]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_buf.c
e71cfbd5acb3c74df23be024c91420a07291a493
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90 void
91 xfs_buf_stale(
92 struct xfs_buf *bp)
93 {
94 ASSERT(xfs_buf_islocked(bp));
95
96 bp->b_flags |= XBF_STALE;
97
98 /*
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
102 */
103 bp->b_flags &= ~_XBF_DELWRI_Q;
104
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
110
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
113 }
114
115 static int
116 xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
119 {
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
122
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
125 return 0;
126 }
127
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
131 return -ENOMEM;
132 return 0;
133 }
134
135 /*
136 * Frees b_pages if it was allocated.
137 */
138 static void
139 xfs_buf_free_maps(
140 struct xfs_buf *bp)
141 {
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
145 }
146 }
147
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
152 int nmaps,
153 xfs_buf_flags_t flags)
154 {
155 struct xfs_buf *bp;
156 int error;
157 int i;
158
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 if (unlikely(!bp))
161 return NULL;
162
163 /*
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
166 */
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
179 bp->b_flags = flags;
180
181 /*
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
185 */
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
190 }
191
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
198 }
199 bp->b_io_length = bp->b_length;
200
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(target->bt_mount, xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
206
207 return bp;
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count)
218 {
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
224 } else {
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
228 return -ENOMEM;
229 }
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 }
232 return 0;
233 }
234
235 /*
236 * Frees b_pages if it was allocated.
237 */
238 STATIC void
239 _xfs_buf_free_pages(
240 xfs_buf_t *bp)
241 {
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
244 bp->b_pages = NULL;
245 }
246 }
247
248 /*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
254 */
255 void
256 xfs_buf_free(
257 xfs_buf_t *bp)
258 {
259 trace_xfs_buf_free(bp, _RET_IP_);
260
261 ASSERT(list_empty(&bp->b_lru));
262
263 if (bp->b_flags & _XBF_PAGES) {
264 uint i;
265
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
269
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
272
273 __free_page(page);
274 }
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
280 }
281
282 /*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
289 {
290 size_t size;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
295 int error;
296
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
322 return 0;
323 }
324
325 use_alloc_page:
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 >> PAGE_SHIFT;
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
331 if (unlikely(error))
332 return error;
333
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = -ENOMEM;
346 goto out_free_pages;
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
358 current->comm, current->pid,
359 __func__, gfp_mask);
360
361 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
362 congestion_wait(BLK_RW_ASYNC, HZ/50);
363 goto retry;
364 }
365
366 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
367
368 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 size -= nbytes;
370 bp->b_pages[i] = page;
371 offset = 0;
372 }
373 return 0;
374
375 out_free_pages:
376 for (i = 0; i < bp->b_page_count; i++)
377 __free_page(bp->b_pages[i]);
378 return error;
379 }
380
381 /*
382 * Map buffer into kernel address-space if necessary.
383 */
384 STATIC int
385 _xfs_buf_map_pages(
386 xfs_buf_t *bp,
387 uint flags)
388 {
389 ASSERT(bp->b_flags & _XBF_PAGES);
390 if (bp->b_page_count == 1) {
391 /* A single page buffer is always mappable */
392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 } else if (flags & XBF_UNMAPPED) {
394 bp->b_addr = NULL;
395 } else {
396 int retried = 0;
397 unsigned noio_flag;
398
399 /*
400 * vm_map_ram() will allocate auxillary structures (e.g.
401 * pagetables) with GFP_KERNEL, yet we are likely to be under
402 * GFP_NOFS context here. Hence we need to tell memory reclaim
403 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
404 * memory reclaim re-entering the filesystem here and
405 * potentially deadlocking.
406 */
407 noio_flag = memalloc_noio_save();
408 do {
409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 -1, PAGE_KERNEL);
411 if (bp->b_addr)
412 break;
413 vm_unmap_aliases();
414 } while (retried++ <= 1);
415 memalloc_noio_restore(noio_flag);
416
417 if (!bp->b_addr)
418 return -ENOMEM;
419 bp->b_addr += bp->b_offset;
420 }
421
422 return 0;
423 }
424
425 /*
426 * Finding and Reading Buffers
427 */
428
429 /*
430 * Look up, and creates if absent, a lockable buffer for
431 * a given range of an inode. The buffer is returned
432 * locked. No I/O is implied by this call.
433 */
434 xfs_buf_t *
435 _xfs_buf_find(
436 struct xfs_buftarg *btp,
437 struct xfs_buf_map *map,
438 int nmaps,
439 xfs_buf_flags_t flags,
440 xfs_buf_t *new_bp)
441 {
442 struct xfs_perag *pag;
443 struct rb_node **rbp;
444 struct rb_node *parent;
445 xfs_buf_t *bp;
446 xfs_daddr_t blkno = map[0].bm_bn;
447 xfs_daddr_t eofs;
448 int numblks = 0;
449 int i;
450
451 for (i = 0; i < nmaps; i++)
452 numblks += map[i].bm_len;
453
454 /* Check for IOs smaller than the sector size / not sector aligned */
455 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
456 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
457
458 /*
459 * Corrupted block numbers can get through to here, unfortunately, so we
460 * have to check that the buffer falls within the filesystem bounds.
461 */
462 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
463 if (blkno < 0 || blkno >= eofs) {
464 /*
465 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
466 * but none of the higher level infrastructure supports
467 * returning a specific error on buffer lookup failures.
468 */
469 xfs_alert(btp->bt_mount,
470 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
471 __func__, blkno, eofs);
472 WARN_ON(1);
473 return NULL;
474 }
475
476 /* get tree root */
477 pag = xfs_perag_get(btp->bt_mount,
478 xfs_daddr_to_agno(btp->bt_mount, blkno));
479
480 /* walk tree */
481 spin_lock(&pag->pag_buf_lock);
482 rbp = &pag->pag_buf_tree.rb_node;
483 parent = NULL;
484 bp = NULL;
485 while (*rbp) {
486 parent = *rbp;
487 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
488
489 if (blkno < bp->b_bn)
490 rbp = &(*rbp)->rb_left;
491 else if (blkno > bp->b_bn)
492 rbp = &(*rbp)->rb_right;
493 else {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching to the right for an exact match.
501 */
502 if (bp->b_length != numblks) {
503 ASSERT(bp->b_flags & XBF_STALE);
504 rbp = &(*rbp)->rb_right;
505 continue;
506 }
507 atomic_inc(&bp->b_hold);
508 goto found;
509 }
510 }
511
512 /* No match found */
513 if (new_bp) {
514 rb_link_node(&new_bp->b_rbnode, parent, rbp);
515 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
516 /* the buffer keeps the perag reference until it is freed */
517 new_bp->b_pag = pag;
518 spin_unlock(&pag->pag_buf_lock);
519 } else {
520 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
521 spin_unlock(&pag->pag_buf_lock);
522 xfs_perag_put(pag);
523 }
524 return new_bp;
525
526 found:
527 spin_unlock(&pag->pag_buf_lock);
528 xfs_perag_put(pag);
529
530 if (!xfs_buf_trylock(bp)) {
531 if (flags & XBF_TRYLOCK) {
532 xfs_buf_rele(bp);
533 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
534 return NULL;
535 }
536 xfs_buf_lock(bp);
537 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
538 }
539
540 /*
541 * if the buffer is stale, clear all the external state associated with
542 * it. We need to keep flags such as how we allocated the buffer memory
543 * intact here.
544 */
545 if (bp->b_flags & XBF_STALE) {
546 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
547 ASSERT(bp->b_iodone == NULL);
548 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
549 bp->b_ops = NULL;
550 }
551
552 trace_xfs_buf_find(bp, flags, _RET_IP_);
553 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
554 return bp;
555 }
556
557 /*
558 * Assembles a buffer covering the specified range. The code is optimised for
559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
560 * more hits than misses.
561 */
562 struct xfs_buf *
563 xfs_buf_get_map(
564 struct xfs_buftarg *target,
565 struct xfs_buf_map *map,
566 int nmaps,
567 xfs_buf_flags_t flags)
568 {
569 struct xfs_buf *bp;
570 struct xfs_buf *new_bp;
571 int error = 0;
572
573 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
574 if (likely(bp))
575 goto found;
576
577 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
578 if (unlikely(!new_bp))
579 return NULL;
580
581 error = xfs_buf_allocate_memory(new_bp, flags);
582 if (error) {
583 xfs_buf_free(new_bp);
584 return NULL;
585 }
586
587 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
588 if (!bp) {
589 xfs_buf_free(new_bp);
590 return NULL;
591 }
592
593 if (bp != new_bp)
594 xfs_buf_free(new_bp);
595
596 found:
597 if (!bp->b_addr) {
598 error = _xfs_buf_map_pages(bp, flags);
599 if (unlikely(error)) {
600 xfs_warn(target->bt_mount,
601 "%s: failed to map pagesn", __func__);
602 xfs_buf_relse(bp);
603 return NULL;
604 }
605 }
606
607 /*
608 * Clear b_error if this is a lookup from a caller that doesn't expect
609 * valid data to be found in the buffer.
610 */
611 if (!(flags & XBF_READ))
612 xfs_buf_ioerror(bp, 0);
613
614 XFS_STATS_INC(target->bt_mount, xb_get);
615 trace_xfs_buf_get(bp, flags, _RET_IP_);
616 return bp;
617 }
618
619 STATIC int
620 _xfs_buf_read(
621 xfs_buf_t *bp,
622 xfs_buf_flags_t flags)
623 {
624 ASSERT(!(flags & XBF_WRITE));
625 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
626
627 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
628 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
629
630 if (flags & XBF_ASYNC) {
631 xfs_buf_submit(bp);
632 return 0;
633 }
634 return xfs_buf_submit_wait(bp);
635 }
636
637 xfs_buf_t *
638 xfs_buf_read_map(
639 struct xfs_buftarg *target,
640 struct xfs_buf_map *map,
641 int nmaps,
642 xfs_buf_flags_t flags,
643 const struct xfs_buf_ops *ops)
644 {
645 struct xfs_buf *bp;
646
647 flags |= XBF_READ;
648
649 bp = xfs_buf_get_map(target, map, nmaps, flags);
650 if (bp) {
651 trace_xfs_buf_read(bp, flags, _RET_IP_);
652
653 if (!(bp->b_flags & XBF_DONE)) {
654 XFS_STATS_INC(target->bt_mount, xb_get_read);
655 bp->b_ops = ops;
656 _xfs_buf_read(bp, flags);
657 } else if (flags & XBF_ASYNC) {
658 /*
659 * Read ahead call which is already satisfied,
660 * drop the buffer
661 */
662 xfs_buf_relse(bp);
663 return NULL;
664 } else {
665 /* We do not want read in the flags */
666 bp->b_flags &= ~XBF_READ;
667 }
668 }
669
670 return bp;
671 }
672
673 /*
674 * If we are not low on memory then do the readahead in a deadlock
675 * safe manner.
676 */
677 void
678 xfs_buf_readahead_map(
679 struct xfs_buftarg *target,
680 struct xfs_buf_map *map,
681 int nmaps,
682 const struct xfs_buf_ops *ops)
683 {
684 if (bdi_read_congested(target->bt_bdi))
685 return;
686
687 xfs_buf_read_map(target, map, nmaps,
688 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
689 }
690
691 /*
692 * Read an uncached buffer from disk. Allocates and returns a locked
693 * buffer containing the disk contents or nothing.
694 */
695 int
696 xfs_buf_read_uncached(
697 struct xfs_buftarg *target,
698 xfs_daddr_t daddr,
699 size_t numblks,
700 int flags,
701 struct xfs_buf **bpp,
702 const struct xfs_buf_ops *ops)
703 {
704 struct xfs_buf *bp;
705
706 *bpp = NULL;
707
708 bp = xfs_buf_get_uncached(target, numblks, flags);
709 if (!bp)
710 return -ENOMEM;
711
712 /* set up the buffer for a read IO */
713 ASSERT(bp->b_map_count == 1);
714 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
715 bp->b_maps[0].bm_bn = daddr;
716 bp->b_flags |= XBF_READ;
717 bp->b_ops = ops;
718
719 xfs_buf_submit_wait(bp);
720 if (bp->b_error) {
721 int error = bp->b_error;
722 xfs_buf_relse(bp);
723 return error;
724 }
725
726 *bpp = bp;
727 return 0;
728 }
729
730 /*
731 * Return a buffer allocated as an empty buffer and associated to external
732 * memory via xfs_buf_associate_memory() back to it's empty state.
733 */
734 void
735 xfs_buf_set_empty(
736 struct xfs_buf *bp,
737 size_t numblks)
738 {
739 if (bp->b_pages)
740 _xfs_buf_free_pages(bp);
741
742 bp->b_pages = NULL;
743 bp->b_page_count = 0;
744 bp->b_addr = NULL;
745 bp->b_length = numblks;
746 bp->b_io_length = numblks;
747
748 ASSERT(bp->b_map_count == 1);
749 bp->b_bn = XFS_BUF_DADDR_NULL;
750 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
751 bp->b_maps[0].bm_len = bp->b_length;
752 }
753
754 static inline struct page *
755 mem_to_page(
756 void *addr)
757 {
758 if ((!is_vmalloc_addr(addr))) {
759 return virt_to_page(addr);
760 } else {
761 return vmalloc_to_page(addr);
762 }
763 }
764
765 int
766 xfs_buf_associate_memory(
767 xfs_buf_t *bp,
768 void *mem,
769 size_t len)
770 {
771 int rval;
772 int i = 0;
773 unsigned long pageaddr;
774 unsigned long offset;
775 size_t buflen;
776 int page_count;
777
778 pageaddr = (unsigned long)mem & PAGE_MASK;
779 offset = (unsigned long)mem - pageaddr;
780 buflen = PAGE_ALIGN(len + offset);
781 page_count = buflen >> PAGE_SHIFT;
782
783 /* Free any previous set of page pointers */
784 if (bp->b_pages)
785 _xfs_buf_free_pages(bp);
786
787 bp->b_pages = NULL;
788 bp->b_addr = mem;
789
790 rval = _xfs_buf_get_pages(bp, page_count);
791 if (rval)
792 return rval;
793
794 bp->b_offset = offset;
795
796 for (i = 0; i < bp->b_page_count; i++) {
797 bp->b_pages[i] = mem_to_page((void *)pageaddr);
798 pageaddr += PAGE_SIZE;
799 }
800
801 bp->b_io_length = BTOBB(len);
802 bp->b_length = BTOBB(buflen);
803
804 return 0;
805 }
806
807 xfs_buf_t *
808 xfs_buf_get_uncached(
809 struct xfs_buftarg *target,
810 size_t numblks,
811 int flags)
812 {
813 unsigned long page_count;
814 int error, i;
815 struct xfs_buf *bp;
816 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
817
818 bp = _xfs_buf_alloc(target, &map, 1, 0);
819 if (unlikely(bp == NULL))
820 goto fail;
821
822 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
823 error = _xfs_buf_get_pages(bp, page_count);
824 if (error)
825 goto fail_free_buf;
826
827 for (i = 0; i < page_count; i++) {
828 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
829 if (!bp->b_pages[i])
830 goto fail_free_mem;
831 }
832 bp->b_flags |= _XBF_PAGES;
833
834 error = _xfs_buf_map_pages(bp, 0);
835 if (unlikely(error)) {
836 xfs_warn(target->bt_mount,
837 "%s: failed to map pages", __func__);
838 goto fail_free_mem;
839 }
840
841 trace_xfs_buf_get_uncached(bp, _RET_IP_);
842 return bp;
843
844 fail_free_mem:
845 while (--i >= 0)
846 __free_page(bp->b_pages[i]);
847 _xfs_buf_free_pages(bp);
848 fail_free_buf:
849 xfs_buf_free_maps(bp);
850 kmem_zone_free(xfs_buf_zone, bp);
851 fail:
852 return NULL;
853 }
854
855 /*
856 * Increment reference count on buffer, to hold the buffer concurrently
857 * with another thread which may release (free) the buffer asynchronously.
858 * Must hold the buffer already to call this function.
859 */
860 void
861 xfs_buf_hold(
862 xfs_buf_t *bp)
863 {
864 trace_xfs_buf_hold(bp, _RET_IP_);
865 atomic_inc(&bp->b_hold);
866 }
867
868 /*
869 * Releases a hold on the specified buffer. If the
870 * the hold count is 1, calls xfs_buf_free.
871 */
872 void
873 xfs_buf_rele(
874 xfs_buf_t *bp)
875 {
876 struct xfs_perag *pag = bp->b_pag;
877
878 trace_xfs_buf_rele(bp, _RET_IP_);
879
880 if (!pag) {
881 ASSERT(list_empty(&bp->b_lru));
882 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
883 if (atomic_dec_and_test(&bp->b_hold))
884 xfs_buf_free(bp);
885 return;
886 }
887
888 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
889
890 ASSERT(atomic_read(&bp->b_hold) > 0);
891 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
892 spin_lock(&bp->b_lock);
893 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
894 /*
895 * If the buffer is added to the LRU take a new
896 * reference to the buffer for the LRU and clear the
897 * (now stale) dispose list state flag
898 */
899 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
900 bp->b_state &= ~XFS_BSTATE_DISPOSE;
901 atomic_inc(&bp->b_hold);
902 }
903 spin_unlock(&bp->b_lock);
904 spin_unlock(&pag->pag_buf_lock);
905 } else {
906 /*
907 * most of the time buffers will already be removed from
908 * the LRU, so optimise that case by checking for the
909 * XFS_BSTATE_DISPOSE flag indicating the last list the
910 * buffer was on was the disposal list
911 */
912 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
913 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
914 } else {
915 ASSERT(list_empty(&bp->b_lru));
916 }
917 spin_unlock(&bp->b_lock);
918
919 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
920 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
921 spin_unlock(&pag->pag_buf_lock);
922 xfs_perag_put(pag);
923 xfs_buf_free(bp);
924 }
925 }
926 }
927
928
929 /*
930 * Lock a buffer object, if it is not already locked.
931 *
932 * If we come across a stale, pinned, locked buffer, we know that we are
933 * being asked to lock a buffer that has been reallocated. Because it is
934 * pinned, we know that the log has not been pushed to disk and hence it
935 * will still be locked. Rather than continuing to have trylock attempts
936 * fail until someone else pushes the log, push it ourselves before
937 * returning. This means that the xfsaild will not get stuck trying
938 * to push on stale inode buffers.
939 */
940 int
941 xfs_buf_trylock(
942 struct xfs_buf *bp)
943 {
944 int locked;
945
946 locked = down_trylock(&bp->b_sema) == 0;
947 if (locked)
948 XB_SET_OWNER(bp);
949
950 trace_xfs_buf_trylock(bp, _RET_IP_);
951 return locked;
952 }
953
954 /*
955 * Lock a buffer object.
956 *
957 * If we come across a stale, pinned, locked buffer, we know that we
958 * are being asked to lock a buffer that has been reallocated. Because
959 * it is pinned, we know that the log has not been pushed to disk and
960 * hence it will still be locked. Rather than sleeping until someone
961 * else pushes the log, push it ourselves before trying to get the lock.
962 */
963 void
964 xfs_buf_lock(
965 struct xfs_buf *bp)
966 {
967 trace_xfs_buf_lock(bp, _RET_IP_);
968
969 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
970 xfs_log_force(bp->b_target->bt_mount, 0);
971 down(&bp->b_sema);
972 XB_SET_OWNER(bp);
973
974 trace_xfs_buf_lock_done(bp, _RET_IP_);
975 }
976
977 void
978 xfs_buf_unlock(
979 struct xfs_buf *bp)
980 {
981 XB_CLEAR_OWNER(bp);
982 up(&bp->b_sema);
983
984 trace_xfs_buf_unlock(bp, _RET_IP_);
985 }
986
987 STATIC void
988 xfs_buf_wait_unpin(
989 xfs_buf_t *bp)
990 {
991 DECLARE_WAITQUEUE (wait, current);
992
993 if (atomic_read(&bp->b_pin_count) == 0)
994 return;
995
996 add_wait_queue(&bp->b_waiters, &wait);
997 for (;;) {
998 set_current_state(TASK_UNINTERRUPTIBLE);
999 if (atomic_read(&bp->b_pin_count) == 0)
1000 break;
1001 io_schedule();
1002 }
1003 remove_wait_queue(&bp->b_waiters, &wait);
1004 set_current_state(TASK_RUNNING);
1005 }
1006
1007 /*
1008 * Buffer Utility Routines
1009 */
1010
1011 void
1012 xfs_buf_ioend(
1013 struct xfs_buf *bp)
1014 {
1015 bool read = bp->b_flags & XBF_READ;
1016
1017 trace_xfs_buf_iodone(bp, _RET_IP_);
1018
1019 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1020
1021 /*
1022 * Pull in IO completion errors now. We are guaranteed to be running
1023 * single threaded, so we don't need the lock to read b_io_error.
1024 */
1025 if (!bp->b_error && bp->b_io_error)
1026 xfs_buf_ioerror(bp, bp->b_io_error);
1027
1028 /* Only validate buffers that were read without errors */
1029 if (read && !bp->b_error && bp->b_ops) {
1030 ASSERT(!bp->b_iodone);
1031 bp->b_ops->verify_read(bp);
1032 }
1033
1034 if (!bp->b_error)
1035 bp->b_flags |= XBF_DONE;
1036
1037 if (bp->b_iodone)
1038 (*(bp->b_iodone))(bp);
1039 else if (bp->b_flags & XBF_ASYNC)
1040 xfs_buf_relse(bp);
1041 else
1042 complete(&bp->b_iowait);
1043 }
1044
1045 static void
1046 xfs_buf_ioend_work(
1047 struct work_struct *work)
1048 {
1049 struct xfs_buf *bp =
1050 container_of(work, xfs_buf_t, b_ioend_work);
1051
1052 xfs_buf_ioend(bp);
1053 }
1054
1055 static void
1056 xfs_buf_ioend_async(
1057 struct xfs_buf *bp)
1058 {
1059 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1060 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1061 }
1062
1063 void
1064 xfs_buf_ioerror(
1065 xfs_buf_t *bp,
1066 int error)
1067 {
1068 ASSERT(error <= 0 && error >= -1000);
1069 bp->b_error = error;
1070 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1071 }
1072
1073 void
1074 xfs_buf_ioerror_alert(
1075 struct xfs_buf *bp,
1076 const char *func)
1077 {
1078 xfs_alert(bp->b_target->bt_mount,
1079 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1080 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1081 }
1082
1083 int
1084 xfs_bwrite(
1085 struct xfs_buf *bp)
1086 {
1087 int error;
1088
1089 ASSERT(xfs_buf_islocked(bp));
1090
1091 bp->b_flags |= XBF_WRITE;
1092 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1093 XBF_WRITE_FAIL | XBF_DONE);
1094
1095 error = xfs_buf_submit_wait(bp);
1096 if (error) {
1097 xfs_force_shutdown(bp->b_target->bt_mount,
1098 SHUTDOWN_META_IO_ERROR);
1099 }
1100 return error;
1101 }
1102
1103 static void
1104 xfs_buf_bio_end_io(
1105 struct bio *bio)
1106 {
1107 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1108
1109 /*
1110 * don't overwrite existing errors - otherwise we can lose errors on
1111 * buffers that require multiple bios to complete.
1112 */
1113 if (bio->bi_error)
1114 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1115
1116 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1117 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1118
1119 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1120 xfs_buf_ioend_async(bp);
1121 bio_put(bio);
1122 }
1123
1124 static void
1125 xfs_buf_ioapply_map(
1126 struct xfs_buf *bp,
1127 int map,
1128 int *buf_offset,
1129 int *count,
1130 int rw)
1131 {
1132 int page_index;
1133 int total_nr_pages = bp->b_page_count;
1134 int nr_pages;
1135 struct bio *bio;
1136 sector_t sector = bp->b_maps[map].bm_bn;
1137 int size;
1138 int offset;
1139
1140 total_nr_pages = bp->b_page_count;
1141
1142 /* skip the pages in the buffer before the start offset */
1143 page_index = 0;
1144 offset = *buf_offset;
1145 while (offset >= PAGE_SIZE) {
1146 page_index++;
1147 offset -= PAGE_SIZE;
1148 }
1149
1150 /*
1151 * Limit the IO size to the length of the current vector, and update the
1152 * remaining IO count for the next time around.
1153 */
1154 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1155 *count -= size;
1156 *buf_offset += size;
1157
1158 next_chunk:
1159 atomic_inc(&bp->b_io_remaining);
1160 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1161 if (nr_pages > total_nr_pages)
1162 nr_pages = total_nr_pages;
1163
1164 bio = bio_alloc(GFP_NOIO, nr_pages);
1165 bio->bi_bdev = bp->b_target->bt_bdev;
1166 bio->bi_iter.bi_sector = sector;
1167 bio->bi_end_io = xfs_buf_bio_end_io;
1168 bio->bi_private = bp;
1169
1170
1171 for (; size && nr_pages; nr_pages--, page_index++) {
1172 int rbytes, nbytes = PAGE_SIZE - offset;
1173
1174 if (nbytes > size)
1175 nbytes = size;
1176
1177 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1178 offset);
1179 if (rbytes < nbytes)
1180 break;
1181
1182 offset = 0;
1183 sector += BTOBB(nbytes);
1184 size -= nbytes;
1185 total_nr_pages--;
1186 }
1187
1188 if (likely(bio->bi_iter.bi_size)) {
1189 if (xfs_buf_is_vmapped(bp)) {
1190 flush_kernel_vmap_range(bp->b_addr,
1191 xfs_buf_vmap_len(bp));
1192 }
1193 submit_bio(rw, bio);
1194 if (size)
1195 goto next_chunk;
1196 } else {
1197 /*
1198 * This is guaranteed not to be the last io reference count
1199 * because the caller (xfs_buf_submit) holds a count itself.
1200 */
1201 atomic_dec(&bp->b_io_remaining);
1202 xfs_buf_ioerror(bp, -EIO);
1203 bio_put(bio);
1204 }
1205
1206 }
1207
1208 STATIC void
1209 _xfs_buf_ioapply(
1210 struct xfs_buf *bp)
1211 {
1212 struct blk_plug plug;
1213 int rw;
1214 int offset;
1215 int size;
1216 int i;
1217
1218 /*
1219 * Make sure we capture only current IO errors rather than stale errors
1220 * left over from previous use of the buffer (e.g. failed readahead).
1221 */
1222 bp->b_error = 0;
1223
1224 /*
1225 * Initialize the I/O completion workqueue if we haven't yet or the
1226 * submitter has not opted to specify a custom one.
1227 */
1228 if (!bp->b_ioend_wq)
1229 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1230
1231 if (bp->b_flags & XBF_WRITE) {
1232 if (bp->b_flags & XBF_SYNCIO)
1233 rw = WRITE_SYNC;
1234 else
1235 rw = WRITE;
1236 if (bp->b_flags & XBF_FUA)
1237 rw |= REQ_FUA;
1238 if (bp->b_flags & XBF_FLUSH)
1239 rw |= REQ_FLUSH;
1240
1241 /*
1242 * Run the write verifier callback function if it exists. If
1243 * this function fails it will mark the buffer with an error and
1244 * the IO should not be dispatched.
1245 */
1246 if (bp->b_ops) {
1247 bp->b_ops->verify_write(bp);
1248 if (bp->b_error) {
1249 xfs_force_shutdown(bp->b_target->bt_mount,
1250 SHUTDOWN_CORRUPT_INCORE);
1251 return;
1252 }
1253 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1254 struct xfs_mount *mp = bp->b_target->bt_mount;
1255
1256 /*
1257 * non-crc filesystems don't attach verifiers during
1258 * log recovery, so don't warn for such filesystems.
1259 */
1260 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1261 xfs_warn(mp,
1262 "%s: no ops on block 0x%llx/0x%x",
1263 __func__, bp->b_bn, bp->b_length);
1264 xfs_hex_dump(bp->b_addr, 64);
1265 dump_stack();
1266 }
1267 }
1268 } else if (bp->b_flags & XBF_READ_AHEAD) {
1269 rw = READA;
1270 } else {
1271 rw = READ;
1272 }
1273
1274 /* we only use the buffer cache for meta-data */
1275 rw |= REQ_META;
1276
1277 /*
1278 * Walk all the vectors issuing IO on them. Set up the initial offset
1279 * into the buffer and the desired IO size before we start -
1280 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1281 * subsequent call.
1282 */
1283 offset = bp->b_offset;
1284 size = BBTOB(bp->b_io_length);
1285 blk_start_plug(&plug);
1286 for (i = 0; i < bp->b_map_count; i++) {
1287 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1288 if (bp->b_error)
1289 break;
1290 if (size <= 0)
1291 break; /* all done */
1292 }
1293 blk_finish_plug(&plug);
1294 }
1295
1296 /*
1297 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1298 * the current reference to the IO. It is not safe to reference the buffer after
1299 * a call to this function unless the caller holds an additional reference
1300 * itself.
1301 */
1302 void
1303 xfs_buf_submit(
1304 struct xfs_buf *bp)
1305 {
1306 trace_xfs_buf_submit(bp, _RET_IP_);
1307
1308 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1309 ASSERT(bp->b_flags & XBF_ASYNC);
1310
1311 /* on shutdown we stale and complete the buffer immediately */
1312 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1313 xfs_buf_ioerror(bp, -EIO);
1314 bp->b_flags &= ~XBF_DONE;
1315 xfs_buf_stale(bp);
1316 xfs_buf_ioend(bp);
1317 return;
1318 }
1319
1320 if (bp->b_flags & XBF_WRITE)
1321 xfs_buf_wait_unpin(bp);
1322
1323 /* clear the internal error state to avoid spurious errors */
1324 bp->b_io_error = 0;
1325
1326 /*
1327 * The caller's reference is released during I/O completion.
1328 * This occurs some time after the last b_io_remaining reference is
1329 * released, so after we drop our Io reference we have to have some
1330 * other reference to ensure the buffer doesn't go away from underneath
1331 * us. Take a direct reference to ensure we have safe access to the
1332 * buffer until we are finished with it.
1333 */
1334 xfs_buf_hold(bp);
1335
1336 /*
1337 * Set the count to 1 initially, this will stop an I/O completion
1338 * callout which happens before we have started all the I/O from calling
1339 * xfs_buf_ioend too early.
1340 */
1341 atomic_set(&bp->b_io_remaining, 1);
1342 _xfs_buf_ioapply(bp);
1343
1344 /*
1345 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1346 * reference we took above. If we drop it to zero, run completion so
1347 * that we don't return to the caller with completion still pending.
1348 */
1349 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1350 if (bp->b_error)
1351 xfs_buf_ioend(bp);
1352 else
1353 xfs_buf_ioend_async(bp);
1354 }
1355
1356 xfs_buf_rele(bp);
1357 /* Note: it is not safe to reference bp now we've dropped our ref */
1358 }
1359
1360 /*
1361 * Synchronous buffer IO submission path, read or write.
1362 */
1363 int
1364 xfs_buf_submit_wait(
1365 struct xfs_buf *bp)
1366 {
1367 int error;
1368
1369 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1370
1371 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1372
1373 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1374 xfs_buf_ioerror(bp, -EIO);
1375 xfs_buf_stale(bp);
1376 bp->b_flags &= ~XBF_DONE;
1377 return -EIO;
1378 }
1379
1380 if (bp->b_flags & XBF_WRITE)
1381 xfs_buf_wait_unpin(bp);
1382
1383 /* clear the internal error state to avoid spurious errors */
1384 bp->b_io_error = 0;
1385
1386 /*
1387 * For synchronous IO, the IO does not inherit the submitters reference
1388 * count, nor the buffer lock. Hence we cannot release the reference we
1389 * are about to take until we've waited for all IO completion to occur,
1390 * including any xfs_buf_ioend_async() work that may be pending.
1391 */
1392 xfs_buf_hold(bp);
1393
1394 /*
1395 * Set the count to 1 initially, this will stop an I/O completion
1396 * callout which happens before we have started all the I/O from calling
1397 * xfs_buf_ioend too early.
1398 */
1399 atomic_set(&bp->b_io_remaining, 1);
1400 _xfs_buf_ioapply(bp);
1401
1402 /*
1403 * make sure we run completion synchronously if it raced with us and is
1404 * already complete.
1405 */
1406 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1407 xfs_buf_ioend(bp);
1408
1409 /* wait for completion before gathering the error from the buffer */
1410 trace_xfs_buf_iowait(bp, _RET_IP_);
1411 wait_for_completion(&bp->b_iowait);
1412 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1413 error = bp->b_error;
1414
1415 /*
1416 * all done now, we can release the hold that keeps the buffer
1417 * referenced for the entire IO.
1418 */
1419 xfs_buf_rele(bp);
1420 return error;
1421 }
1422
1423 void *
1424 xfs_buf_offset(
1425 struct xfs_buf *bp,
1426 size_t offset)
1427 {
1428 struct page *page;
1429
1430 if (bp->b_addr)
1431 return bp->b_addr + offset;
1432
1433 offset += bp->b_offset;
1434 page = bp->b_pages[offset >> PAGE_SHIFT];
1435 return page_address(page) + (offset & (PAGE_SIZE-1));
1436 }
1437
1438 /*
1439 * Move data into or out of a buffer.
1440 */
1441 void
1442 xfs_buf_iomove(
1443 xfs_buf_t *bp, /* buffer to process */
1444 size_t boff, /* starting buffer offset */
1445 size_t bsize, /* length to copy */
1446 void *data, /* data address */
1447 xfs_buf_rw_t mode) /* read/write/zero flag */
1448 {
1449 size_t bend;
1450
1451 bend = boff + bsize;
1452 while (boff < bend) {
1453 struct page *page;
1454 int page_index, page_offset, csize;
1455
1456 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1457 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1458 page = bp->b_pages[page_index];
1459 csize = min_t(size_t, PAGE_SIZE - page_offset,
1460 BBTOB(bp->b_io_length) - boff);
1461
1462 ASSERT((csize + page_offset) <= PAGE_SIZE);
1463
1464 switch (mode) {
1465 case XBRW_ZERO:
1466 memset(page_address(page) + page_offset, 0, csize);
1467 break;
1468 case XBRW_READ:
1469 memcpy(data, page_address(page) + page_offset, csize);
1470 break;
1471 case XBRW_WRITE:
1472 memcpy(page_address(page) + page_offset, data, csize);
1473 }
1474
1475 boff += csize;
1476 data += csize;
1477 }
1478 }
1479
1480 /*
1481 * Handling of buffer targets (buftargs).
1482 */
1483
1484 /*
1485 * Wait for any bufs with callbacks that have been submitted but have not yet
1486 * returned. These buffers will have an elevated hold count, so wait on those
1487 * while freeing all the buffers only held by the LRU.
1488 */
1489 static enum lru_status
1490 xfs_buftarg_wait_rele(
1491 struct list_head *item,
1492 struct list_lru_one *lru,
1493 spinlock_t *lru_lock,
1494 void *arg)
1495
1496 {
1497 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1498 struct list_head *dispose = arg;
1499
1500 if (atomic_read(&bp->b_hold) > 1) {
1501 /* need to wait, so skip it this pass */
1502 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1503 return LRU_SKIP;
1504 }
1505 if (!spin_trylock(&bp->b_lock))
1506 return LRU_SKIP;
1507
1508 /*
1509 * clear the LRU reference count so the buffer doesn't get
1510 * ignored in xfs_buf_rele().
1511 */
1512 atomic_set(&bp->b_lru_ref, 0);
1513 bp->b_state |= XFS_BSTATE_DISPOSE;
1514 list_lru_isolate_move(lru, item, dispose);
1515 spin_unlock(&bp->b_lock);
1516 return LRU_REMOVED;
1517 }
1518
1519 void
1520 xfs_wait_buftarg(
1521 struct xfs_buftarg *btp)
1522 {
1523 LIST_HEAD(dispose);
1524 int loop = 0;
1525
1526 /*
1527 * We need to flush the buffer workqueue to ensure that all IO
1528 * completion processing is 100% done. Just waiting on buffer locks is
1529 * not sufficient for async IO as the reference count held over IO is
1530 * not released until after the buffer lock is dropped. Hence we need to
1531 * ensure here that all reference counts have been dropped before we
1532 * start walking the LRU list.
1533 */
1534 drain_workqueue(btp->bt_mount->m_buf_workqueue);
1535
1536 /* loop until there is nothing left on the lru list. */
1537 while (list_lru_count(&btp->bt_lru)) {
1538 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1539 &dispose, LONG_MAX);
1540
1541 while (!list_empty(&dispose)) {
1542 struct xfs_buf *bp;
1543 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1544 list_del_init(&bp->b_lru);
1545 if (bp->b_flags & XBF_WRITE_FAIL) {
1546 xfs_alert(btp->bt_mount,
1547 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1548 (long long)bp->b_bn);
1549 xfs_alert(btp->bt_mount,
1550 "Please run xfs_repair to determine the extent of the problem.");
1551 }
1552 xfs_buf_rele(bp);
1553 }
1554 if (loop++ != 0)
1555 delay(100);
1556 }
1557 }
1558
1559 static enum lru_status
1560 xfs_buftarg_isolate(
1561 struct list_head *item,
1562 struct list_lru_one *lru,
1563 spinlock_t *lru_lock,
1564 void *arg)
1565 {
1566 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1567 struct list_head *dispose = arg;
1568
1569 /*
1570 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1571 * If we fail to get the lock, just skip it.
1572 */
1573 if (!spin_trylock(&bp->b_lock))
1574 return LRU_SKIP;
1575 /*
1576 * Decrement the b_lru_ref count unless the value is already
1577 * zero. If the value is already zero, we need to reclaim the
1578 * buffer, otherwise it gets another trip through the LRU.
1579 */
1580 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1581 spin_unlock(&bp->b_lock);
1582 return LRU_ROTATE;
1583 }
1584
1585 bp->b_state |= XFS_BSTATE_DISPOSE;
1586 list_lru_isolate_move(lru, item, dispose);
1587 spin_unlock(&bp->b_lock);
1588 return LRU_REMOVED;
1589 }
1590
1591 static unsigned long
1592 xfs_buftarg_shrink_scan(
1593 struct shrinker *shrink,
1594 struct shrink_control *sc)
1595 {
1596 struct xfs_buftarg *btp = container_of(shrink,
1597 struct xfs_buftarg, bt_shrinker);
1598 LIST_HEAD(dispose);
1599 unsigned long freed;
1600
1601 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1602 xfs_buftarg_isolate, &dispose);
1603
1604 while (!list_empty(&dispose)) {
1605 struct xfs_buf *bp;
1606 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1607 list_del_init(&bp->b_lru);
1608 xfs_buf_rele(bp);
1609 }
1610
1611 return freed;
1612 }
1613
1614 static unsigned long
1615 xfs_buftarg_shrink_count(
1616 struct shrinker *shrink,
1617 struct shrink_control *sc)
1618 {
1619 struct xfs_buftarg *btp = container_of(shrink,
1620 struct xfs_buftarg, bt_shrinker);
1621 return list_lru_shrink_count(&btp->bt_lru, sc);
1622 }
1623
1624 void
1625 xfs_free_buftarg(
1626 struct xfs_mount *mp,
1627 struct xfs_buftarg *btp)
1628 {
1629 unregister_shrinker(&btp->bt_shrinker);
1630 list_lru_destroy(&btp->bt_lru);
1631
1632 if (mp->m_flags & XFS_MOUNT_BARRIER)
1633 xfs_blkdev_issue_flush(btp);
1634
1635 kmem_free(btp);
1636 }
1637
1638 int
1639 xfs_setsize_buftarg(
1640 xfs_buftarg_t *btp,
1641 unsigned int sectorsize)
1642 {
1643 /* Set up metadata sector size info */
1644 btp->bt_meta_sectorsize = sectorsize;
1645 btp->bt_meta_sectormask = sectorsize - 1;
1646
1647 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1648 xfs_warn(btp->bt_mount,
1649 "Cannot set_blocksize to %u on device %pg",
1650 sectorsize, btp->bt_bdev);
1651 return -EINVAL;
1652 }
1653
1654 /* Set up device logical sector size mask */
1655 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1656 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1657
1658 return 0;
1659 }
1660
1661 /*
1662 * When allocating the initial buffer target we have not yet
1663 * read in the superblock, so don't know what sized sectors
1664 * are being used at this early stage. Play safe.
1665 */
1666 STATIC int
1667 xfs_setsize_buftarg_early(
1668 xfs_buftarg_t *btp,
1669 struct block_device *bdev)
1670 {
1671 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1672 }
1673
1674 xfs_buftarg_t *
1675 xfs_alloc_buftarg(
1676 struct xfs_mount *mp,
1677 struct block_device *bdev)
1678 {
1679 xfs_buftarg_t *btp;
1680
1681 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1682
1683 btp->bt_mount = mp;
1684 btp->bt_dev = bdev->bd_dev;
1685 btp->bt_bdev = bdev;
1686 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1687
1688 if (xfs_setsize_buftarg_early(btp, bdev))
1689 goto error;
1690
1691 if (list_lru_init(&btp->bt_lru))
1692 goto error;
1693
1694 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1695 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1696 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1697 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1698 register_shrinker(&btp->bt_shrinker);
1699 return btp;
1700
1701 error:
1702 kmem_free(btp);
1703 return NULL;
1704 }
1705
1706 /*
1707 * Add a buffer to the delayed write list.
1708 *
1709 * This queues a buffer for writeout if it hasn't already been. Note that
1710 * neither this routine nor the buffer list submission functions perform
1711 * any internal synchronization. It is expected that the lists are thread-local
1712 * to the callers.
1713 *
1714 * Returns true if we queued up the buffer, or false if it already had
1715 * been on the buffer list.
1716 */
1717 bool
1718 xfs_buf_delwri_queue(
1719 struct xfs_buf *bp,
1720 struct list_head *list)
1721 {
1722 ASSERT(xfs_buf_islocked(bp));
1723 ASSERT(!(bp->b_flags & XBF_READ));
1724
1725 /*
1726 * If the buffer is already marked delwri it already is queued up
1727 * by someone else for imediate writeout. Just ignore it in that
1728 * case.
1729 */
1730 if (bp->b_flags & _XBF_DELWRI_Q) {
1731 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1732 return false;
1733 }
1734
1735 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1736
1737 /*
1738 * If a buffer gets written out synchronously or marked stale while it
1739 * is on a delwri list we lazily remove it. To do this, the other party
1740 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1741 * It remains referenced and on the list. In a rare corner case it
1742 * might get readded to a delwri list after the synchronous writeout, in
1743 * which case we need just need to re-add the flag here.
1744 */
1745 bp->b_flags |= _XBF_DELWRI_Q;
1746 if (list_empty(&bp->b_list)) {
1747 atomic_inc(&bp->b_hold);
1748 list_add_tail(&bp->b_list, list);
1749 }
1750
1751 return true;
1752 }
1753
1754 /*
1755 * Compare function is more complex than it needs to be because
1756 * the return value is only 32 bits and we are doing comparisons
1757 * on 64 bit values
1758 */
1759 static int
1760 xfs_buf_cmp(
1761 void *priv,
1762 struct list_head *a,
1763 struct list_head *b)
1764 {
1765 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1766 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1767 xfs_daddr_t diff;
1768
1769 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1770 if (diff < 0)
1771 return -1;
1772 if (diff > 0)
1773 return 1;
1774 return 0;
1775 }
1776
1777 static int
1778 __xfs_buf_delwri_submit(
1779 struct list_head *buffer_list,
1780 struct list_head *io_list,
1781 bool wait)
1782 {
1783 struct blk_plug plug;
1784 struct xfs_buf *bp, *n;
1785 int pinned = 0;
1786
1787 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1788 if (!wait) {
1789 if (xfs_buf_ispinned(bp)) {
1790 pinned++;
1791 continue;
1792 }
1793 if (!xfs_buf_trylock(bp))
1794 continue;
1795 } else {
1796 xfs_buf_lock(bp);
1797 }
1798
1799 /*
1800 * Someone else might have written the buffer synchronously or
1801 * marked it stale in the meantime. In that case only the
1802 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1803 * reference and remove it from the list here.
1804 */
1805 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1806 list_del_init(&bp->b_list);
1807 xfs_buf_relse(bp);
1808 continue;
1809 }
1810
1811 list_move_tail(&bp->b_list, io_list);
1812 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1813 }
1814
1815 list_sort(NULL, io_list, xfs_buf_cmp);
1816
1817 blk_start_plug(&plug);
1818 list_for_each_entry_safe(bp, n, io_list, b_list) {
1819 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1820 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1821
1822 /*
1823 * we do all Io submission async. This means if we need to wait
1824 * for IO completion we need to take an extra reference so the
1825 * buffer is still valid on the other side.
1826 */
1827 if (wait)
1828 xfs_buf_hold(bp);
1829 else
1830 list_del_init(&bp->b_list);
1831
1832 xfs_buf_submit(bp);
1833 }
1834 blk_finish_plug(&plug);
1835
1836 return pinned;
1837 }
1838
1839 /*
1840 * Write out a buffer list asynchronously.
1841 *
1842 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1843 * out and not wait for I/O completion on any of the buffers. This interface
1844 * is only safely useable for callers that can track I/O completion by higher
1845 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1846 * function.
1847 */
1848 int
1849 xfs_buf_delwri_submit_nowait(
1850 struct list_head *buffer_list)
1851 {
1852 LIST_HEAD (io_list);
1853 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1854 }
1855
1856 /*
1857 * Write out a buffer list synchronously.
1858 *
1859 * This will take the @buffer_list, write all buffers out and wait for I/O
1860 * completion on all of the buffers. @buffer_list is consumed by the function,
1861 * so callers must have some other way of tracking buffers if they require such
1862 * functionality.
1863 */
1864 int
1865 xfs_buf_delwri_submit(
1866 struct list_head *buffer_list)
1867 {
1868 LIST_HEAD (io_list);
1869 int error = 0, error2;
1870 struct xfs_buf *bp;
1871
1872 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1873
1874 /* Wait for IO to complete. */
1875 while (!list_empty(&io_list)) {
1876 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1877
1878 list_del_init(&bp->b_list);
1879
1880 /* locking the buffer will wait for async IO completion. */
1881 xfs_buf_lock(bp);
1882 error2 = bp->b_error;
1883 xfs_buf_relse(bp);
1884 if (!error)
1885 error = error2;
1886 }
1887
1888 return error;
1889 }
1890
1891 int __init
1892 xfs_buf_init(void)
1893 {
1894 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1895 KM_ZONE_HWALIGN, NULL);
1896 if (!xfs_buf_zone)
1897 goto out;
1898
1899 return 0;
1900
1901 out:
1902 return -ENOMEM;
1903 }
1904
1905 void
1906 xfs_buf_terminate(void)
1907 {
1908 kmem_zone_destroy(xfs_buf_zone);
1909 }