]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/xfs/xfs_buf.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / fs / xfs / xfs_buf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34
35 static kmem_zone_t *xfs_buf_zone;
36
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39
40 /*
41 * Locking orders
42 *
43 * xfs_buf_ioacct_inc:
44 * xfs_buf_ioacct_dec:
45 * b_sema (caller holds)
46 * b_lock
47 *
48 * xfs_buf_stale:
49 * b_sema (caller holds)
50 * b_lock
51 * lru_lock
52 *
53 * xfs_buf_rele:
54 * b_lock
55 * pag_buf_lock
56 * lru_lock
57 *
58 * xfs_buftarg_wait_rele
59 * lru_lock
60 * b_lock (trylock due to inversion)
61 *
62 * xfs_buftarg_isolate
63 * lru_lock
64 * b_lock (trylock due to inversion)
65 */
66
67 static inline int
68 xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
70 {
71 /*
72 * Return true if the buffer is vmapped.
73 *
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
77 */
78 return bp->b_addr && bp->b_page_count > 1;
79 }
80
81 static inline int
82 xfs_buf_vmap_len(
83 struct xfs_buf *bp)
84 {
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87
88 /*
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95 * in-flight buffers.
96 *
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
100 */
101 static inline void
102 xfs_buf_ioacct_inc(
103 struct xfs_buf *bp)
104 {
105 if (bp->b_flags & XBF_NO_IOACCT)
106 return;
107
108 ASSERT(bp->b_flags & XBF_ASYNC);
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
113 }
114 spin_unlock(&bp->b_lock);
115 }
116
117 /*
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
120 */
121 static inline void
122 __xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
124 {
125 lockdep_assert_held(&bp->b_lock);
126
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
130 }
131 }
132
133 static inline void
134 xfs_buf_ioacct_dec(
135 struct xfs_buf *bp)
136 {
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
140 }
141
142 /*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150 void
151 xfs_buf_stale(
152 struct xfs_buf *bp)
153 {
154 ASSERT(xfs_buf_islocked(bp));
155
156 bp->b_flags |= XBF_STALE;
157
158 /*
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
162 */
163 bp->b_flags &= ~_XBF_DELWRI_Q;
164
165 /*
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
170 */
171 spin_lock(&bp->b_lock);
172 __xfs_buf_ioacct_dec(bp);
173
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
178
179 ASSERT(atomic_read(&bp->b_hold) >= 1);
180 spin_unlock(&bp->b_lock);
181 }
182
183 static int
184 xfs_buf_get_maps(
185 struct xfs_buf *bp,
186 int map_count)
187 {
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
190
191 if (map_count == 1) {
192 bp->b_maps = &bp->__b_map;
193 return 0;
194 }
195
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 KM_NOFS);
198 if (!bp->b_maps)
199 return -ENOMEM;
200 return 0;
201 }
202
203 /*
204 * Frees b_pages if it was allocated.
205 */
206 static void
207 xfs_buf_free_maps(
208 struct xfs_buf *bp)
209 {
210 if (bp->b_maps != &bp->__b_map) {
211 kmem_free(bp->b_maps);
212 bp->b_maps = NULL;
213 }
214 }
215
216 struct xfs_buf *
217 _xfs_buf_alloc(
218 struct xfs_buftarg *target,
219 struct xfs_buf_map *map,
220 int nmaps,
221 xfs_buf_flags_t flags)
222 {
223 struct xfs_buf *bp;
224 int error;
225 int i;
226
227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 if (unlikely(!bp))
229 return NULL;
230
231 /*
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
234 */
235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236
237 atomic_set(&bp->b_hold, 1);
238 atomic_set(&bp->b_lru_ref, 1);
239 init_completion(&bp->b_iowait);
240 INIT_LIST_HEAD(&bp->b_lru);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_li_list);
243 sema_init(&bp->b_sema, 0); /* held, no waiters */
244 spin_lock_init(&bp->b_lock);
245 bp->b_target = target;
246 bp->b_flags = flags;
247
248 /*
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
252 */
253 error = xfs_buf_get_maps(bp, nmaps);
254 if (error) {
255 kmem_zone_free(xfs_buf_zone, bp);
256 return NULL;
257 }
258
259 bp->b_bn = map[0].bm_bn;
260 bp->b_length = 0;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
265 }
266 bp->b_io_length = bp->b_length;
267
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
270
271 XFS_STATS_INC(target->bt_mount, xb_create);
272 trace_xfs_buf_init(bp, _RET_IP_);
273
274 return bp;
275 }
276
277 /*
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
280 */
281 STATIC int
282 _xfs_buf_get_pages(
283 xfs_buf_t *bp,
284 int page_count)
285 {
286 /* Make sure that we have a page list */
287 if (bp->b_pages == NULL) {
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
291 } else {
292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 page_count, KM_NOFS);
294 if (bp->b_pages == NULL)
295 return -ENOMEM;
296 }
297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 }
299 return 0;
300 }
301
302 /*
303 * Frees b_pages if it was allocated.
304 */
305 STATIC void
306 _xfs_buf_free_pages(
307 xfs_buf_t *bp)
308 {
309 if (bp->b_pages != bp->b_page_array) {
310 kmem_free(bp->b_pages);
311 bp->b_pages = NULL;
312 }
313 }
314
315 /*
316 * Releases the specified buffer.
317 *
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
321 */
322 void
323 xfs_buf_free(
324 xfs_buf_t *bp)
325 {
326 trace_xfs_buf_free(bp, _RET_IP_);
327
328 ASSERT(list_empty(&bp->b_lru));
329
330 if (bp->b_flags & _XBF_PAGES) {
331 uint i;
332
333 if (xfs_buf_is_vmapped(bp))
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
335 bp->b_page_count);
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
339
340 __free_page(page);
341 }
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
344 _xfs_buf_free_pages(bp);
345 xfs_buf_free_maps(bp);
346 kmem_zone_free(xfs_buf_zone, bp);
347 }
348
349 /*
350 * Allocates all the pages for buffer in question and builds it's page list.
351 */
352 STATIC int
353 xfs_buf_allocate_memory(
354 xfs_buf_t *bp,
355 uint flags)
356 {
357 size_t size;
358 size_t nbytes, offset;
359 gfp_t gfp_mask = xb_to_gfp(flags);
360 unsigned short page_count, i;
361 xfs_off_t start, end;
362 int error;
363
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 bp->b_addr = kmem_alloc(size, KM_NOFS);
372 if (!bp->b_addr) {
373 /* low memory - use alloc_page loop instead */
374 goto use_alloc_page;
375 }
376
377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
381 bp->b_addr = NULL;
382 goto use_alloc_page;
383 }
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
388 bp->b_flags |= _XBF_KMEM;
389 return 0;
390 }
391
392 use_alloc_page:
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 >> PAGE_SHIFT;
396 page_count = end - start;
397 error = _xfs_buf_get_pages(bp, page_count);
398 if (unlikely(error))
399 return error;
400
401 offset = bp->b_offset;
402 bp->b_flags |= _XBF_PAGES;
403
404 for (i = 0; i < bp->b_page_count; i++) {
405 struct page *page;
406 uint retries = 0;
407 retry:
408 page = alloc_page(gfp_mask);
409 if (unlikely(page == NULL)) {
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
412 error = -ENOMEM;
413 goto out_free_pages;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 xfs_err(NULL,
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
426 __func__, gfp_mask);
427
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 congestion_wait(BLK_RW_ASYNC, HZ/50);
430 goto retry;
431 }
432
433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434
435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 size -= nbytes;
437 bp->b_pages[i] = page;
438 offset = 0;
439 }
440 return 0;
441
442 out_free_pages:
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
445 bp->b_flags &= ~_XBF_PAGES;
446 return error;
447 }
448
449 /*
450 * Map buffer into kernel address-space if necessary.
451 */
452 STATIC int
453 _xfs_buf_map_pages(
454 xfs_buf_t *bp,
455 uint flags)
456 {
457 ASSERT(bp->b_flags & _XBF_PAGES);
458 if (bp->b_page_count == 1) {
459 /* A single page buffer is always mappable */
460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 } else if (flags & XBF_UNMAPPED) {
462 bp->b_addr = NULL;
463 } else {
464 int retried = 0;
465 unsigned nofs_flag;
466
467 /*
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
474 */
475 nofs_flag = memalloc_nofs_save();
476 do {
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 -1, PAGE_KERNEL);
479 if (bp->b_addr)
480 break;
481 vm_unmap_aliases();
482 } while (retried++ <= 1);
483 memalloc_nofs_restore(nofs_flag);
484
485 if (!bp->b_addr)
486 return -ENOMEM;
487 bp->b_addr += bp->b_offset;
488 }
489
490 return 0;
491 }
492
493 /*
494 * Finding and Reading Buffers
495 */
496 static int
497 _xfs_buf_obj_cmp(
498 struct rhashtable_compare_arg *arg,
499 const void *obj)
500 {
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
503
504 /*
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
507 */
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509
510 if (bp->b_bn != map->bm_bn)
511 return 1;
512
513 if (unlikely(bp->b_length != map->bm_len)) {
514 /*
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
521 */
522 ASSERT(bp->b_flags & XBF_STALE);
523 return 1;
524 }
525 return 0;
526 }
527
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
530 .nelem_hint = 16,
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
536 };
537
538 int
539 xfs_buf_hash_init(
540 struct xfs_perag *pag)
541 {
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545
546 void
547 xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
549 {
550 rhashtable_destroy(&pag->pag_buf_hash);
551 }
552
553 /*
554 * Look up a buffer in the buffer cache and return it referenced and locked
555 * in @found_bp.
556 *
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558 * cache.
559 *
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
562 *
563 * Return values are:
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * 0, with @found_bp:
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
570 */
571 static int
572 xfs_buf_find(
573 struct xfs_buftarg *btp,
574 struct xfs_buf_map *map,
575 int nmaps,
576 xfs_buf_flags_t flags,
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
579 {
580 struct xfs_perag *pag;
581 xfs_buf_t *bp;
582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
583 xfs_daddr_t eofs;
584 int i;
585
586 *found_bp = NULL;
587
588 for (i = 0; i < nmaps; i++)
589 cmap.bm_len += map[i].bm_len;
590
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594
595 /*
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
598 */
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 xfs_alert(btp->bt_mount,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__, cmap.bm_bn, eofs);
604 WARN_ON(1);
605 return -EFSCORRUPTED;
606 }
607
608 pag = xfs_perag_get(btp->bt_mount,
609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610
611 spin_lock(&pag->pag_buf_lock);
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
614 if (bp) {
615 atomic_inc(&bp->b_hold);
616 goto found;
617 }
618
619 /* No match found */
620 if (!new_bp) {
621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624 return -ENOENT;
625 }
626
627 /* the buffer keeps the perag reference until it is freed */
628 new_bp->b_pag = pag;
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
632 *found_bp = new_bp;
633 return 0;
634
635 found:
636 spin_unlock(&pag->pag_buf_lock);
637 xfs_perag_put(pag);
638
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
641 xfs_buf_rele(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 return -EAGAIN;
644 }
645 xfs_buf_lock(bp);
646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 }
648
649 /*
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
652 * intact here.
653 */
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 ASSERT(bp->b_iodone == NULL);
657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 bp->b_ops = NULL;
659 }
660
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 *found_bp = bp;
664 return 0;
665 }
666
667 struct xfs_buf *
668 xfs_buf_incore(
669 struct xfs_buftarg *target,
670 xfs_daddr_t blkno,
671 size_t numblks,
672 xfs_buf_flags_t flags)
673 {
674 struct xfs_buf *bp;
675 int error;
676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 if (error)
680 return NULL;
681 return bp;
682 }
683
684 /*
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
688 */
689 struct xfs_buf *
690 xfs_buf_get_map(
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
693 int nmaps,
694 xfs_buf_flags_t flags)
695 {
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
698 int error = 0;
699
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701
702 switch (error) {
703 case 0:
704 /* cache hit */
705 goto found;
706 case -EAGAIN:
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
709 return NULL;
710 case -ENOENT:
711 /* cache miss, go for insert */
712 break;
713 case -EFSCORRUPTED:
714 default:
715 /*
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
718 */
719 return NULL;
720 }
721
722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 if (unlikely(!new_bp))
724 return NULL;
725
726 error = xfs_buf_allocate_memory(new_bp, flags);
727 if (error) {
728 xfs_buf_free(new_bp);
729 return NULL;
730 }
731
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 if (error) {
734 xfs_buf_free(new_bp);
735 return NULL;
736 }
737
738 if (bp != new_bp)
739 xfs_buf_free(new_bp);
740
741 found:
742 if (!bp->b_addr) {
743 error = _xfs_buf_map_pages(bp, flags);
744 if (unlikely(error)) {
745 xfs_warn(target->bt_mount,
746 "%s: failed to map pagesn", __func__);
747 xfs_buf_relse(bp);
748 return NULL;
749 }
750 }
751
752 /*
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
755 */
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
758
759 XFS_STATS_INC(target->bt_mount, xb_get);
760 trace_xfs_buf_get(bp, flags, _RET_IP_);
761 return bp;
762 }
763
764 STATIC int
765 _xfs_buf_read(
766 xfs_buf_t *bp,
767 xfs_buf_flags_t flags)
768 {
769 ASSERT(!(flags & XBF_WRITE));
770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771
772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774
775 return xfs_buf_submit(bp);
776 }
777
778 /*
779 * If the caller passed in an ops structure and the buffer doesn't have ops
780 * assigned, set the ops and use them to verify the contents. If the contents
781 * cannot be verified, we'll clear XBF_DONE. We assume the buffer has no
782 * recorded errors and is already in XBF_DONE state.
783 */
784 int
785 xfs_buf_ensure_ops(
786 struct xfs_buf *bp,
787 const struct xfs_buf_ops *ops)
788 {
789 ASSERT(bp->b_flags & XBF_DONE);
790 ASSERT(bp->b_error == 0);
791
792 if (!ops || bp->b_ops)
793 return 0;
794
795 bp->b_ops = ops;
796 bp->b_ops->verify_read(bp);
797 if (bp->b_error)
798 bp->b_flags &= ~XBF_DONE;
799 return bp->b_error;
800 }
801
802 xfs_buf_t *
803 xfs_buf_read_map(
804 struct xfs_buftarg *target,
805 struct xfs_buf_map *map,
806 int nmaps,
807 xfs_buf_flags_t flags,
808 const struct xfs_buf_ops *ops)
809 {
810 struct xfs_buf *bp;
811
812 flags |= XBF_READ;
813
814 bp = xfs_buf_get_map(target, map, nmaps, flags);
815 if (!bp)
816 return NULL;
817
818 trace_xfs_buf_read(bp, flags, _RET_IP_);
819
820 if (!(bp->b_flags & XBF_DONE)) {
821 XFS_STATS_INC(target->bt_mount, xb_get_read);
822 bp->b_ops = ops;
823 _xfs_buf_read(bp, flags);
824 return bp;
825 }
826
827 xfs_buf_ensure_ops(bp, ops);
828
829 if (flags & XBF_ASYNC) {
830 /*
831 * Read ahead call which is already satisfied,
832 * drop the buffer
833 */
834 xfs_buf_relse(bp);
835 return NULL;
836 }
837
838 /* We do not want read in the flags */
839 bp->b_flags &= ~XBF_READ;
840 ASSERT(bp->b_ops != NULL || ops == NULL);
841 return bp;
842 }
843
844 /*
845 * If we are not low on memory then do the readahead in a deadlock
846 * safe manner.
847 */
848 void
849 xfs_buf_readahead_map(
850 struct xfs_buftarg *target,
851 struct xfs_buf_map *map,
852 int nmaps,
853 const struct xfs_buf_ops *ops)
854 {
855 if (bdi_read_congested(target->bt_bdev->bd_bdi))
856 return;
857
858 xfs_buf_read_map(target, map, nmaps,
859 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
860 }
861
862 /*
863 * Read an uncached buffer from disk. Allocates and returns a locked
864 * buffer containing the disk contents or nothing.
865 */
866 int
867 xfs_buf_read_uncached(
868 struct xfs_buftarg *target,
869 xfs_daddr_t daddr,
870 size_t numblks,
871 int flags,
872 struct xfs_buf **bpp,
873 const struct xfs_buf_ops *ops)
874 {
875 struct xfs_buf *bp;
876
877 *bpp = NULL;
878
879 bp = xfs_buf_get_uncached(target, numblks, flags);
880 if (!bp)
881 return -ENOMEM;
882
883 /* set up the buffer for a read IO */
884 ASSERT(bp->b_map_count == 1);
885 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
886 bp->b_maps[0].bm_bn = daddr;
887 bp->b_flags |= XBF_READ;
888 bp->b_ops = ops;
889
890 xfs_buf_submit(bp);
891 if (bp->b_error) {
892 int error = bp->b_error;
893 xfs_buf_relse(bp);
894 return error;
895 }
896
897 *bpp = bp;
898 return 0;
899 }
900
901 /*
902 * Return a buffer allocated as an empty buffer and associated to external
903 * memory via xfs_buf_associate_memory() back to it's empty state.
904 */
905 void
906 xfs_buf_set_empty(
907 struct xfs_buf *bp,
908 size_t numblks)
909 {
910 if (bp->b_pages)
911 _xfs_buf_free_pages(bp);
912
913 bp->b_pages = NULL;
914 bp->b_page_count = 0;
915 bp->b_addr = NULL;
916 bp->b_length = numblks;
917 bp->b_io_length = numblks;
918
919 ASSERT(bp->b_map_count == 1);
920 bp->b_bn = XFS_BUF_DADDR_NULL;
921 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
922 bp->b_maps[0].bm_len = bp->b_length;
923 }
924
925 static inline struct page *
926 mem_to_page(
927 void *addr)
928 {
929 if ((!is_vmalloc_addr(addr))) {
930 return virt_to_page(addr);
931 } else {
932 return vmalloc_to_page(addr);
933 }
934 }
935
936 int
937 xfs_buf_associate_memory(
938 xfs_buf_t *bp,
939 void *mem,
940 size_t len)
941 {
942 int rval;
943 int i = 0;
944 unsigned long pageaddr;
945 unsigned long offset;
946 size_t buflen;
947 int page_count;
948
949 pageaddr = (unsigned long)mem & PAGE_MASK;
950 offset = (unsigned long)mem - pageaddr;
951 buflen = PAGE_ALIGN(len + offset);
952 page_count = buflen >> PAGE_SHIFT;
953
954 /* Free any previous set of page pointers */
955 if (bp->b_pages)
956 _xfs_buf_free_pages(bp);
957
958 bp->b_pages = NULL;
959 bp->b_addr = mem;
960
961 rval = _xfs_buf_get_pages(bp, page_count);
962 if (rval)
963 return rval;
964
965 bp->b_offset = offset;
966
967 for (i = 0; i < bp->b_page_count; i++) {
968 bp->b_pages[i] = mem_to_page((void *)pageaddr);
969 pageaddr += PAGE_SIZE;
970 }
971
972 bp->b_io_length = BTOBB(len);
973 bp->b_length = BTOBB(buflen);
974
975 return 0;
976 }
977
978 xfs_buf_t *
979 xfs_buf_get_uncached(
980 struct xfs_buftarg *target,
981 size_t numblks,
982 int flags)
983 {
984 unsigned long page_count;
985 int error, i;
986 struct xfs_buf *bp;
987 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
988
989 /* flags might contain irrelevant bits, pass only what we care about */
990 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
991 if (unlikely(bp == NULL))
992 goto fail;
993
994 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
995 error = _xfs_buf_get_pages(bp, page_count);
996 if (error)
997 goto fail_free_buf;
998
999 for (i = 0; i < page_count; i++) {
1000 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1001 if (!bp->b_pages[i])
1002 goto fail_free_mem;
1003 }
1004 bp->b_flags |= _XBF_PAGES;
1005
1006 error = _xfs_buf_map_pages(bp, 0);
1007 if (unlikely(error)) {
1008 xfs_warn(target->bt_mount,
1009 "%s: failed to map pages", __func__);
1010 goto fail_free_mem;
1011 }
1012
1013 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1014 return bp;
1015
1016 fail_free_mem:
1017 while (--i >= 0)
1018 __free_page(bp->b_pages[i]);
1019 _xfs_buf_free_pages(bp);
1020 fail_free_buf:
1021 xfs_buf_free_maps(bp);
1022 kmem_zone_free(xfs_buf_zone, bp);
1023 fail:
1024 return NULL;
1025 }
1026
1027 /*
1028 * Increment reference count on buffer, to hold the buffer concurrently
1029 * with another thread which may release (free) the buffer asynchronously.
1030 * Must hold the buffer already to call this function.
1031 */
1032 void
1033 xfs_buf_hold(
1034 xfs_buf_t *bp)
1035 {
1036 trace_xfs_buf_hold(bp, _RET_IP_);
1037 atomic_inc(&bp->b_hold);
1038 }
1039
1040 /*
1041 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1042 * placed on LRU or freed (depending on b_lru_ref).
1043 */
1044 void
1045 xfs_buf_rele(
1046 xfs_buf_t *bp)
1047 {
1048 struct xfs_perag *pag = bp->b_pag;
1049 bool release;
1050 bool freebuf = false;
1051
1052 trace_xfs_buf_rele(bp, _RET_IP_);
1053
1054 if (!pag) {
1055 ASSERT(list_empty(&bp->b_lru));
1056 if (atomic_dec_and_test(&bp->b_hold)) {
1057 xfs_buf_ioacct_dec(bp);
1058 xfs_buf_free(bp);
1059 }
1060 return;
1061 }
1062
1063 ASSERT(atomic_read(&bp->b_hold) > 0);
1064
1065 /*
1066 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1067 * calls. The pag_buf_lock being taken on the last reference only
1068 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1069 * to last reference we drop here is not serialised against the last
1070 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1071 * first, the last "release" reference can win the race to the lock and
1072 * free the buffer before the second-to-last reference is processed,
1073 * leading to a use-after-free scenario.
1074 */
1075 spin_lock(&bp->b_lock);
1076 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1077 if (!release) {
1078 /*
1079 * Drop the in-flight state if the buffer is already on the LRU
1080 * and it holds the only reference. This is racy because we
1081 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1082 * ensures the decrement occurs only once per-buf.
1083 */
1084 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1085 __xfs_buf_ioacct_dec(bp);
1086 goto out_unlock;
1087 }
1088
1089 /* the last reference has been dropped ... */
1090 __xfs_buf_ioacct_dec(bp);
1091 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1092 /*
1093 * If the buffer is added to the LRU take a new reference to the
1094 * buffer for the LRU and clear the (now stale) dispose list
1095 * state flag
1096 */
1097 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1098 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1099 atomic_inc(&bp->b_hold);
1100 }
1101 spin_unlock(&pag->pag_buf_lock);
1102 } else {
1103 /*
1104 * most of the time buffers will already be removed from the
1105 * LRU, so optimise that case by checking for the
1106 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1107 * was on was the disposal list
1108 */
1109 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1110 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1111 } else {
1112 ASSERT(list_empty(&bp->b_lru));
1113 }
1114
1115 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1116 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1117 xfs_buf_hash_params);
1118 spin_unlock(&pag->pag_buf_lock);
1119 xfs_perag_put(pag);
1120 freebuf = true;
1121 }
1122
1123 out_unlock:
1124 spin_unlock(&bp->b_lock);
1125
1126 if (freebuf)
1127 xfs_buf_free(bp);
1128 }
1129
1130
1131 /*
1132 * Lock a buffer object, if it is not already locked.
1133 *
1134 * If we come across a stale, pinned, locked buffer, we know that we are
1135 * being asked to lock a buffer that has been reallocated. Because it is
1136 * pinned, we know that the log has not been pushed to disk and hence it
1137 * will still be locked. Rather than continuing to have trylock attempts
1138 * fail until someone else pushes the log, push it ourselves before
1139 * returning. This means that the xfsaild will not get stuck trying
1140 * to push on stale inode buffers.
1141 */
1142 int
1143 xfs_buf_trylock(
1144 struct xfs_buf *bp)
1145 {
1146 int locked;
1147
1148 locked = down_trylock(&bp->b_sema) == 0;
1149 if (locked)
1150 trace_xfs_buf_trylock(bp, _RET_IP_);
1151 else
1152 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1153 return locked;
1154 }
1155
1156 /*
1157 * Lock a buffer object.
1158 *
1159 * If we come across a stale, pinned, locked buffer, we know that we
1160 * are being asked to lock a buffer that has been reallocated. Because
1161 * it is pinned, we know that the log has not been pushed to disk and
1162 * hence it will still be locked. Rather than sleeping until someone
1163 * else pushes the log, push it ourselves before trying to get the lock.
1164 */
1165 void
1166 xfs_buf_lock(
1167 struct xfs_buf *bp)
1168 {
1169 trace_xfs_buf_lock(bp, _RET_IP_);
1170
1171 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1172 xfs_log_force(bp->b_target->bt_mount, 0);
1173 down(&bp->b_sema);
1174
1175 trace_xfs_buf_lock_done(bp, _RET_IP_);
1176 }
1177
1178 void
1179 xfs_buf_unlock(
1180 struct xfs_buf *bp)
1181 {
1182 ASSERT(xfs_buf_islocked(bp));
1183
1184 up(&bp->b_sema);
1185 trace_xfs_buf_unlock(bp, _RET_IP_);
1186 }
1187
1188 STATIC void
1189 xfs_buf_wait_unpin(
1190 xfs_buf_t *bp)
1191 {
1192 DECLARE_WAITQUEUE (wait, current);
1193
1194 if (atomic_read(&bp->b_pin_count) == 0)
1195 return;
1196
1197 add_wait_queue(&bp->b_waiters, &wait);
1198 for (;;) {
1199 set_current_state(TASK_UNINTERRUPTIBLE);
1200 if (atomic_read(&bp->b_pin_count) == 0)
1201 break;
1202 io_schedule();
1203 }
1204 remove_wait_queue(&bp->b_waiters, &wait);
1205 set_current_state(TASK_RUNNING);
1206 }
1207
1208 /*
1209 * Buffer Utility Routines
1210 */
1211
1212 void
1213 xfs_buf_ioend(
1214 struct xfs_buf *bp)
1215 {
1216 bool read = bp->b_flags & XBF_READ;
1217
1218 trace_xfs_buf_iodone(bp, _RET_IP_);
1219
1220 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1221
1222 /*
1223 * Pull in IO completion errors now. We are guaranteed to be running
1224 * single threaded, so we don't need the lock to read b_io_error.
1225 */
1226 if (!bp->b_error && bp->b_io_error)
1227 xfs_buf_ioerror(bp, bp->b_io_error);
1228
1229 /* Only validate buffers that were read without errors */
1230 if (read && !bp->b_error && bp->b_ops) {
1231 ASSERT(!bp->b_iodone);
1232 bp->b_ops->verify_read(bp);
1233 }
1234
1235 if (!bp->b_error)
1236 bp->b_flags |= XBF_DONE;
1237
1238 if (bp->b_iodone)
1239 (*(bp->b_iodone))(bp);
1240 else if (bp->b_flags & XBF_ASYNC)
1241 xfs_buf_relse(bp);
1242 else
1243 complete(&bp->b_iowait);
1244 }
1245
1246 static void
1247 xfs_buf_ioend_work(
1248 struct work_struct *work)
1249 {
1250 struct xfs_buf *bp =
1251 container_of(work, xfs_buf_t, b_ioend_work);
1252
1253 xfs_buf_ioend(bp);
1254 }
1255
1256 static void
1257 xfs_buf_ioend_async(
1258 struct xfs_buf *bp)
1259 {
1260 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1261 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1262 }
1263
1264 void
1265 __xfs_buf_ioerror(
1266 xfs_buf_t *bp,
1267 int error,
1268 xfs_failaddr_t failaddr)
1269 {
1270 ASSERT(error <= 0 && error >= -1000);
1271 bp->b_error = error;
1272 trace_xfs_buf_ioerror(bp, error, failaddr);
1273 }
1274
1275 void
1276 xfs_buf_ioerror_alert(
1277 struct xfs_buf *bp,
1278 const char *func)
1279 {
1280 xfs_alert(bp->b_target->bt_mount,
1281 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1282 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1283 -bp->b_error);
1284 }
1285
1286 int
1287 xfs_bwrite(
1288 struct xfs_buf *bp)
1289 {
1290 int error;
1291
1292 ASSERT(xfs_buf_islocked(bp));
1293
1294 bp->b_flags |= XBF_WRITE;
1295 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1296 XBF_WRITE_FAIL | XBF_DONE);
1297
1298 error = xfs_buf_submit(bp);
1299 if (error) {
1300 xfs_force_shutdown(bp->b_target->bt_mount,
1301 SHUTDOWN_META_IO_ERROR);
1302 }
1303 return error;
1304 }
1305
1306 static void
1307 xfs_buf_bio_end_io(
1308 struct bio *bio)
1309 {
1310 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1311
1312 /*
1313 * don't overwrite existing errors - otherwise we can lose errors on
1314 * buffers that require multiple bios to complete.
1315 */
1316 if (bio->bi_status) {
1317 int error = blk_status_to_errno(bio->bi_status);
1318
1319 cmpxchg(&bp->b_io_error, 0, error);
1320 }
1321
1322 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1323 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1324
1325 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1326 xfs_buf_ioend_async(bp);
1327 bio_put(bio);
1328 }
1329
1330 static void
1331 xfs_buf_ioapply_map(
1332 struct xfs_buf *bp,
1333 int map,
1334 int *buf_offset,
1335 int *count,
1336 int op,
1337 int op_flags)
1338 {
1339 int page_index;
1340 int total_nr_pages = bp->b_page_count;
1341 int nr_pages;
1342 struct bio *bio;
1343 sector_t sector = bp->b_maps[map].bm_bn;
1344 int size;
1345 int offset;
1346
1347 /* skip the pages in the buffer before the start offset */
1348 page_index = 0;
1349 offset = *buf_offset;
1350 while (offset >= PAGE_SIZE) {
1351 page_index++;
1352 offset -= PAGE_SIZE;
1353 }
1354
1355 /*
1356 * Limit the IO size to the length of the current vector, and update the
1357 * remaining IO count for the next time around.
1358 */
1359 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1360 *count -= size;
1361 *buf_offset += size;
1362
1363 next_chunk:
1364 atomic_inc(&bp->b_io_remaining);
1365 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1366
1367 bio = bio_alloc(GFP_NOIO, nr_pages);
1368 bio_set_dev(bio, bp->b_target->bt_bdev);
1369 bio->bi_iter.bi_sector = sector;
1370 bio->bi_end_io = xfs_buf_bio_end_io;
1371 bio->bi_private = bp;
1372 bio_set_op_attrs(bio, op, op_flags);
1373
1374 for (; size && nr_pages; nr_pages--, page_index++) {
1375 int rbytes, nbytes = PAGE_SIZE - offset;
1376
1377 if (nbytes > size)
1378 nbytes = size;
1379
1380 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1381 offset);
1382 if (rbytes < nbytes)
1383 break;
1384
1385 offset = 0;
1386 sector += BTOBB(nbytes);
1387 size -= nbytes;
1388 total_nr_pages--;
1389 }
1390
1391 if (likely(bio->bi_iter.bi_size)) {
1392 if (xfs_buf_is_vmapped(bp)) {
1393 flush_kernel_vmap_range(bp->b_addr,
1394 xfs_buf_vmap_len(bp));
1395 }
1396 submit_bio(bio);
1397 if (size)
1398 goto next_chunk;
1399 } else {
1400 /*
1401 * This is guaranteed not to be the last io reference count
1402 * because the caller (xfs_buf_submit) holds a count itself.
1403 */
1404 atomic_dec(&bp->b_io_remaining);
1405 xfs_buf_ioerror(bp, -EIO);
1406 bio_put(bio);
1407 }
1408
1409 }
1410
1411 STATIC void
1412 _xfs_buf_ioapply(
1413 struct xfs_buf *bp)
1414 {
1415 struct blk_plug plug;
1416 int op;
1417 int op_flags = 0;
1418 int offset;
1419 int size;
1420 int i;
1421
1422 /*
1423 * Make sure we capture only current IO errors rather than stale errors
1424 * left over from previous use of the buffer (e.g. failed readahead).
1425 */
1426 bp->b_error = 0;
1427
1428 /*
1429 * Initialize the I/O completion workqueue if we haven't yet or the
1430 * submitter has not opted to specify a custom one.
1431 */
1432 if (!bp->b_ioend_wq)
1433 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1434
1435 if (bp->b_flags & XBF_WRITE) {
1436 op = REQ_OP_WRITE;
1437 if (bp->b_flags & XBF_SYNCIO)
1438 op_flags = REQ_SYNC;
1439 if (bp->b_flags & XBF_FUA)
1440 op_flags |= REQ_FUA;
1441 if (bp->b_flags & XBF_FLUSH)
1442 op_flags |= REQ_PREFLUSH;
1443
1444 /*
1445 * Run the write verifier callback function if it exists. If
1446 * this function fails it will mark the buffer with an error and
1447 * the IO should not be dispatched.
1448 */
1449 if (bp->b_ops) {
1450 bp->b_ops->verify_write(bp);
1451 if (bp->b_error) {
1452 xfs_force_shutdown(bp->b_target->bt_mount,
1453 SHUTDOWN_CORRUPT_INCORE);
1454 return;
1455 }
1456 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1457 struct xfs_mount *mp = bp->b_target->bt_mount;
1458
1459 /*
1460 * non-crc filesystems don't attach verifiers during
1461 * log recovery, so don't warn for such filesystems.
1462 */
1463 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1464 xfs_warn(mp,
1465 "%s: no buf ops on daddr 0x%llx len %d",
1466 __func__, bp->b_bn, bp->b_length);
1467 xfs_hex_dump(bp->b_addr,
1468 XFS_CORRUPTION_DUMP_LEN);
1469 dump_stack();
1470 }
1471 }
1472 } else if (bp->b_flags & XBF_READ_AHEAD) {
1473 op = REQ_OP_READ;
1474 op_flags = REQ_RAHEAD;
1475 } else {
1476 op = REQ_OP_READ;
1477 }
1478
1479 /* we only use the buffer cache for meta-data */
1480 op_flags |= REQ_META;
1481
1482 /*
1483 * Walk all the vectors issuing IO on them. Set up the initial offset
1484 * into the buffer and the desired IO size before we start -
1485 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1486 * subsequent call.
1487 */
1488 offset = bp->b_offset;
1489 size = BBTOB(bp->b_io_length);
1490 blk_start_plug(&plug);
1491 for (i = 0; i < bp->b_map_count; i++) {
1492 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1493 if (bp->b_error)
1494 break;
1495 if (size <= 0)
1496 break; /* all done */
1497 }
1498 blk_finish_plug(&plug);
1499 }
1500
1501 /*
1502 * Wait for I/O completion of a sync buffer and return the I/O error code.
1503 */
1504 static int
1505 xfs_buf_iowait(
1506 struct xfs_buf *bp)
1507 {
1508 ASSERT(!(bp->b_flags & XBF_ASYNC));
1509
1510 trace_xfs_buf_iowait(bp, _RET_IP_);
1511 wait_for_completion(&bp->b_iowait);
1512 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1513
1514 return bp->b_error;
1515 }
1516
1517 /*
1518 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1519 * the buffer lock ownership and the current reference to the IO. It is not
1520 * safe to reference the buffer after a call to this function unless the caller
1521 * holds an additional reference itself.
1522 */
1523 int
1524 __xfs_buf_submit(
1525 struct xfs_buf *bp,
1526 bool wait)
1527 {
1528 int error = 0;
1529
1530 trace_xfs_buf_submit(bp, _RET_IP_);
1531
1532 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1533
1534 /* on shutdown we stale and complete the buffer immediately */
1535 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1536 xfs_buf_ioerror(bp, -EIO);
1537 bp->b_flags &= ~XBF_DONE;
1538 xfs_buf_stale(bp);
1539 if (bp->b_flags & XBF_ASYNC)
1540 xfs_buf_ioend(bp);
1541 return -EIO;
1542 }
1543
1544 /*
1545 * Grab a reference so the buffer does not go away underneath us. For
1546 * async buffers, I/O completion drops the callers reference, which
1547 * could occur before submission returns.
1548 */
1549 xfs_buf_hold(bp);
1550
1551 if (bp->b_flags & XBF_WRITE)
1552 xfs_buf_wait_unpin(bp);
1553
1554 /* clear the internal error state to avoid spurious errors */
1555 bp->b_io_error = 0;
1556
1557 /*
1558 * Set the count to 1 initially, this will stop an I/O completion
1559 * callout which happens before we have started all the I/O from calling
1560 * xfs_buf_ioend too early.
1561 */
1562 atomic_set(&bp->b_io_remaining, 1);
1563 if (bp->b_flags & XBF_ASYNC)
1564 xfs_buf_ioacct_inc(bp);
1565 _xfs_buf_ioapply(bp);
1566
1567 /*
1568 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1569 * reference we took above. If we drop it to zero, run completion so
1570 * that we don't return to the caller with completion still pending.
1571 */
1572 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1573 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1574 xfs_buf_ioend(bp);
1575 else
1576 xfs_buf_ioend_async(bp);
1577 }
1578
1579 if (wait)
1580 error = xfs_buf_iowait(bp);
1581
1582 /*
1583 * Release the hold that keeps the buffer referenced for the entire
1584 * I/O. Note that if the buffer is async, it is not safe to reference
1585 * after this release.
1586 */
1587 xfs_buf_rele(bp);
1588 return error;
1589 }
1590
1591 void *
1592 xfs_buf_offset(
1593 struct xfs_buf *bp,
1594 size_t offset)
1595 {
1596 struct page *page;
1597
1598 if (bp->b_addr)
1599 return bp->b_addr + offset;
1600
1601 offset += bp->b_offset;
1602 page = bp->b_pages[offset >> PAGE_SHIFT];
1603 return page_address(page) + (offset & (PAGE_SIZE-1));
1604 }
1605
1606 /*
1607 * Move data into or out of a buffer.
1608 */
1609 void
1610 xfs_buf_iomove(
1611 xfs_buf_t *bp, /* buffer to process */
1612 size_t boff, /* starting buffer offset */
1613 size_t bsize, /* length to copy */
1614 void *data, /* data address */
1615 xfs_buf_rw_t mode) /* read/write/zero flag */
1616 {
1617 size_t bend;
1618
1619 bend = boff + bsize;
1620 while (boff < bend) {
1621 struct page *page;
1622 int page_index, page_offset, csize;
1623
1624 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1625 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1626 page = bp->b_pages[page_index];
1627 csize = min_t(size_t, PAGE_SIZE - page_offset,
1628 BBTOB(bp->b_io_length) - boff);
1629
1630 ASSERT((csize + page_offset) <= PAGE_SIZE);
1631
1632 switch (mode) {
1633 case XBRW_ZERO:
1634 memset(page_address(page) + page_offset, 0, csize);
1635 break;
1636 case XBRW_READ:
1637 memcpy(data, page_address(page) + page_offset, csize);
1638 break;
1639 case XBRW_WRITE:
1640 memcpy(page_address(page) + page_offset, data, csize);
1641 }
1642
1643 boff += csize;
1644 data += csize;
1645 }
1646 }
1647
1648 /*
1649 * Handling of buffer targets (buftargs).
1650 */
1651
1652 /*
1653 * Wait for any bufs with callbacks that have been submitted but have not yet
1654 * returned. These buffers will have an elevated hold count, so wait on those
1655 * while freeing all the buffers only held by the LRU.
1656 */
1657 static enum lru_status
1658 xfs_buftarg_wait_rele(
1659 struct list_head *item,
1660 struct list_lru_one *lru,
1661 spinlock_t *lru_lock,
1662 void *arg)
1663
1664 {
1665 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1666 struct list_head *dispose = arg;
1667
1668 if (atomic_read(&bp->b_hold) > 1) {
1669 /* need to wait, so skip it this pass */
1670 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1671 return LRU_SKIP;
1672 }
1673 if (!spin_trylock(&bp->b_lock))
1674 return LRU_SKIP;
1675
1676 /*
1677 * clear the LRU reference count so the buffer doesn't get
1678 * ignored in xfs_buf_rele().
1679 */
1680 atomic_set(&bp->b_lru_ref, 0);
1681 bp->b_state |= XFS_BSTATE_DISPOSE;
1682 list_lru_isolate_move(lru, item, dispose);
1683 spin_unlock(&bp->b_lock);
1684 return LRU_REMOVED;
1685 }
1686
1687 void
1688 xfs_wait_buftarg(
1689 struct xfs_buftarg *btp)
1690 {
1691 LIST_HEAD(dispose);
1692 int loop = 0;
1693
1694 /*
1695 * First wait on the buftarg I/O count for all in-flight buffers to be
1696 * released. This is critical as new buffers do not make the LRU until
1697 * they are released.
1698 *
1699 * Next, flush the buffer workqueue to ensure all completion processing
1700 * has finished. Just waiting on buffer locks is not sufficient for
1701 * async IO as the reference count held over IO is not released until
1702 * after the buffer lock is dropped. Hence we need to ensure here that
1703 * all reference counts have been dropped before we start walking the
1704 * LRU list.
1705 */
1706 while (percpu_counter_sum(&btp->bt_io_count))
1707 delay(100);
1708 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1709
1710 /* loop until there is nothing left on the lru list. */
1711 while (list_lru_count(&btp->bt_lru)) {
1712 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1713 &dispose, LONG_MAX);
1714
1715 while (!list_empty(&dispose)) {
1716 struct xfs_buf *bp;
1717 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1718 list_del_init(&bp->b_lru);
1719 if (bp->b_flags & XBF_WRITE_FAIL) {
1720 xfs_alert(btp->bt_mount,
1721 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1722 (long long)bp->b_bn);
1723 xfs_alert(btp->bt_mount,
1724 "Please run xfs_repair to determine the extent of the problem.");
1725 }
1726 xfs_buf_rele(bp);
1727 }
1728 if (loop++ != 0)
1729 delay(100);
1730 }
1731 }
1732
1733 static enum lru_status
1734 xfs_buftarg_isolate(
1735 struct list_head *item,
1736 struct list_lru_one *lru,
1737 spinlock_t *lru_lock,
1738 void *arg)
1739 {
1740 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1741 struct list_head *dispose = arg;
1742
1743 /*
1744 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1745 * If we fail to get the lock, just skip it.
1746 */
1747 if (!spin_trylock(&bp->b_lock))
1748 return LRU_SKIP;
1749 /*
1750 * Decrement the b_lru_ref count unless the value is already
1751 * zero. If the value is already zero, we need to reclaim the
1752 * buffer, otherwise it gets another trip through the LRU.
1753 */
1754 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1755 spin_unlock(&bp->b_lock);
1756 return LRU_ROTATE;
1757 }
1758
1759 bp->b_state |= XFS_BSTATE_DISPOSE;
1760 list_lru_isolate_move(lru, item, dispose);
1761 spin_unlock(&bp->b_lock);
1762 return LRU_REMOVED;
1763 }
1764
1765 static unsigned long
1766 xfs_buftarg_shrink_scan(
1767 struct shrinker *shrink,
1768 struct shrink_control *sc)
1769 {
1770 struct xfs_buftarg *btp = container_of(shrink,
1771 struct xfs_buftarg, bt_shrinker);
1772 LIST_HEAD(dispose);
1773 unsigned long freed;
1774
1775 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1776 xfs_buftarg_isolate, &dispose);
1777
1778 while (!list_empty(&dispose)) {
1779 struct xfs_buf *bp;
1780 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1781 list_del_init(&bp->b_lru);
1782 xfs_buf_rele(bp);
1783 }
1784
1785 return freed;
1786 }
1787
1788 static unsigned long
1789 xfs_buftarg_shrink_count(
1790 struct shrinker *shrink,
1791 struct shrink_control *sc)
1792 {
1793 struct xfs_buftarg *btp = container_of(shrink,
1794 struct xfs_buftarg, bt_shrinker);
1795 return list_lru_shrink_count(&btp->bt_lru, sc);
1796 }
1797
1798 void
1799 xfs_free_buftarg(
1800 struct xfs_buftarg *btp)
1801 {
1802 unregister_shrinker(&btp->bt_shrinker);
1803 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1804 percpu_counter_destroy(&btp->bt_io_count);
1805 list_lru_destroy(&btp->bt_lru);
1806
1807 xfs_blkdev_issue_flush(btp);
1808
1809 kmem_free(btp);
1810 }
1811
1812 int
1813 xfs_setsize_buftarg(
1814 xfs_buftarg_t *btp,
1815 unsigned int sectorsize)
1816 {
1817 /* Set up metadata sector size info */
1818 btp->bt_meta_sectorsize = sectorsize;
1819 btp->bt_meta_sectormask = sectorsize - 1;
1820
1821 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1822 xfs_warn(btp->bt_mount,
1823 "Cannot set_blocksize to %u on device %pg",
1824 sectorsize, btp->bt_bdev);
1825 return -EINVAL;
1826 }
1827
1828 /* Set up device logical sector size mask */
1829 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1830 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1831
1832 return 0;
1833 }
1834
1835 /*
1836 * When allocating the initial buffer target we have not yet
1837 * read in the superblock, so don't know what sized sectors
1838 * are being used at this early stage. Play safe.
1839 */
1840 STATIC int
1841 xfs_setsize_buftarg_early(
1842 xfs_buftarg_t *btp,
1843 struct block_device *bdev)
1844 {
1845 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1846 }
1847
1848 xfs_buftarg_t *
1849 xfs_alloc_buftarg(
1850 struct xfs_mount *mp,
1851 struct block_device *bdev,
1852 struct dax_device *dax_dev)
1853 {
1854 xfs_buftarg_t *btp;
1855
1856 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1857
1858 btp->bt_mount = mp;
1859 btp->bt_dev = bdev->bd_dev;
1860 btp->bt_bdev = bdev;
1861 btp->bt_daxdev = dax_dev;
1862
1863 if (xfs_setsize_buftarg_early(btp, bdev))
1864 goto error_free;
1865
1866 if (list_lru_init(&btp->bt_lru))
1867 goto error_free;
1868
1869 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1870 goto error_lru;
1871
1872 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1873 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1874 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1875 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1876 if (register_shrinker(&btp->bt_shrinker))
1877 goto error_pcpu;
1878 return btp;
1879
1880 error_pcpu:
1881 percpu_counter_destroy(&btp->bt_io_count);
1882 error_lru:
1883 list_lru_destroy(&btp->bt_lru);
1884 error_free:
1885 kmem_free(btp);
1886 return NULL;
1887 }
1888
1889 /*
1890 * Cancel a delayed write list.
1891 *
1892 * Remove each buffer from the list, clear the delwri queue flag and drop the
1893 * associated buffer reference.
1894 */
1895 void
1896 xfs_buf_delwri_cancel(
1897 struct list_head *list)
1898 {
1899 struct xfs_buf *bp;
1900
1901 while (!list_empty(list)) {
1902 bp = list_first_entry(list, struct xfs_buf, b_list);
1903
1904 xfs_buf_lock(bp);
1905 bp->b_flags &= ~_XBF_DELWRI_Q;
1906 list_del_init(&bp->b_list);
1907 xfs_buf_relse(bp);
1908 }
1909 }
1910
1911 /*
1912 * Add a buffer to the delayed write list.
1913 *
1914 * This queues a buffer for writeout if it hasn't already been. Note that
1915 * neither this routine nor the buffer list submission functions perform
1916 * any internal synchronization. It is expected that the lists are thread-local
1917 * to the callers.
1918 *
1919 * Returns true if we queued up the buffer, or false if it already had
1920 * been on the buffer list.
1921 */
1922 bool
1923 xfs_buf_delwri_queue(
1924 struct xfs_buf *bp,
1925 struct list_head *list)
1926 {
1927 ASSERT(xfs_buf_islocked(bp));
1928 ASSERT(!(bp->b_flags & XBF_READ));
1929
1930 /*
1931 * If the buffer is already marked delwri it already is queued up
1932 * by someone else for imediate writeout. Just ignore it in that
1933 * case.
1934 */
1935 if (bp->b_flags & _XBF_DELWRI_Q) {
1936 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1937 return false;
1938 }
1939
1940 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1941
1942 /*
1943 * If a buffer gets written out synchronously or marked stale while it
1944 * is on a delwri list we lazily remove it. To do this, the other party
1945 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1946 * It remains referenced and on the list. In a rare corner case it
1947 * might get readded to a delwri list after the synchronous writeout, in
1948 * which case we need just need to re-add the flag here.
1949 */
1950 bp->b_flags |= _XBF_DELWRI_Q;
1951 if (list_empty(&bp->b_list)) {
1952 atomic_inc(&bp->b_hold);
1953 list_add_tail(&bp->b_list, list);
1954 }
1955
1956 return true;
1957 }
1958
1959 /*
1960 * Compare function is more complex than it needs to be because
1961 * the return value is only 32 bits and we are doing comparisons
1962 * on 64 bit values
1963 */
1964 static int
1965 xfs_buf_cmp(
1966 void *priv,
1967 struct list_head *a,
1968 struct list_head *b)
1969 {
1970 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1971 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1972 xfs_daddr_t diff;
1973
1974 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1975 if (diff < 0)
1976 return -1;
1977 if (diff > 0)
1978 return 1;
1979 return 0;
1980 }
1981
1982 /*
1983 * Submit buffers for write. If wait_list is specified, the buffers are
1984 * submitted using sync I/O and placed on the wait list such that the caller can
1985 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1986 * at I/O completion time. In either case, buffers remain locked until I/O
1987 * completes and the buffer is released from the queue.
1988 */
1989 static int
1990 xfs_buf_delwri_submit_buffers(
1991 struct list_head *buffer_list,
1992 struct list_head *wait_list)
1993 {
1994 struct xfs_buf *bp, *n;
1995 int pinned = 0;
1996 struct blk_plug plug;
1997
1998 list_sort(NULL, buffer_list, xfs_buf_cmp);
1999
2000 blk_start_plug(&plug);
2001 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2002 if (!wait_list) {
2003 if (xfs_buf_ispinned(bp)) {
2004 pinned++;
2005 continue;
2006 }
2007 if (!xfs_buf_trylock(bp))
2008 continue;
2009 } else {
2010 xfs_buf_lock(bp);
2011 }
2012
2013 /*
2014 * Someone else might have written the buffer synchronously or
2015 * marked it stale in the meantime. In that case only the
2016 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2017 * reference and remove it from the list here.
2018 */
2019 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2020 list_del_init(&bp->b_list);
2021 xfs_buf_relse(bp);
2022 continue;
2023 }
2024
2025 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2026
2027 /*
2028 * If we have a wait list, each buffer (and associated delwri
2029 * queue reference) transfers to it and is submitted
2030 * synchronously. Otherwise, drop the buffer from the delwri
2031 * queue and submit async.
2032 */
2033 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2034 bp->b_flags |= XBF_WRITE;
2035 if (wait_list) {
2036 bp->b_flags &= ~XBF_ASYNC;
2037 list_move_tail(&bp->b_list, wait_list);
2038 } else {
2039 bp->b_flags |= XBF_ASYNC;
2040 list_del_init(&bp->b_list);
2041 }
2042 __xfs_buf_submit(bp, false);
2043 }
2044 blk_finish_plug(&plug);
2045
2046 return pinned;
2047 }
2048
2049 /*
2050 * Write out a buffer list asynchronously.
2051 *
2052 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2053 * out and not wait for I/O completion on any of the buffers. This interface
2054 * is only safely useable for callers that can track I/O completion by higher
2055 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2056 * function.
2057 *
2058 * Note: this function will skip buffers it would block on, and in doing so
2059 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2060 * it is up to the caller to ensure that the buffer list is fully submitted or
2061 * cancelled appropriately when they are finished with the list. Failure to
2062 * cancel or resubmit the list until it is empty will result in leaked buffers
2063 * at unmount time.
2064 */
2065 int
2066 xfs_buf_delwri_submit_nowait(
2067 struct list_head *buffer_list)
2068 {
2069 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2070 }
2071
2072 /*
2073 * Write out a buffer list synchronously.
2074 *
2075 * This will take the @buffer_list, write all buffers out and wait for I/O
2076 * completion on all of the buffers. @buffer_list is consumed by the function,
2077 * so callers must have some other way of tracking buffers if they require such
2078 * functionality.
2079 */
2080 int
2081 xfs_buf_delwri_submit(
2082 struct list_head *buffer_list)
2083 {
2084 LIST_HEAD (wait_list);
2085 int error = 0, error2;
2086 struct xfs_buf *bp;
2087
2088 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2089
2090 /* Wait for IO to complete. */
2091 while (!list_empty(&wait_list)) {
2092 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2093
2094 list_del_init(&bp->b_list);
2095
2096 /*
2097 * Wait on the locked buffer, check for errors and unlock and
2098 * release the delwri queue reference.
2099 */
2100 error2 = xfs_buf_iowait(bp);
2101 xfs_buf_relse(bp);
2102 if (!error)
2103 error = error2;
2104 }
2105
2106 return error;
2107 }
2108
2109 /*
2110 * Push a single buffer on a delwri queue.
2111 *
2112 * The purpose of this function is to submit a single buffer of a delwri queue
2113 * and return with the buffer still on the original queue. The waiting delwri
2114 * buffer submission infrastructure guarantees transfer of the delwri queue
2115 * buffer reference to a temporary wait list. We reuse this infrastructure to
2116 * transfer the buffer back to the original queue.
2117 *
2118 * Note the buffer transitions from the queued state, to the submitted and wait
2119 * listed state and back to the queued state during this call. The buffer
2120 * locking and queue management logic between _delwri_pushbuf() and
2121 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2122 * before returning.
2123 */
2124 int
2125 xfs_buf_delwri_pushbuf(
2126 struct xfs_buf *bp,
2127 struct list_head *buffer_list)
2128 {
2129 LIST_HEAD (submit_list);
2130 int error;
2131
2132 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2133
2134 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2135
2136 /*
2137 * Isolate the buffer to a new local list so we can submit it for I/O
2138 * independently from the rest of the original list.
2139 */
2140 xfs_buf_lock(bp);
2141 list_move(&bp->b_list, &submit_list);
2142 xfs_buf_unlock(bp);
2143
2144 /*
2145 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2146 * the buffer on the wait list with the original reference. Rather than
2147 * bounce the buffer from a local wait list back to the original list
2148 * after I/O completion, reuse the original list as the wait list.
2149 */
2150 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2151
2152 /*
2153 * The buffer is now locked, under I/O and wait listed on the original
2154 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2155 * return with the buffer unlocked and on the original queue.
2156 */
2157 error = xfs_buf_iowait(bp);
2158 bp->b_flags |= _XBF_DELWRI_Q;
2159 xfs_buf_unlock(bp);
2160
2161 return error;
2162 }
2163
2164 int __init
2165 xfs_buf_init(void)
2166 {
2167 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2168 KM_ZONE_HWALIGN, NULL);
2169 if (!xfs_buf_zone)
2170 goto out;
2171
2172 return 0;
2173
2174 out:
2175 return -ENOMEM;
2176 }
2177
2178 void
2179 xfs_buf_terminate(void)
2180 {
2181 kmem_zone_destroy(xfs_buf_zone);
2182 }
2183
2184 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2185 {
2186 /*
2187 * Set the lru reference count to 0 based on the error injection tag.
2188 * This allows userspace to disrupt buffer caching for debug/testing
2189 * purposes.
2190 */
2191 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2192 XFS_ERRTAG_BUF_LRU_REF))
2193 lru_ref = 0;
2194
2195 atomic_set(&bp->b_lru_ref, lru_ref);
2196 }