bp);
1540 }
1541 if (loop++ != 0)
1542 delay(100);
1543 }
1544 }
1545
1546 static enum lru_status
1547 xfs_buftarg_isolate(
1548 struct list_head *item,
1549 struct list_lru_one *lru,
1550 spinlock_t *lru_lock,
1551 void *arg)
1552 {
1553 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1554 struct list_head *dispose = arg;
1555
1556 /*
1557 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1558 * If we fail to get the lock, just skip it.
1559 */
1560 if (!spin_trylock(&bp->b_lock))
1561 return LRU_SKIP;
1562 /*
1563 * Decrement the b_lru_ref count unless the value is already
1564 * zero. If the value is already zero, we need to reclaim the
1565 * buffer, otherwise it gets another trip through the LRU.
1566 */
1567 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1568 spin_unlock(&bp->b_lock);
1569 return LRU_ROTATE;
1570 }
1571
1572 bp->b_state |= XFS_BSTATE_DISPOSE;
1573 list_lru_isolate_move(lru, item, dispose);
1574 spin_unlock(&bp->b_lock);
1575 return LRU_REMOVED;
1576 }
1577
1578 static unsigned long
1579 xfs_buftarg_shrink_scan(
1580 struct shrinker *shrink,
1581 struct shrink_control *sc)
1582 {
1583 struct xfs_buftarg *btp = container_of(shrink,
1584 struct xfs_buftarg, bt_shrinker);
1585 LIST_HEAD(dispose);
1586 unsigned long freed;
1587
1588 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1589 xfs_buftarg_isolate, &dispose);
1590
1591 while (!list_empty(&dispose)) {
1592 struct xfs_buf *bp;
1593 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1594 list_del_init(&bp->b_lru);
1595 xfs_buf_rele(bp);
1596 }
1597
1598 return freed;
1599 }
1600
1601 static unsigned long
1602 xfs_buftarg_shrink_count(
1603 struct shrinker *shrink,
1604 struct shrink_control *sc)
1605 {
1606 struct xfs_buftarg *btp = container_of(shrink,
1607 struct xfs_buftarg, bt_shrinker);
1608 return list_lru_shrink_count(&btp->bt_lru, sc);
1609 }
1610
1611 void
1612 xfs_free_buftarg(
1613 struct xfs_mount *mp,
1614 struct xfs_buftarg *btp)
1615 {
1616 unregister_shrinker(&btp->bt_shrinker);
1617 list_lru_destroy(&btp->bt_lru);
1618
1619 if (mp->m_flags & XFS_MOUNT_BARRIER)
1620 xfs_blkdev_issue_flush(btp);
1621
1622 kmem_free(btp);
1623 }
1624
1625 int
1626 xfs_setsize_buftarg(
1627 xfs_buftarg_t *btp,
1628 unsigned int sectorsize)
1629 {
1630 /* Set up metadata sector size info */
1631 btp->bt_meta_sectorsize = sectorsize;
1632 btp->bt_meta_sectormask = sectorsize - 1;
1633
1634 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1635 xfs_warn(btp->bt_mount,
1636 "Cannot set_blocksize to %u on device %pg",
1637 sectorsize, btp->bt_bdev);
1638 return -EINVAL;
1639 }
1640
1641 /* Set up device logical sector size mask */
1642 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1643 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1644
1645 return 0;
1646 }
1647
1648 /*
1649 * When allocating the initial buffer target we have not yet
1650 * read in the superblock, so don't know what sized sectors
1651 * are being used at this early stage. Play safe.
1652 */
1653 STATIC int
1654 xfs_setsize_buftarg_early(
1655 xfs_buftarg_t *btp,
1656 struct block_device *bdev)
1657 {
1658 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1659 }
1660
1661 xfs_buftarg_t *
1662 xfs_alloc_buftarg(
1663 struct xfs_mount *mp,
1664 struct block_device *bdev)
1665 {
1666 xfs_buftarg_t *btp;
1667
1668 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1669
1670 btp->bt_mount = mp;
1671 btp->bt_dev = bdev->bd_dev;
1672 btp->bt_bdev = bdev;
1673 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1674
1675 if (xfs_setsize_buftarg_early(btp, bdev))
1676 goto error;
1677
1678 if (list_lru_init(&btp->bt_lru))
1679 goto error;
1680
1681 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1682 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1683 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1684 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1685 register_shrinker(&btp->bt_shrinker);
1686 return btp;
1687
1688 error:
1689 kmem_free(btp);
1690 return NULL;
1691 }
1692
1693 /*
1694 * Add a buffer to the delayed write list.
1695 *
1696 * This queues a buffer for writeout if it hasn't already been. Note that
1697 * neither this routine nor the buffer list submission functions perform
1698 * any internal synchronization. It is expected that the lists are thread-local
1699 * to the callers.
1700 *
1701 * Returns true if we queued up the buffer, or false if it already had
1702 * been on the buffer list.
1703 */
1704 bool
1705 xfs_buf_delwri_queue(
1706 struct xfs_buf *bp,
1707 struct list_head *list)
1708 {
1709 ASSERT(xfs_buf_islocked(bp));
1710 ASSERT(!(bp->b_flags & XBF_READ));
1711
1712 /*
1713 * If the buffer is already marked delwri it already is queued up
1714 * by someone else for imediate writeout. Just ignore it in that
1715 * case.
1716 */
1717 if (bp->b_flags & _XBF_DELWRI_Q) {
1718 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1719 return false;
1720 }
1721
1722 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1723
1724 /*
1725 * If a buffer gets written out synchronously or marked stale while it
1726 * is on a delwri list we lazily remove it. To do this, the other party
1727 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1728 * It remains referenced and on the list. In a rare corner case it
1729 * might get readded to a delwri list after the synchronous writeout, in
1730 * which case we need just need to re-add the flag here.
1731 */
1732 bp->b_flags |= _XBF_DELWRI_Q;
1733 if (list_empty(&bp->b_list)) {
1734 atomic_inc(&bp->b_hold);
1735 list_add_tail(&bp->b_list, list);
1736 }
1737
1738 return true;
1739 }
1740
1741 /*
1742 * Compare function is more complex than it needs to be because
1743 * the return value is only 32 bits and we are doing comparisons
1744 * on 64 bit values
1745 */
1746 static int
1747 xfs_buf_cmp(
1748 void *priv,
1749 struct list_head *a,
1750 struct list_head *b)
1751 {
1752 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1753 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1754 xfs_daddr_t diff;
1755
1756 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1757 if (diff < 0)
1758 return -1;
1759 if (diff > 0)
1760 return 1;
1761 return 0;
1762 }
1763
1764 static int
1765 __xfs_buf_delwri_submit(
1766 struct list_head *buffer_list,
1767 struct list_head *io_list,
1768 bool wait)
1769 {
1770 struct blk_plug plug;
1771 struct xfs_buf *bp, *n;
1772 int pinned = 0;
1773
1774 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1775 if (!wait) {
1776 if (xfs_buf_ispinned(bp)) {
1777 pinned++;
1778 continue;
1779 }
1780 if (!xfs_buf_trylock(bp))
1781 continue;
1782 } else {
1783 xfs_buf_lock(bp);
1784 }
1785
1786 /*
1787 * Someone else might have written the buffer synchronously or
1788 * marked it stale in the meantime. In that case only the
1789 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1790 * reference and remove it from the list here.
1791 */
1792 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1793 list_del_init(&bp->b_list);
1794 xfs_buf_relse(bp);
1795 continue;
1796 }
1797
1798 list_move_tail(&bp->b_list, io_list);
1799 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1800 }
1801
1802 list_sort(NULL, io_list, xfs_buf_cmp);
1803
1804 blk_start_plug(&plug);
1805 list_for_each_entry_safe(bp, n, io_list, b_list) {
1806 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1807 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1808
1809 /*
1810 * we do all Io submission async. This means if we need to wait
1811 * for IO completion we need to take an extra reference so the
1812 * buffer is still valid on the other side.
1813 */
1814 if (wait)
1815 xfs_buf_hold(bp);
1816 else
1817 list_del_init(&bp->b_list);
1818
1819 xfs_buf_submit(bp);
1820 }
1821 blk_finish_plug(&plug);
1822
1823 return pinned;
1824 }
1825
1826 /*
1827 * Write out a buffer list asynchronously.
1828 *
1829 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1830 * out and not wait for I/O completion on any of the buffers. This interface
1831 * is only safely useable for callers that can track I/O completion by higher
1832 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1833 * function.
1834 */
1835 int
1836 xfs_buf_delwri_submit_nowait(
1837 struct list_head *buffer_list)
1838 {
1839 LIST_HEAD (io_list);
1840 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1841 }
1842
1843 /*
1844 * Write out a buffer list synchronously.
1845 *
1846 * This will take the @buffer_list, write all buffers out and wait for I/O
1847 * completion on all of the buffers. @buffer_list is consumed by the function,
1848 * so callers must have some other way of tracking buffers if they require such
1849 * functionality.
1850 */
1851 int
1852 xfs_buf_delwri_submit(
1853 struct list_head *buffer_list)
1854 {
1855 LIST_HEAD (io_list);
1856 int error = 0, error2;
1857 struct xfs_buf *bp;
1858
1859 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1860
1861 /* Wait for IO to complete. */
1862 while (!list_empty(&io_list)) {
1863 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1864
1865 list_del_init(&bp->b_list);
1866
1867 /* locking the buffer will wait for async IO completion. */
1868 xfs_buf_lock(bp);
1869 error2 = bp->b_error;
1870 xfs_buf_relse(bp);
1871 if (!error)
1872 error = error2;
1873 }
1874
1875 return error;
1876 }
1877
1878 int __init
1879 xfs_buf_init(void)
1880 {
1881 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1882 KM_ZONE_HWALIGN, NULL);
1883 if (!xfs_buf_zone)
1884 goto out;
1885
1886 return 0;
1887
1888 out:
1889 return -ENOMEM;
1890 }
1891
1892 void
1893 xfs_buf_terminate(void)
1894 {
1895 kmem_zone_destroy(xfs_buf_zone);
1896 }