]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/xfs/xfs_buf.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45
46 static kmem_zone_t *xfs_buf_zone;
47
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
56 #endif
57
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
60
61
62 static inline int
63 xfs_buf_is_vmapped(
64 struct xfs_buf *bp)
65 {
66 /*
67 * Return true if the buffer is vmapped.
68 *
69 * b_addr is null if the buffer is not mapped, but the code is clever
70 * enough to know it doesn't have to map a single page, so the check has
71 * to be both for b_addr and bp->b_page_count > 1.
72 */
73 return bp->b_addr && bp->b_page_count > 1;
74 }
75
76 static inline int
77 xfs_buf_vmap_len(
78 struct xfs_buf *bp)
79 {
80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81 }
82
83 /*
84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85 * this buffer. The count is incremented once per buffer (per hold cycle)
86 * because the corresponding decrement is deferred to buffer release. Buffers
87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88 * tracking adds unnecessary overhead. This is used for sychronization purposes
89 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90 * in-flight buffers.
91 *
92 * Buffers that are never released (e.g., superblock, iclog buffers) must set
93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94 * never reaches zero and unmount hangs indefinitely.
95 */
96 static inline void
97 xfs_buf_ioacct_inc(
98 struct xfs_buf *bp)
99 {
100 if (bp->b_flags & XBF_NO_IOACCT)
101 return;
102
103 ASSERT(bp->b_flags & XBF_ASYNC);
104 spin_lock(&bp->b_lock);
105 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
106 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
107 percpu_counter_inc(&bp->b_target->bt_io_count);
108 }
109 spin_unlock(&bp->b_lock);
110 }
111
112 /*
113 * Clear the in-flight state on a buffer about to be released to the LRU or
114 * freed and unaccount from the buftarg.
115 */
116 static inline void
117 __xfs_buf_ioacct_dec(
118 struct xfs_buf *bp)
119 {
120 lockdep_assert_held(&bp->b_lock);
121
122 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
123 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
124 percpu_counter_dec(&bp->b_target->bt_io_count);
125 }
126 }
127
128 static inline void
129 xfs_buf_ioacct_dec(
130 struct xfs_buf *bp)
131 {
132 spin_lock(&bp->b_lock);
133 __xfs_buf_ioacct_dec(bp);
134 spin_unlock(&bp->b_lock);
135 }
136
137 /*
138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139 * b_lru_ref count so that the buffer is freed immediately when the buffer
140 * reference count falls to zero. If the buffer is already on the LRU, we need
141 * to remove the reference that LRU holds on the buffer.
142 *
143 * This prevents build-up of stale buffers on the LRU.
144 */
145 void
146 xfs_buf_stale(
147 struct xfs_buf *bp)
148 {
149 ASSERT(xfs_buf_islocked(bp));
150
151 bp->b_flags |= XBF_STALE;
152
153 /*
154 * Clear the delwri status so that a delwri queue walker will not
155 * flush this buffer to disk now that it is stale. The delwri queue has
156 * a reference to the buffer, so this is safe to do.
157 */
158 bp->b_flags &= ~_XBF_DELWRI_Q;
159
160 /*
161 * Once the buffer is marked stale and unlocked, a subsequent lookup
162 * could reset b_flags. There is no guarantee that the buffer is
163 * unaccounted (released to LRU) before that occurs. Drop in-flight
164 * status now to preserve accounting consistency.
165 */
166 spin_lock(&bp->b_lock);
167 __xfs_buf_ioacct_dec(bp);
168
169 atomic_set(&bp->b_lru_ref, 0);
170 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
171 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
172 atomic_dec(&bp->b_hold);
173
174 ASSERT(atomic_read(&bp->b_hold) >= 1);
175 spin_unlock(&bp->b_lock);
176 }
177
178 static int
179 xfs_buf_get_maps(
180 struct xfs_buf *bp,
181 int map_count)
182 {
183 ASSERT(bp->b_maps == NULL);
184 bp->b_map_count = map_count;
185
186 if (map_count == 1) {
187 bp->b_maps = &bp->__b_map;
188 return 0;
189 }
190
191 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
192 KM_NOFS);
193 if (!bp->b_maps)
194 return -ENOMEM;
195 return 0;
196 }
197
198 /*
199 * Frees b_pages if it was allocated.
200 */
201 static void
202 xfs_buf_free_maps(
203 struct xfs_buf *bp)
204 {
205 if (bp->b_maps != &bp->__b_map) {
206 kmem_free(bp->b_maps);
207 bp->b_maps = NULL;
208 }
209 }
210
211 struct xfs_buf *
212 _xfs_buf_alloc(
213 struct xfs_buftarg *target,
214 struct xfs_buf_map *map,
215 int nmaps,
216 xfs_buf_flags_t flags)
217 {
218 struct xfs_buf *bp;
219 int error;
220 int i;
221
222 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
223 if (unlikely(!bp))
224 return NULL;
225
226 /*
227 * We don't want certain flags to appear in b_flags unless they are
228 * specifically set by later operations on the buffer.
229 */
230 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231
232 atomic_set(&bp->b_hold, 1);
233 atomic_set(&bp->b_lru_ref, 1);
234 init_completion(&bp->b_iowait);
235 INIT_LIST_HEAD(&bp->b_lru);
236 INIT_LIST_HEAD(&bp->b_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 XB_SET_OWNER(bp);
240 bp->b_target = target;
241 bp->b_flags = flags;
242
243 /*
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_zone_free(xfs_buf_zone, bp);
251 return NULL;
252 }
253
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
261 bp->b_io_length = bp->b_length;
262
263 atomic_set(&bp->b_pin_count, 0);
264 init_waitqueue_head(&bp->b_waiters);
265
266 XFS_STATS_INC(target->bt_mount, xb_create);
267 trace_xfs_buf_init(bp, _RET_IP_);
268
269 return bp;
270 }
271
272 /*
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
275 */
276 STATIC int
277 _xfs_buf_get_pages(
278 xfs_buf_t *bp,
279 int page_count)
280 {
281 /* Make sure that we have a page list */
282 if (bp->b_pages == NULL) {
283 bp->b_page_count = page_count;
284 if (page_count <= XB_PAGES) {
285 bp->b_pages = bp->b_page_array;
286 } else {
287 bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 page_count, KM_NOFS);
289 if (bp->b_pages == NULL)
290 return -ENOMEM;
291 }
292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
293 }
294 return 0;
295 }
296
297 /*
298 * Frees b_pages if it was allocated.
299 */
300 STATIC void
301 _xfs_buf_free_pages(
302 xfs_buf_t *bp)
303 {
304 if (bp->b_pages != bp->b_page_array) {
305 kmem_free(bp->b_pages);
306 bp->b_pages = NULL;
307 }
308 }
309
310 /*
311 * Releases the specified buffer.
312 *
313 * The modification state of any associated pages is left unchanged.
314 * The buffer must not be on any hash - use xfs_buf_rele instead for
315 * hashed and refcounted buffers
316 */
317 void
318 xfs_buf_free(
319 xfs_buf_t *bp)
320 {
321 trace_xfs_buf_free(bp, _RET_IP_);
322
323 ASSERT(list_empty(&bp->b_lru));
324
325 if (bp->b_flags & _XBF_PAGES) {
326 uint i;
327
328 if (xfs_buf_is_vmapped(bp))
329 vm_unmap_ram(bp->b_addr - bp->b_offset,
330 bp->b_page_count);
331
332 for (i = 0; i < bp->b_page_count; i++) {
333 struct page *page = bp->b_pages[i];
334
335 __free_page(page);
336 }
337 } else if (bp->b_flags & _XBF_KMEM)
338 kmem_free(bp->b_addr);
339 _xfs_buf_free_pages(bp);
340 xfs_buf_free_maps(bp);
341 kmem_zone_free(xfs_buf_zone, bp);
342 }
343
344 /*
345 * Allocates all the pages for buffer in question and builds it's page list.
346 */
347 STATIC int
348 xfs_buf_allocate_memory(
349 xfs_buf_t *bp,
350 uint flags)
351 {
352 size_t size;
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 xfs_off_t start, end;
357 int error;
358
359 /*
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
363 */
364 size = BBTOB(bp->b_length);
365 if (size < PAGE_SIZE) {
366 bp->b_addr = kmem_alloc(size, KM_NOFS);
367 if (!bp->b_addr) {
368 /* low memory - use alloc_page loop instead */
369 goto use_alloc_page;
370 }
371
372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp->b_addr);
376 bp->b_addr = NULL;
377 goto use_alloc_page;
378 }
379 bp->b_offset = offset_in_page(bp->b_addr);
380 bp->b_pages = bp->b_page_array;
381 bp->b_pages[0] = virt_to_page(bp->b_addr);
382 bp->b_page_count = 1;
383 bp->b_flags |= _XBF_KMEM;
384 return 0;
385 }
386
387 use_alloc_page:
388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
390 >> PAGE_SHIFT;
391 page_count = end - start;
392 error = _xfs_buf_get_pages(bp, page_count);
393 if (unlikely(error))
394 return error;
395
396 offset = bp->b_offset;
397 bp->b_flags |= _XBF_PAGES;
398
399 for (i = 0; i < bp->b_page_count; i++) {
400 struct page *page;
401 uint retries = 0;
402 retry:
403 page = alloc_page(gfp_mask);
404 if (unlikely(page == NULL)) {
405 if (flags & XBF_READ_AHEAD) {
406 bp->b_page_count = i;
407 error = -ENOMEM;
408 goto out_free_pages;
409 }
410
411 /*
412 * This could deadlock.
413 *
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
416 */
417 if (!(++retries % 100))
418 xfs_err(NULL,
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current->comm, current->pid,
421 __func__, gfp_mask);
422
423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 congestion_wait(BLK_RW_ASYNC, HZ/50);
425 goto retry;
426 }
427
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
429
430 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
431 size -= nbytes;
432 bp->b_pages[i] = page;
433 offset = 0;
434 }
435 return 0;
436
437 out_free_pages:
438 for (i = 0; i < bp->b_page_count; i++)
439 __free_page(bp->b_pages[i]);
440 bp->b_flags &= ~_XBF_PAGES;
441 return error;
442 }
443
444 /*
445 * Map buffer into kernel address-space if necessary.
446 */
447 STATIC int
448 _xfs_buf_map_pages(
449 xfs_buf_t *bp,
450 uint flags)
451 {
452 ASSERT(bp->b_flags & _XBF_PAGES);
453 if (bp->b_page_count == 1) {
454 /* A single page buffer is always mappable */
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 } else if (flags & XBF_UNMAPPED) {
457 bp->b_addr = NULL;
458 } else {
459 int retried = 0;
460 unsigned nofs_flag;
461
462 /*
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
469 */
470 nofs_flag = memalloc_nofs_save();
471 do {
472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 -1, PAGE_KERNEL);
474 if (bp->b_addr)
475 break;
476 vm_unmap_aliases();
477 } while (retried++ <= 1);
478 memalloc_nofs_restore(nofs_flag);
479
480 if (!bp->b_addr)
481 return -ENOMEM;
482 bp->b_addr += bp->b_offset;
483 }
484
485 return 0;
486 }
487
488 /*
489 * Finding and Reading Buffers
490 */
491 static int
492 _xfs_buf_obj_cmp(
493 struct rhashtable_compare_arg *arg,
494 const void *obj)
495 {
496 const struct xfs_buf_map *map = arg->key;
497 const struct xfs_buf *bp = obj;
498
499 /*
500 * The key hashing in the lookup path depends on the key being the
501 * first element of the compare_arg, make sure to assert this.
502 */
503 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
504
505 if (bp->b_bn != map->bm_bn)
506 return 1;
507
508 if (unlikely(bp->b_length != map->bm_len)) {
509 /*
510 * found a block number match. If the range doesn't
511 * match, the only way this is allowed is if the buffer
512 * in the cache is stale and the transaction that made
513 * it stale has not yet committed. i.e. we are
514 * reallocating a busy extent. Skip this buffer and
515 * continue searching for an exact match.
516 */
517 ASSERT(bp->b_flags & XBF_STALE);
518 return 1;
519 }
520 return 0;
521 }
522
523 static const struct rhashtable_params xfs_buf_hash_params = {
524 .min_size = 32, /* empty AGs have minimal footprint */
525 .nelem_hint = 16,
526 .key_len = sizeof(xfs_daddr_t),
527 .key_offset = offsetof(struct xfs_buf, b_bn),
528 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
529 .automatic_shrinking = true,
530 .obj_cmpfn = _xfs_buf_obj_cmp,
531 };
532
533 int
534 xfs_buf_hash_init(
535 struct xfs_perag *pag)
536 {
537 spin_lock_init(&pag->pag_buf_lock);
538 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
539 }
540
541 void
542 xfs_buf_hash_destroy(
543 struct xfs_perag *pag)
544 {
545 rhashtable_destroy(&pag->pag_buf_hash);
546 }
547
548 /*
549 * Look up, and creates if absent, a lockable buffer for
550 * a given range of an inode. The buffer is returned
551 * locked. No I/O is implied by this call.
552 */
553 xfs_buf_t *
554 _xfs_buf_find(
555 struct xfs_buftarg *btp,
556 struct xfs_buf_map *map,
557 int nmaps,
558 xfs_buf_flags_t flags,
559 xfs_buf_t *new_bp)
560 {
561 struct xfs_perag *pag;
562 xfs_buf_t *bp;
563 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
564 xfs_daddr_t eofs;
565 int i;
566
567 for (i = 0; i < nmaps; i++)
568 cmap.bm_len += map[i].bm_len;
569
570 /* Check for IOs smaller than the sector size / not sector aligned */
571 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
572 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
573
574 /*
575 * Corrupted block numbers can get through to here, unfortunately, so we
576 * have to check that the buffer falls within the filesystem bounds.
577 */
578 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
579 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
580 /*
581 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
582 * but none of the higher level infrastructure supports
583 * returning a specific error on buffer lookup failures.
584 */
585 xfs_alert(btp->bt_mount,
586 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
587 __func__, cmap.bm_bn, eofs);
588 WARN_ON(1);
589 return NULL;
590 }
591
592 pag = xfs_perag_get(btp->bt_mount,
593 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
594
595 spin_lock(&pag->pag_buf_lock);
596 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
597 xfs_buf_hash_params);
598 if (bp) {
599 atomic_inc(&bp->b_hold);
600 goto found;
601 }
602
603 /* No match found */
604 if (new_bp) {
605 /* the buffer keeps the perag reference until it is freed */
606 new_bp->b_pag = pag;
607 rhashtable_insert_fast(&pag->pag_buf_hash,
608 &new_bp->b_rhash_head,
609 xfs_buf_hash_params);
610 spin_unlock(&pag->pag_buf_lock);
611 } else {
612 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
613 spin_unlock(&pag->pag_buf_lock);
614 xfs_perag_put(pag);
615 }
616 return new_bp;
617
618 found:
619 spin_unlock(&pag->pag_buf_lock);
620 xfs_perag_put(pag);
621
622 if (!xfs_buf_trylock(bp)) {
623 if (flags & XBF_TRYLOCK) {
624 xfs_buf_rele(bp);
625 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
626 return NULL;
627 }
628 xfs_buf_lock(bp);
629 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
630 }
631
632 /*
633 * if the buffer is stale, clear all the external state associated with
634 * it. We need to keep flags such as how we allocated the buffer memory
635 * intact here.
636 */
637 if (bp->b_flags & XBF_STALE) {
638 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
639 ASSERT(bp->b_iodone == NULL);
640 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
641 bp->b_ops = NULL;
642 }
643
644 trace_xfs_buf_find(bp, flags, _RET_IP_);
645 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
646 return bp;
647 }
648
649 /*
650 * Assembles a buffer covering the specified range. The code is optimised for
651 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
652 * more hits than misses.
653 */
654 struct xfs_buf *
655 xfs_buf_get_map(
656 struct xfs_buftarg *target,
657 struct xfs_buf_map *map,
658 int nmaps,
659 xfs_buf_flags_t flags)
660 {
661 struct xfs_buf *bp;
662 struct xfs_buf *new_bp;
663 int error = 0;
664
665 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
666 if (likely(bp))
667 goto found;
668
669 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
670 if (unlikely(!new_bp))
671 return NULL;
672
673 error = xfs_buf_allocate_memory(new_bp, flags);
674 if (error) {
675 xfs_buf_free(new_bp);
676 return NULL;
677 }
678
679 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
680 if (!bp) {
681 xfs_buf_free(new_bp);
682 return NULL;
683 }
684
685 if (bp != new_bp)
686 xfs_buf_free(new_bp);
687
688 found:
689 if (!bp->b_addr) {
690 error = _xfs_buf_map_pages(bp, flags);
691 if (unlikely(error)) {
692 xfs_warn(target->bt_mount,
693 "%s: failed to map pagesn", __func__);
694 xfs_buf_relse(bp);
695 return NULL;
696 }
697 }
698
699 /*
700 * Clear b_error if this is a lookup from a caller that doesn't expect
701 * valid data to be found in the buffer.
702 */
703 if (!(flags & XBF_READ))
704 xfs_buf_ioerror(bp, 0);
705
706 XFS_STATS_INC(target->bt_mount, xb_get);
707 trace_xfs_buf_get(bp, flags, _RET_IP_);
708 return bp;
709 }
710
711 STATIC int
712 _xfs_buf_read(
713 xfs_buf_t *bp,
714 xfs_buf_flags_t flags)
715 {
716 ASSERT(!(flags & XBF_WRITE));
717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
718
719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
721
722 if (flags & XBF_ASYNC) {
723 xfs_buf_submit(bp);
724 return 0;
725 }
726 return xfs_buf_submit_wait(bp);
727 }
728
729 xfs_buf_t *
730 xfs_buf_read_map(
731 struct xfs_buftarg *target,
732 struct xfs_buf_map *map,
733 int nmaps,
734 xfs_buf_flags_t flags,
735 const struct xfs_buf_ops *ops)
736 {
737 struct xfs_buf *bp;
738
739 flags |= XBF_READ;
740
741 bp = xfs_buf_get_map(target, map, nmaps, flags);
742 if (bp) {
743 trace_xfs_buf_read(bp, flags, _RET_IP_);
744
745 if (!(bp->b_flags & XBF_DONE)) {
746 XFS_STATS_INC(target->bt_mount, xb_get_read);
747 bp->b_ops = ops;
748 _xfs_buf_read(bp, flags);
749 } else if (flags & XBF_ASYNC) {
750 /*
751 * Read ahead call which is already satisfied,
752 * drop the buffer
753 */
754 xfs_buf_relse(bp);
755 return NULL;
756 } else {
757 /* We do not want read in the flags */
758 bp->b_flags &= ~XBF_READ;
759 }
760 }
761
762 return bp;
763 }
764
765 /*
766 * If we are not low on memory then do the readahead in a deadlock
767 * safe manner.
768 */
769 void
770 xfs_buf_readahead_map(
771 struct xfs_buftarg *target,
772 struct xfs_buf_map *map,
773 int nmaps,
774 const struct xfs_buf_ops *ops)
775 {
776 if (bdi_read_congested(target->bt_bdev->bd_bdi))
777 return;
778
779 xfs_buf_read_map(target, map, nmaps,
780 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
781 }
782
783 /*
784 * Read an uncached buffer from disk. Allocates and returns a locked
785 * buffer containing the disk contents or nothing.
786 */
787 int
788 xfs_buf_read_uncached(
789 struct xfs_buftarg *target,
790 xfs_daddr_t daddr,
791 size_t numblks,
792 int flags,
793 struct xfs_buf **bpp,
794 const struct xfs_buf_ops *ops)
795 {
796 struct xfs_buf *bp;
797
798 *bpp = NULL;
799
800 bp = xfs_buf_get_uncached(target, numblks, flags);
801 if (!bp)
802 return -ENOMEM;
803
804 /* set up the buffer for a read IO */
805 ASSERT(bp->b_map_count == 1);
806 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
807 bp->b_maps[0].bm_bn = daddr;
808 bp->b_flags |= XBF_READ;
809 bp->b_ops = ops;
810
811 xfs_buf_submit_wait(bp);
812 if (bp->b_error) {
813 int error = bp->b_error;
814 xfs_buf_relse(bp);
815 return error;
816 }
817
818 *bpp = bp;
819 return 0;
820 }
821
822 /*
823 * Return a buffer allocated as an empty buffer and associated to external
824 * memory via xfs_buf_associate_memory() back to it's empty state.
825 */
826 void
827 xfs_buf_set_empty(
828 struct xfs_buf *bp,
829 size_t numblks)
830 {
831 if (bp->b_pages)
832 _xfs_buf_free_pages(bp);
833
834 bp->b_pages = NULL;
835 bp->b_page_count = 0;
836 bp->b_addr = NULL;
837 bp->b_length = numblks;
838 bp->b_io_length = numblks;
839
840 ASSERT(bp->b_map_count == 1);
841 bp->b_bn = XFS_BUF_DADDR_NULL;
842 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
843 bp->b_maps[0].bm_len = bp->b_length;
844 }
845
846 static inline struct page *
847 mem_to_page(
848 void *addr)
849 {
850 if ((!is_vmalloc_addr(addr))) {
851 return virt_to_page(addr);
852 } else {
853 return vmalloc_to_page(addr);
854 }
855 }
856
857 int
858 xfs_buf_associate_memory(
859 xfs_buf_t *bp,
860 void *mem,
861 size_t len)
862 {
863 int rval;
864 int i = 0;
865 unsigned long pageaddr;
866 unsigned long offset;
867 size_t buflen;
868 int page_count;
869
870 pageaddr = (unsigned long)mem & PAGE_MASK;
871 offset = (unsigned long)mem - pageaddr;
872 buflen = PAGE_ALIGN(len + offset);
873 page_count = buflen >> PAGE_SHIFT;
874
875 /* Free any previous set of page pointers */
876 if (bp->b_pages)
877 _xfs_buf_free_pages(bp);
878
879 bp->b_pages = NULL;
880 bp->b_addr = mem;
881
882 rval = _xfs_buf_get_pages(bp, page_count);
883 if (rval)
884 return rval;
885
886 bp->b_offset = offset;
887
888 for (i = 0; i < bp->b_page_count; i++) {
889 bp->b_pages[i] = mem_to_page((void *)pageaddr);
890 pageaddr += PAGE_SIZE;
891 }
892
893 bp->b_io_length = BTOBB(len);
894 bp->b_length = BTOBB(buflen);
895
896 return 0;
897 }
898
899 xfs_buf_t *
900 xfs_buf_get_uncached(
901 struct xfs_buftarg *target,
902 size_t numblks,
903 int flags)
904 {
905 unsigned long page_count;
906 int error, i;
907 struct xfs_buf *bp;
908 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
909
910 /* flags might contain irrelevant bits, pass only what we care about */
911 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
912 if (unlikely(bp == NULL))
913 goto fail;
914
915 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
916 error = _xfs_buf_get_pages(bp, page_count);
917 if (error)
918 goto fail_free_buf;
919
920 for (i = 0; i < page_count; i++) {
921 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
922 if (!bp->b_pages[i])
923 goto fail_free_mem;
924 }
925 bp->b_flags |= _XBF_PAGES;
926
927 error = _xfs_buf_map_pages(bp, 0);
928 if (unlikely(error)) {
929 xfs_warn(target->bt_mount,
930 "%s: failed to map pages", __func__);
931 goto fail_free_mem;
932 }
933
934 trace_xfs_buf_get_uncached(bp, _RET_IP_);
935 return bp;
936
937 fail_free_mem:
938 while (--i >= 0)
939 __free_page(bp->b_pages[i]);
940 _xfs_buf_free_pages(bp);
941 fail_free_buf:
942 xfs_buf_free_maps(bp);
943 kmem_zone_free(xfs_buf_zone, bp);
944 fail:
945 return NULL;
946 }
947
948 /*
949 * Increment reference count on buffer, to hold the buffer concurrently
950 * with another thread which may release (free) the buffer asynchronously.
951 * Must hold the buffer already to call this function.
952 */
953 void
954 xfs_buf_hold(
955 xfs_buf_t *bp)
956 {
957 trace_xfs_buf_hold(bp, _RET_IP_);
958 atomic_inc(&bp->b_hold);
959 }
960
961 /*
962 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
963 * placed on LRU or freed (depending on b_lru_ref).
964 */
965 void
966 xfs_buf_rele(
967 xfs_buf_t *bp)
968 {
969 struct xfs_perag *pag = bp->b_pag;
970 bool release;
971 bool freebuf = false;
972
973 trace_xfs_buf_rele(bp, _RET_IP_);
974
975 if (!pag) {
976 ASSERT(list_empty(&bp->b_lru));
977 if (atomic_dec_and_test(&bp->b_hold)) {
978 xfs_buf_ioacct_dec(bp);
979 xfs_buf_free(bp);
980 }
981 return;
982 }
983
984 ASSERT(atomic_read(&bp->b_hold) > 0);
985
986 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
987 spin_lock(&bp->b_lock);
988 if (!release) {
989 /*
990 * Drop the in-flight state if the buffer is already on the LRU
991 * and it holds the only reference. This is racy because we
992 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
993 * ensures the decrement occurs only once per-buf.
994 */
995 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
996 __xfs_buf_ioacct_dec(bp);
997 goto out_unlock;
998 }
999
1000 /* the last reference has been dropped ... */
1001 __xfs_buf_ioacct_dec(bp);
1002 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1003 /*
1004 * If the buffer is added to the LRU take a new reference to the
1005 * buffer for the LRU and clear the (now stale) dispose list
1006 * state flag
1007 */
1008 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1009 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1010 atomic_inc(&bp->b_hold);
1011 }
1012 spin_unlock(&pag->pag_buf_lock);
1013 } else {
1014 /*
1015 * most of the time buffers will already be removed from the
1016 * LRU, so optimise that case by checking for the
1017 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1018 * was on was the disposal list
1019 */
1020 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1021 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1022 } else {
1023 ASSERT(list_empty(&bp->b_lru));
1024 }
1025
1026 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1027 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1028 xfs_buf_hash_params);
1029 spin_unlock(&pag->pag_buf_lock);
1030 xfs_perag_put(pag);
1031 freebuf = true;
1032 }
1033
1034 out_unlock:
1035 spin_unlock(&bp->b_lock);
1036
1037 if (freebuf)
1038 xfs_buf_free(bp);
1039 }
1040
1041
1042 /*
1043 * Lock a buffer object, if it is not already locked.
1044 *
1045 * If we come across a stale, pinned, locked buffer, we know that we are
1046 * being asked to lock a buffer that has been reallocated. Because it is
1047 * pinned, we know that the log has not been pushed to disk and hence it
1048 * will still be locked. Rather than continuing to have trylock attempts
1049 * fail until someone else pushes the log, push it ourselves before
1050 * returning. This means that the xfsaild will not get stuck trying
1051 * to push on stale inode buffers.
1052 */
1053 int
1054 xfs_buf_trylock(
1055 struct xfs_buf *bp)
1056 {
1057 int locked;
1058
1059 locked = down_trylock(&bp->b_sema) == 0;
1060 if (locked) {
1061 XB_SET_OWNER(bp);
1062 trace_xfs_buf_trylock(bp, _RET_IP_);
1063 } else {
1064 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1065 }
1066 return locked;
1067 }
1068
1069 /*
1070 * Lock a buffer object.
1071 *
1072 * If we come across a stale, pinned, locked buffer, we know that we
1073 * are being asked to lock a buffer that has been reallocated. Because
1074 * it is pinned, we know that the log has not been pushed to disk and
1075 * hence it will still be locked. Rather than sleeping until someone
1076 * else pushes the log, push it ourselves before trying to get the lock.
1077 */
1078 void
1079 xfs_buf_lock(
1080 struct xfs_buf *bp)
1081 {
1082 trace_xfs_buf_lock(bp, _RET_IP_);
1083
1084 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1085 xfs_log_force(bp->b_target->bt_mount, 0);
1086 down(&bp->b_sema);
1087 XB_SET_OWNER(bp);
1088
1089 trace_xfs_buf_lock_done(bp, _RET_IP_);
1090 }
1091
1092 void
1093 xfs_buf_unlock(
1094 struct xfs_buf *bp)
1095 {
1096 ASSERT(xfs_buf_islocked(bp));
1097
1098 XB_CLEAR_OWNER(bp);
1099 up(&bp->b_sema);
1100
1101 trace_xfs_buf_unlock(bp, _RET_IP_);
1102 }
1103
1104 STATIC void
1105 xfs_buf_wait_unpin(
1106 xfs_buf_t *bp)
1107 {
1108 DECLARE_WAITQUEUE (wait, current);
1109
1110 if (atomic_read(&bp->b_pin_count) == 0)
1111 return;
1112
1113 add_wait_queue(&bp->b_waiters, &wait);
1114 for (;;) {
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 if (atomic_read(&bp->b_pin_count) == 0)
1117 break;
1118 io_schedule();
1119 }
1120 remove_wait_queue(&bp->b_waiters, &wait);
1121 set_current_state(TASK_RUNNING);
1122 }
1123
1124 /*
1125 * Buffer Utility Routines
1126 */
1127
1128 void
1129 xfs_buf_ioend(
1130 struct xfs_buf *bp)
1131 {
1132 bool read = bp->b_flags & XBF_READ;
1133
1134 trace_xfs_buf_iodone(bp, _RET_IP_);
1135
1136 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1137
1138 /*
1139 * Pull in IO completion errors now. We are guaranteed to be running
1140 * single threaded, so we don't need the lock to read b_io_error.
1141 */
1142 if (!bp->b_error && bp->b_io_error)
1143 xfs_buf_ioerror(bp, bp->b_io_error);
1144
1145 /* Only validate buffers that were read without errors */
1146 if (read && !bp->b_error && bp->b_ops) {
1147 ASSERT(!bp->b_iodone);
1148 bp->b_ops->verify_read(bp);
1149 }
1150
1151 if (!bp->b_error)
1152 bp->b_flags |= XBF_DONE;
1153
1154 if (bp->b_iodone)
1155 (*(bp->b_iodone))(bp);
1156 else if (bp->b_flags & XBF_ASYNC)
1157 xfs_buf_relse(bp);
1158 else
1159 complete(&bp->b_iowait);
1160 }
1161
1162 static void
1163 xfs_buf_ioend_work(
1164 struct work_struct *work)
1165 {
1166 struct xfs_buf *bp =
1167 container_of(work, xfs_buf_t, b_ioend_work);
1168
1169 xfs_buf_ioend(bp);
1170 }
1171
1172 static void
1173 xfs_buf_ioend_async(
1174 struct xfs_buf *bp)
1175 {
1176 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1177 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1178 }
1179
1180 void
1181 xfs_buf_ioerror(
1182 xfs_buf_t *bp,
1183 int error)
1184 {
1185 ASSERT(error <= 0 && error >= -1000);
1186 bp->b_error = error;
1187 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1188 }
1189
1190 void
1191 xfs_buf_ioerror_alert(
1192 struct xfs_buf *bp,
1193 const char *func)
1194 {
1195 xfs_alert(bp->b_target->bt_mount,
1196 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1197 (uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1198 }
1199
1200 int
1201 xfs_bwrite(
1202 struct xfs_buf *bp)
1203 {
1204 int error;
1205
1206 ASSERT(xfs_buf_islocked(bp));
1207
1208 bp->b_flags |= XBF_WRITE;
1209 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1210 XBF_WRITE_FAIL | XBF_DONE);
1211
1212 error = xfs_buf_submit_wait(bp);
1213 if (error) {
1214 xfs_force_shutdown(bp->b_target->bt_mount,
1215 SHUTDOWN_META_IO_ERROR);
1216 }
1217 return error;
1218 }
1219
1220 static void
1221 xfs_buf_bio_end_io(
1222 struct bio *bio)
1223 {
1224 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1225
1226 /*
1227 * don't overwrite existing errors - otherwise we can lose errors on
1228 * buffers that require multiple bios to complete.
1229 */
1230 if (bio->bi_status) {
1231 int error = blk_status_to_errno(bio->bi_status);
1232
1233 cmpxchg(&bp->b_io_error, 0, error);
1234 }
1235
1236 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1237 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1238
1239 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1240 xfs_buf_ioend_async(bp);
1241 bio_put(bio);
1242 }
1243
1244 static void
1245 xfs_buf_ioapply_map(
1246 struct xfs_buf *bp,
1247 int map,
1248 int *buf_offset,
1249 int *count,
1250 int op,
1251 int op_flags)
1252 {
1253 int page_index;
1254 int total_nr_pages = bp->b_page_count;
1255 int nr_pages;
1256 struct bio *bio;
1257 sector_t sector = bp->b_maps[map].bm_bn;
1258 int size;
1259 int offset;
1260
1261 total_nr_pages = bp->b_page_count;
1262
1263 /* skip the pages in the buffer before the start offset */
1264 page_index = 0;
1265 offset = *buf_offset;
1266 while (offset >= PAGE_SIZE) {
1267 page_index++;
1268 offset -= PAGE_SIZE;
1269 }
1270
1271 /*
1272 * Limit the IO size to the length of the current vector, and update the
1273 * remaining IO count for the next time around.
1274 */
1275 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1276 *count -= size;
1277 *buf_offset += size;
1278
1279 next_chunk:
1280 atomic_inc(&bp->b_io_remaining);
1281 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1282
1283 bio = bio_alloc(GFP_NOIO, nr_pages);
1284 bio_set_dev(bio, bp->b_target->bt_bdev);
1285 bio->bi_iter.bi_sector = sector;
1286 bio->bi_end_io = xfs_buf_bio_end_io;
1287 bio->bi_private = bp;
1288 bio_set_op_attrs(bio, op, op_flags);
1289
1290 for (; size && nr_pages; nr_pages--, page_index++) {
1291 int rbytes, nbytes = PAGE_SIZE - offset;
1292
1293 if (nbytes > size)
1294 nbytes = size;
1295
1296 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1297 offset);
1298 if (rbytes < nbytes)
1299 break;
1300
1301 offset = 0;
1302 sector += BTOBB(nbytes);
1303 size -= nbytes;
1304 total_nr_pages--;
1305 }
1306
1307 if (likely(bio->bi_iter.bi_size)) {
1308 if (xfs_buf_is_vmapped(bp)) {
1309 flush_kernel_vmap_range(bp->b_addr,
1310 xfs_buf_vmap_len(bp));
1311 }
1312 submit_bio(bio);
1313 if (size)
1314 goto next_chunk;
1315 } else {
1316 /*
1317 * This is guaranteed not to be the last io reference count
1318 * because the caller (xfs_buf_submit) holds a count itself.
1319 */
1320 atomic_dec(&bp->b_io_remaining);
1321 xfs_buf_ioerror(bp, -EIO);
1322 bio_put(bio);
1323 }
1324
1325 }
1326
1327 STATIC void
1328 _xfs_buf_ioapply(
1329 struct xfs_buf *bp)
1330 {
1331 struct blk_plug plug;
1332 int op;
1333 int op_flags = 0;
1334 int offset;
1335 int size;
1336 int i;
1337
1338 /*
1339 * Make sure we capture only current IO errors rather than stale errors
1340 * left over from previous use of the buffer (e.g. failed readahead).
1341 */
1342 bp->b_error = 0;
1343
1344 /*
1345 * Initialize the I/O completion workqueue if we haven't yet or the
1346 * submitter has not opted to specify a custom one.
1347 */
1348 if (!bp->b_ioend_wq)
1349 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1350
1351 if (bp->b_flags & XBF_WRITE) {
1352 op = REQ_OP_WRITE;
1353 if (bp->b_flags & XBF_SYNCIO)
1354 op_flags = REQ_SYNC;
1355 if (bp->b_flags & XBF_FUA)
1356 op_flags |= REQ_FUA;
1357 if (bp->b_flags & XBF_FLUSH)
1358 op_flags |= REQ_PREFLUSH;
1359
1360 /*
1361 * Run the write verifier callback function if it exists. If
1362 * this function fails it will mark the buffer with an error and
1363 * the IO should not be dispatched.
1364 */
1365 if (bp->b_ops) {
1366 bp->b_ops->verify_write(bp);
1367 if (bp->b_error) {
1368 xfs_force_shutdown(bp->b_target->bt_mount,
1369 SHUTDOWN_CORRUPT_INCORE);
1370 return;
1371 }
1372 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1373 struct xfs_mount *mp = bp->b_target->bt_mount;
1374
1375 /*
1376 * non-crc filesystems don't attach verifiers during
1377 * log recovery, so don't warn for such filesystems.
1378 */
1379 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1380 xfs_warn(mp,
1381 "%s: no ops on block 0x%llx/0x%x",
1382 __func__, bp->b_bn, bp->b_length);
1383 xfs_hex_dump(bp->b_addr, 64);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_io_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414 }
1415
1416 /*
1417 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1418 * the current reference to the IO. It is not safe to reference the buffer after
1419 * a call to this function unless the caller holds an additional reference
1420 * itself.
1421 */
1422 void
1423 xfs_buf_submit(
1424 struct xfs_buf *bp)
1425 {
1426 trace_xfs_buf_submit(bp, _RET_IP_);
1427
1428 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429 ASSERT(bp->b_flags & XBF_ASYNC);
1430
1431 /* on shutdown we stale and complete the buffer immediately */
1432 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1433 xfs_buf_ioerror(bp, -EIO);
1434 bp->b_flags &= ~XBF_DONE;
1435 xfs_buf_stale(bp);
1436 xfs_buf_ioend(bp);
1437 return;
1438 }
1439
1440 if (bp->b_flags & XBF_WRITE)
1441 xfs_buf_wait_unpin(bp);
1442
1443 /* clear the internal error state to avoid spurious errors */
1444 bp->b_io_error = 0;
1445
1446 /*
1447 * The caller's reference is released during I/O completion.
1448 * This occurs some time after the last b_io_remaining reference is
1449 * released, so after we drop our Io reference we have to have some
1450 * other reference to ensure the buffer doesn't go away from underneath
1451 * us. Take a direct reference to ensure we have safe access to the
1452 * buffer until we are finished with it.
1453 */
1454 xfs_buf_hold(bp);
1455
1456 /*
1457 * Set the count to 1 initially, this will stop an I/O completion
1458 * callout which happens before we have started all the I/O from calling
1459 * xfs_buf_ioend too early.
1460 */
1461 atomic_set(&bp->b_io_remaining, 1);
1462 xfs_buf_ioacct_inc(bp);
1463 _xfs_buf_ioapply(bp);
1464
1465 /*
1466 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1467 * reference we took above. If we drop it to zero, run completion so
1468 * that we don't return to the caller with completion still pending.
1469 */
1470 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1471 if (bp->b_error)
1472 xfs_buf_ioend(bp);
1473 else
1474 xfs_buf_ioend_async(bp);
1475 }
1476
1477 xfs_buf_rele(bp);
1478 /* Note: it is not safe to reference bp now we've dropped our ref */
1479 }
1480
1481 /*
1482 * Synchronous buffer IO submission path, read or write.
1483 */
1484 int
1485 xfs_buf_submit_wait(
1486 struct xfs_buf *bp)
1487 {
1488 int error;
1489
1490 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1491
1492 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1493
1494 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1495 xfs_buf_ioerror(bp, -EIO);
1496 xfs_buf_stale(bp);
1497 bp->b_flags &= ~XBF_DONE;
1498 return -EIO;
1499 }
1500
1501 if (bp->b_flags & XBF_WRITE)
1502 xfs_buf_wait_unpin(bp);
1503
1504 /* clear the internal error state to avoid spurious errors */
1505 bp->b_io_error = 0;
1506
1507 /*
1508 * For synchronous IO, the IO does not inherit the submitters reference
1509 * count, nor the buffer lock. Hence we cannot release the reference we
1510 * are about to take until we've waited for all IO completion to occur,
1511 * including any xfs_buf_ioend_async() work that may be pending.
1512 */
1513 xfs_buf_hold(bp);
1514
1515 /*
1516 * Set the count to 1 initially, this will stop an I/O completion
1517 * callout which happens before we have started all the I/O from calling
1518 * xfs_buf_ioend too early.
1519 */
1520 atomic_set(&bp->b_io_remaining, 1);
1521 _xfs_buf_ioapply(bp);
1522
1523 /*
1524 * make sure we run completion synchronously if it raced with us and is
1525 * already complete.
1526 */
1527 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1528 xfs_buf_ioend(bp);
1529
1530 /* wait for completion before gathering the error from the buffer */
1531 trace_xfs_buf_iowait(bp, _RET_IP_);
1532 wait_for_completion(&bp->b_iowait);
1533 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 error = bp->b_error;
1535
1536 /*
1537 * all done now, we can release the hold that keeps the buffer
1538 * referenced for the entire IO.
1539 */
1540 xfs_buf_rele(bp);
1541 return error;
1542 }
1543
1544 void *
1545 xfs_buf_offset(
1546 struct xfs_buf *bp,
1547 size_t offset)
1548 {
1549 struct page *page;
1550
1551 if (bp->b_addr)
1552 return bp->b_addr + offset;
1553
1554 offset += bp->b_offset;
1555 page = bp->b_pages[offset >> PAGE_SHIFT];
1556 return page_address(page) + (offset & (PAGE_SIZE-1));
1557 }
1558
1559 /*
1560 * Move data into or out of a buffer.
1561 */
1562 void
1563 xfs_buf_iomove(
1564 xfs_buf_t *bp, /* buffer to process */
1565 size_t boff, /* starting buffer offset */
1566 size_t bsize, /* length to copy */
1567 void *data, /* data address */
1568 xfs_buf_rw_t mode) /* read/write/zero flag */
1569 {
1570 size_t bend;
1571
1572 bend = boff + bsize;
1573 while (boff < bend) {
1574 struct page *page;
1575 int page_index, page_offset, csize;
1576
1577 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1578 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1579 page = bp->b_pages[page_index];
1580 csize = min_t(size_t, PAGE_SIZE - page_offset,
1581 BBTOB(bp->b_io_length) - boff);
1582
1583 ASSERT((csize + page_offset) <= PAGE_SIZE);
1584
1585 switch (mode) {
1586 case XBRW_ZERO:
1587 memset(page_address(page) + page_offset, 0, csize);
1588 break;
1589 case XBRW_READ:
1590 memcpy(data, page_address(page) + page_offset, csize);
1591 break;
1592 case XBRW_WRITE:
1593 memcpy(page_address(page) + page_offset, data, csize);
1594 }
1595
1596 boff += csize;
1597 data += csize;
1598 }
1599 }
1600
1601 /*
1602 * Handling of buffer targets (buftargs).
1603 */
1604
1605 /*
1606 * Wait for any bufs with callbacks that have been submitted but have not yet
1607 * returned. These buffers will have an elevated hold count, so wait on those
1608 * while freeing all the buffers only held by the LRU.
1609 */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 struct list_head *item,
1613 struct list_lru_one *lru,
1614 spinlock_t *lru_lock,
1615 void *arg)
1616
1617 {
1618 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1619 struct list_head *dispose = arg;
1620
1621 if (atomic_read(&bp->b_hold) > 1) {
1622 /* need to wait, so skip it this pass */
1623 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 return LRU_SKIP;
1625 }
1626 if (!spin_trylock(&bp->b_lock))
1627 return LRU_SKIP;
1628
1629 /*
1630 * clear the LRU reference count so the buffer doesn't get
1631 * ignored in xfs_buf_rele().
1632 */
1633 atomic_set(&bp->b_lru_ref, 0);
1634 bp->b_state |= XFS_BSTATE_DISPOSE;
1635 list_lru_isolate_move(lru, item, dispose);
1636 spin_unlock(&bp->b_lock);
1637 return LRU_REMOVED;
1638 }
1639
1640 void
1641 xfs_wait_buftarg(
1642 struct xfs_buftarg *btp)
1643 {
1644 LIST_HEAD(dispose);
1645 int loop = 0;
1646
1647 /*
1648 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 * released. This is critical as new buffers do not make the LRU until
1650 * they are released.
1651 *
1652 * Next, flush the buffer workqueue to ensure all completion processing
1653 * has finished. Just waiting on buffer locks is not sufficient for
1654 * async IO as the reference count held over IO is not released until
1655 * after the buffer lock is dropped. Hence we need to ensure here that
1656 * all reference counts have been dropped before we start walking the
1657 * LRU list.
1658 */
1659 while (percpu_counter_sum(&btp->bt_io_count))
1660 delay(100);
1661 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662
1663 /* loop until there is nothing left on the lru list. */
1664 while (list_lru_count(&btp->bt_lru)) {
1665 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 &dispose, LONG_MAX);
1667
1668 while (!list_empty(&dispose)) {
1669 struct xfs_buf *bp;
1670 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 list_del_init(&bp->b_lru);
1672 if (bp->b_flags & XBF_WRITE_FAIL) {
1673 xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1675 (long long)bp->b_bn);
1676 xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 }
1679 xfs_buf_rele(bp);
1680 }
1681 if (loop++ != 0)
1682 delay(100);
1683 }
1684 }
1685
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 struct list_head *item,
1689 struct list_lru_one *lru,
1690 spinlock_t *lru_lock,
1691 void *arg)
1692 {
1693 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1694 struct list_head *dispose = arg;
1695
1696 /*
1697 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 * If we fail to get the lock, just skip it.
1699 */
1700 if (!spin_trylock(&bp->b_lock))
1701 return LRU_SKIP;
1702 /*
1703 * Decrement the b_lru_ref count unless the value is already
1704 * zero. If the value is already zero, we need to reclaim the
1705 * buffer, otherwise it gets another trip through the LRU.
1706 */
1707 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 spin_unlock(&bp->b_lock);
1709 return LRU_ROTATE;
1710 }
1711
1712 bp->b_state |= XFS_BSTATE_DISPOSE;
1713 list_lru_isolate_move(lru, item, dispose);
1714 spin_unlock(&bp->b_lock);
1715 return LRU_REMOVED;
1716 }
1717
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 struct shrinker *shrink,
1721 struct shrink_control *sc)
1722 {
1723 struct xfs_buftarg *btp = container_of(shrink,
1724 struct xfs_buftarg, bt_shrinker);
1725 LIST_HEAD(dispose);
1726 unsigned long freed;
1727
1728 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 xfs_buftarg_isolate, &dispose);
1730
1731 while (!list_empty(&dispose)) {
1732 struct xfs_buf *bp;
1733 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 list_del_init(&bp->b_lru);
1735 xfs_buf_rele(bp);
1736 }
1737
1738 return freed;
1739 }
1740
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 struct shrinker *shrink,
1744 struct shrink_control *sc)
1745 {
1746 struct xfs_buftarg *btp = container_of(shrink,
1747 struct xfs_buftarg, bt_shrinker);
1748 return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750
1751 void
1752 xfs_free_buftarg(
1753 struct xfs_mount *mp,
1754 struct xfs_buftarg *btp)
1755 {
1756 unregister_shrinker(&btp->bt_shrinker);
1757 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1758 percpu_counter_destroy(&btp->bt_io_count);
1759 list_lru_destroy(&btp->bt_lru);
1760
1761 xfs_blkdev_issue_flush(btp);
1762
1763 kmem_free(btp);
1764 }
1765
1766 int
1767 xfs_setsize_buftarg(
1768 xfs_buftarg_t *btp,
1769 unsigned int sectorsize)
1770 {
1771 /* Set up metadata sector size info */
1772 btp->bt_meta_sectorsize = sectorsize;
1773 btp->bt_meta_sectormask = sectorsize - 1;
1774
1775 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1776 xfs_warn(btp->bt_mount,
1777 "Cannot set_blocksize to %u on device %pg",
1778 sectorsize, btp->bt_bdev);
1779 return -EINVAL;
1780 }
1781
1782 /* Set up device logical sector size mask */
1783 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1784 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1785
1786 return 0;
1787 }
1788
1789 /*
1790 * When allocating the initial buffer target we have not yet
1791 * read in the superblock, so don't know what sized sectors
1792 * are being used at this early stage. Play safe.
1793 */
1794 STATIC int
1795 xfs_setsize_buftarg_early(
1796 xfs_buftarg_t *btp,
1797 struct block_device *bdev)
1798 {
1799 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1800 }
1801
1802 xfs_buftarg_t *
1803 xfs_alloc_buftarg(
1804 struct xfs_mount *mp,
1805 struct block_device *bdev,
1806 struct dax_device *dax_dev)
1807 {
1808 xfs_buftarg_t *btp;
1809
1810 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1811
1812 btp->bt_mount = mp;
1813 btp->bt_dev = bdev->bd_dev;
1814 btp->bt_bdev = bdev;
1815 btp->bt_daxdev = dax_dev;
1816
1817 if (xfs_setsize_buftarg_early(btp, bdev))
1818 goto error;
1819
1820 if (list_lru_init(&btp->bt_lru))
1821 goto error;
1822
1823 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1824 goto error;
1825
1826 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1827 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1828 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1829 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1830 register_shrinker(&btp->bt_shrinker);
1831 return btp;
1832
1833 error:
1834 kmem_free(btp);
1835 return NULL;
1836 }
1837
1838 /*
1839 * Cancel a delayed write list.
1840 *
1841 * Remove each buffer from the list, clear the delwri queue flag and drop the
1842 * associated buffer reference.
1843 */
1844 void
1845 xfs_buf_delwri_cancel(
1846 struct list_head *list)
1847 {
1848 struct xfs_buf *bp;
1849
1850 while (!list_empty(list)) {
1851 bp = list_first_entry(list, struct xfs_buf, b_list);
1852
1853 xfs_buf_lock(bp);
1854 bp->b_flags &= ~_XBF_DELWRI_Q;
1855 list_del_init(&bp->b_list);
1856 xfs_buf_relse(bp);
1857 }
1858 }
1859
1860 /*
1861 * Add a buffer to the delayed write list.
1862 *
1863 * This queues a buffer for writeout if it hasn't already been. Note that
1864 * neither this routine nor the buffer list submission functions perform
1865 * any internal synchronization. It is expected that the lists are thread-local
1866 * to the callers.
1867 *
1868 * Returns true if we queued up the buffer, or false if it already had
1869 * been on the buffer list.
1870 */
1871 bool
1872 xfs_buf_delwri_queue(
1873 struct xfs_buf *bp,
1874 struct list_head *list)
1875 {
1876 ASSERT(xfs_buf_islocked(bp));
1877 ASSERT(!(bp->b_flags & XBF_READ));
1878
1879 /*
1880 * If the buffer is already marked delwri it already is queued up
1881 * by someone else for imediate writeout. Just ignore it in that
1882 * case.
1883 */
1884 if (bp->b_flags & _XBF_DELWRI_Q) {
1885 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1886 return false;
1887 }
1888
1889 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1890
1891 /*
1892 * If a buffer gets written out synchronously or marked stale while it
1893 * is on a delwri list we lazily remove it. To do this, the other party
1894 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1895 * It remains referenced and on the list. In a rare corner case it
1896 * might get readded to a delwri list after the synchronous writeout, in
1897 * which case we need just need to re-add the flag here.
1898 */
1899 bp->b_flags |= _XBF_DELWRI_Q;
1900 if (list_empty(&bp->b_list)) {
1901 atomic_inc(&bp->b_hold);
1902 list_add_tail(&bp->b_list, list);
1903 }
1904
1905 return true;
1906 }
1907
1908 /*
1909 * Compare function is more complex than it needs to be because
1910 * the return value is only 32 bits and we are doing comparisons
1911 * on 64 bit values
1912 */
1913 static int
1914 xfs_buf_cmp(
1915 void *priv,
1916 struct list_head *a,
1917 struct list_head *b)
1918 {
1919 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1920 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1921 xfs_daddr_t diff;
1922
1923 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1924 if (diff < 0)
1925 return -1;
1926 if (diff > 0)
1927 return 1;
1928 return 0;
1929 }
1930
1931 /*
1932 * submit buffers for write.
1933 *
1934 * When we have a large buffer list, we do not want to hold all the buffers
1935 * locked while we block on the request queue waiting for IO dispatch. To avoid
1936 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1937 * the lock hold times for lists which may contain thousands of objects.
1938 *
1939 * To do this, we sort the buffer list before we walk the list to lock and
1940 * submit buffers, and we plug and unplug around each group of buffers we
1941 * submit.
1942 */
1943 static int
1944 xfs_buf_delwri_submit_buffers(
1945 struct list_head *buffer_list,
1946 struct list_head *wait_list)
1947 {
1948 struct xfs_buf *bp, *n;
1949 LIST_HEAD (submit_list);
1950 int pinned = 0;
1951 struct blk_plug plug;
1952
1953 list_sort(NULL, buffer_list, xfs_buf_cmp);
1954
1955 blk_start_plug(&plug);
1956 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1957 if (!wait_list) {
1958 if (xfs_buf_ispinned(bp)) {
1959 pinned++;
1960 continue;
1961 }
1962 if (!xfs_buf_trylock(bp))
1963 continue;
1964 } else {
1965 xfs_buf_lock(bp);
1966 }
1967
1968 /*
1969 * Someone else might have written the buffer synchronously or
1970 * marked it stale in the meantime. In that case only the
1971 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1972 * reference and remove it from the list here.
1973 */
1974 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1975 list_del_init(&bp->b_list);
1976 xfs_buf_relse(bp);
1977 continue;
1978 }
1979
1980 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1981
1982 /*
1983 * We do all IO submission async. This means if we need
1984 * to wait for IO completion we need to take an extra
1985 * reference so the buffer is still valid on the other
1986 * side. We need to move the buffer onto the io_list
1987 * at this point so the caller can still access it.
1988 */
1989 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1990 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1991 if (wait_list) {
1992 xfs_buf_hold(bp);
1993 list_move_tail(&bp->b_list, wait_list);
1994 } else
1995 list_del_init(&bp->b_list);
1996
1997 xfs_buf_submit(bp);
1998 }
1999 blk_finish_plug(&plug);
2000
2001 return pinned;
2002 }
2003
2004 /*
2005 * Write out a buffer list asynchronously.
2006 *
2007 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2008 * out and not wait for I/O completion on any of the buffers. This interface
2009 * is only safely useable for callers that can track I/O completion by higher
2010 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2011 * function.
2012 */
2013 int
2014 xfs_buf_delwri_submit_nowait(
2015 struct list_head *buffer_list)
2016 {
2017 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2018 }
2019
2020 /*
2021 * Write out a buffer list synchronously.
2022 *
2023 * This will take the @buffer_list, write all buffers out and wait for I/O
2024 * completion on all of the buffers. @buffer_list is consumed by the function,
2025 * so callers must have some other way of tracking buffers if they require such
2026 * functionality.
2027 */
2028 int
2029 xfs_buf_delwri_submit(
2030 struct list_head *buffer_list)
2031 {
2032 LIST_HEAD (wait_list);
2033 int error = 0, error2;
2034 struct xfs_buf *bp;
2035
2036 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2037
2038 /* Wait for IO to complete. */
2039 while (!list_empty(&wait_list)) {
2040 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2041
2042 list_del_init(&bp->b_list);
2043
2044 /* locking the buffer will wait for async IO completion. */
2045 xfs_buf_lock(bp);
2046 error2 = bp->b_error;
2047 xfs_buf_relse(bp);
2048 if (!error)
2049 error = error2;
2050 }
2051
2052 return error;
2053 }
2054
2055 /*
2056 * Push a single buffer on a delwri queue.
2057 *
2058 * The purpose of this function is to submit a single buffer of a delwri queue
2059 * and return with the buffer still on the original queue. The waiting delwri
2060 * buffer submission infrastructure guarantees transfer of the delwri queue
2061 * buffer reference to a temporary wait list. We reuse this infrastructure to
2062 * transfer the buffer back to the original queue.
2063 *
2064 * Note the buffer transitions from the queued state, to the submitted and wait
2065 * listed state and back to the queued state during this call. The buffer
2066 * locking and queue management logic between _delwri_pushbuf() and
2067 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2068 * before returning.
2069 */
2070 int
2071 xfs_buf_delwri_pushbuf(
2072 struct xfs_buf *bp,
2073 struct list_head *buffer_list)
2074 {
2075 LIST_HEAD (submit_list);
2076 int error;
2077
2078 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2079
2080 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2081
2082 /*
2083 * Isolate the buffer to a new local list so we can submit it for I/O
2084 * independently from the rest of the original list.
2085 */
2086 xfs_buf_lock(bp);
2087 list_move(&bp->b_list, &submit_list);
2088 xfs_buf_unlock(bp);
2089
2090 /*
2091 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2092 * the buffer on the wait list with an associated reference. Rather than
2093 * bounce the buffer from a local wait list back to the original list
2094 * after I/O completion, reuse the original list as the wait list.
2095 */
2096 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2097
2098 /*
2099 * The buffer is now under I/O and wait listed as during typical delwri
2100 * submission. Lock the buffer to wait for I/O completion. Rather than
2101 * remove the buffer from the wait list and release the reference, we
2102 * want to return with the buffer queued to the original list. The
2103 * buffer already sits on the original list with a wait list reference,
2104 * however. If we let the queue inherit that wait list reference, all we
2105 * need to do is reset the DELWRI_Q flag.
2106 */
2107 xfs_buf_lock(bp);
2108 error = bp->b_error;
2109 bp->b_flags |= _XBF_DELWRI_Q;
2110 xfs_buf_unlock(bp);
2111
2112 return error;
2113 }
2114
2115 int __init
2116 xfs_buf_init(void)
2117 {
2118 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2119 KM_ZONE_HWALIGN, NULL);
2120 if (!xfs_buf_zone)
2121 goto out;
2122
2123 return 0;
2124
2125 out:
2126 return -ENOMEM;
2127 }
2128
2129 void
2130 xfs_buf_terminate(void)
2131 {
2132 kmem_zone_destroy(xfs_buf_zone);
2133 }