]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_buf.c
Merge branch 'for-4.3/gembird' into for-linus
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90 void
91 xfs_buf_stale(
92 struct xfs_buf *bp)
93 {
94 ASSERT(xfs_buf_islocked(bp));
95
96 bp->b_flags |= XBF_STALE;
97
98 /*
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
102 */
103 bp->b_flags &= ~_XBF_DELWRI_Q;
104
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
110
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
113 }
114
115 static int
116 xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
119 {
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
122
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
125 return 0;
126 }
127
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
131 return -ENOMEM;
132 return 0;
133 }
134
135 /*
136 * Frees b_pages if it was allocated.
137 */
138 static void
139 xfs_buf_free_maps(
140 struct xfs_buf *bp)
141 {
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
145 }
146 }
147
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
152 int nmaps,
153 xfs_buf_flags_t flags)
154 {
155 struct xfs_buf *bp;
156 int error;
157 int i;
158
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 if (unlikely(!bp))
161 return NULL;
162
163 /*
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
166 */
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
179 bp->b_flags = flags;
180
181 /*
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
185 */
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
190 }
191
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
198 }
199 bp->b_io_length = bp->b_length;
200
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
206
207 return bp;
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count)
218 {
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
224 } else {
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
228 return -ENOMEM;
229 }
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 }
232 return 0;
233 }
234
235 /*
236 * Frees b_pages if it was allocated.
237 */
238 STATIC void
239 _xfs_buf_free_pages(
240 xfs_buf_t *bp)
241 {
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
244 bp->b_pages = NULL;
245 }
246 }
247
248 /*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
254 */
255 void
256 xfs_buf_free(
257 xfs_buf_t *bp)
258 {
259 trace_xfs_buf_free(bp, _RET_IP_);
260
261 ASSERT(list_empty(&bp->b_lru));
262
263 if (bp->b_flags & _XBF_PAGES) {
264 uint i;
265
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
269
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
272
273 __free_page(page);
274 }
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
280 }
281
282 /*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
289 {
290 size_t size;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
295 int error;
296
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
322 return 0;
323 }
324
325 use_alloc_page:
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 >> PAGE_SHIFT;
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
331 if (unlikely(error))
332 return error;
333
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = -ENOMEM;
346 goto out_free_pages;
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "possible memory allocation deadlock in %s (mode:0x%x)",
358 __func__, gfp_mask);
359
360 XFS_STATS_INC(xb_page_retries);
361 congestion_wait(BLK_RW_ASYNC, HZ/50);
362 goto retry;
363 }
364
365 XFS_STATS_INC(xb_page_found);
366
367 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
368 size -= nbytes;
369 bp->b_pages[i] = page;
370 offset = 0;
371 }
372 return 0;
373
374 out_free_pages:
375 for (i = 0; i < bp->b_page_count; i++)
376 __free_page(bp->b_pages[i]);
377 return error;
378 }
379
380 /*
381 * Map buffer into kernel address-space if necessary.
382 */
383 STATIC int
384 _xfs_buf_map_pages(
385 xfs_buf_t *bp,
386 uint flags)
387 {
388 ASSERT(bp->b_flags & _XBF_PAGES);
389 if (bp->b_page_count == 1) {
390 /* A single page buffer is always mappable */
391 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392 } else if (flags & XBF_UNMAPPED) {
393 bp->b_addr = NULL;
394 } else {
395 int retried = 0;
396 unsigned noio_flag;
397
398 /*
399 * vm_map_ram() will allocate auxillary structures (e.g.
400 * pagetables) with GFP_KERNEL, yet we are likely to be under
401 * GFP_NOFS context here. Hence we need to tell memory reclaim
402 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
403 * memory reclaim re-entering the filesystem here and
404 * potentially deadlocking.
405 */
406 noio_flag = memalloc_noio_save();
407 do {
408 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
409 -1, PAGE_KERNEL);
410 if (bp->b_addr)
411 break;
412 vm_unmap_aliases();
413 } while (retried++ <= 1);
414 memalloc_noio_restore(noio_flag);
415
416 if (!bp->b_addr)
417 return -ENOMEM;
418 bp->b_addr += bp->b_offset;
419 }
420
421 return 0;
422 }
423
424 /*
425 * Finding and Reading Buffers
426 */
427
428 /*
429 * Look up, and creates if absent, a lockable buffer for
430 * a given range of an inode. The buffer is returned
431 * locked. No I/O is implied by this call.
432 */
433 xfs_buf_t *
434 _xfs_buf_find(
435 struct xfs_buftarg *btp,
436 struct xfs_buf_map *map,
437 int nmaps,
438 xfs_buf_flags_t flags,
439 xfs_buf_t *new_bp)
440 {
441 size_t numbytes;
442 struct xfs_perag *pag;
443 struct rb_node **rbp;
444 struct rb_node *parent;
445 xfs_buf_t *bp;
446 xfs_daddr_t blkno = map[0].bm_bn;
447 xfs_daddr_t eofs;
448 int numblks = 0;
449 int i;
450
451 for (i = 0; i < nmaps; i++)
452 numblks += map[i].bm_len;
453 numbytes = BBTOB(numblks);
454
455 /* Check for IOs smaller than the sector size / not sector aligned */
456 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
457 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
458
459 /*
460 * Corrupted block numbers can get through to here, unfortunately, so we
461 * have to check that the buffer falls within the filesystem bounds.
462 */
463 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
464 if (blkno < 0 || blkno >= eofs) {
465 /*
466 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
467 * but none of the higher level infrastructure supports
468 * returning a specific error on buffer lookup failures.
469 */
470 xfs_alert(btp->bt_mount,
471 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
472 __func__, blkno, eofs);
473 WARN_ON(1);
474 return NULL;
475 }
476
477 /* get tree root */
478 pag = xfs_perag_get(btp->bt_mount,
479 xfs_daddr_to_agno(btp->bt_mount, blkno));
480
481 /* walk tree */
482 spin_lock(&pag->pag_buf_lock);
483 rbp = &pag->pag_buf_tree.rb_node;
484 parent = NULL;
485 bp = NULL;
486 while (*rbp) {
487 parent = *rbp;
488 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
489
490 if (blkno < bp->b_bn)
491 rbp = &(*rbp)->rb_left;
492 else if (blkno > bp->b_bn)
493 rbp = &(*rbp)->rb_right;
494 else {
495 /*
496 * found a block number match. If the range doesn't
497 * match, the only way this is allowed is if the buffer
498 * in the cache is stale and the transaction that made
499 * it stale has not yet committed. i.e. we are
500 * reallocating a busy extent. Skip this buffer and
501 * continue searching to the right for an exact match.
502 */
503 if (bp->b_length != numblks) {
504 ASSERT(bp->b_flags & XBF_STALE);
505 rbp = &(*rbp)->rb_right;
506 continue;
507 }
508 atomic_inc(&bp->b_hold);
509 goto found;
510 }
511 }
512
513 /* No match found */
514 if (new_bp) {
515 rb_link_node(&new_bp->b_rbnode, parent, rbp);
516 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
517 /* the buffer keeps the perag reference until it is freed */
518 new_bp->b_pag = pag;
519 spin_unlock(&pag->pag_buf_lock);
520 } else {
521 XFS_STATS_INC(xb_miss_locked);
522 spin_unlock(&pag->pag_buf_lock);
523 xfs_perag_put(pag);
524 }
525 return new_bp;
526
527 found:
528 spin_unlock(&pag->pag_buf_lock);
529 xfs_perag_put(pag);
530
531 if (!xfs_buf_trylock(bp)) {
532 if (flags & XBF_TRYLOCK) {
533 xfs_buf_rele(bp);
534 XFS_STATS_INC(xb_busy_locked);
535 return NULL;
536 }
537 xfs_buf_lock(bp);
538 XFS_STATS_INC(xb_get_locked_waited);
539 }
540
541 /*
542 * if the buffer is stale, clear all the external state associated with
543 * it. We need to keep flags such as how we allocated the buffer memory
544 * intact here.
545 */
546 if (bp->b_flags & XBF_STALE) {
547 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
548 ASSERT(bp->b_iodone == NULL);
549 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
550 bp->b_ops = NULL;
551 }
552
553 trace_xfs_buf_find(bp, flags, _RET_IP_);
554 XFS_STATS_INC(xb_get_locked);
555 return bp;
556 }
557
558 /*
559 * Assembles a buffer covering the specified range. The code is optimised for
560 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
561 * more hits than misses.
562 */
563 struct xfs_buf *
564 xfs_buf_get_map(
565 struct xfs_buftarg *target,
566 struct xfs_buf_map *map,
567 int nmaps,
568 xfs_buf_flags_t flags)
569 {
570 struct xfs_buf *bp;
571 struct xfs_buf *new_bp;
572 int error = 0;
573
574 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
575 if (likely(bp))
576 goto found;
577
578 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
579 if (unlikely(!new_bp))
580 return NULL;
581
582 error = xfs_buf_allocate_memory(new_bp, flags);
583 if (error) {
584 xfs_buf_free(new_bp);
585 return NULL;
586 }
587
588 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
589 if (!bp) {
590 xfs_buf_free(new_bp);
591 return NULL;
592 }
593
594 if (bp != new_bp)
595 xfs_buf_free(new_bp);
596
597 found:
598 if (!bp->b_addr) {
599 error = _xfs_buf_map_pages(bp, flags);
600 if (unlikely(error)) {
601 xfs_warn(target->bt_mount,
602 "%s: failed to map pagesn", __func__);
603 xfs_buf_relse(bp);
604 return NULL;
605 }
606 }
607
608 XFS_STATS_INC(xb_get);
609 trace_xfs_buf_get(bp, flags, _RET_IP_);
610 return bp;
611 }
612
613 STATIC int
614 _xfs_buf_read(
615 xfs_buf_t *bp,
616 xfs_buf_flags_t flags)
617 {
618 ASSERT(!(flags & XBF_WRITE));
619 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
620
621 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
622 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
623
624 if (flags & XBF_ASYNC) {
625 xfs_buf_submit(bp);
626 return 0;
627 }
628 return xfs_buf_submit_wait(bp);
629 }
630
631 xfs_buf_t *
632 xfs_buf_read_map(
633 struct xfs_buftarg *target,
634 struct xfs_buf_map *map,
635 int nmaps,
636 xfs_buf_flags_t flags,
637 const struct xfs_buf_ops *ops)
638 {
639 struct xfs_buf *bp;
640
641 flags |= XBF_READ;
642
643 bp = xfs_buf_get_map(target, map, nmaps, flags);
644 if (bp) {
645 trace_xfs_buf_read(bp, flags, _RET_IP_);
646
647 if (!XFS_BUF_ISDONE(bp)) {
648 XFS_STATS_INC(xb_get_read);
649 bp->b_ops = ops;
650 _xfs_buf_read(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 /*
653 * Read ahead call which is already satisfied,
654 * drop the buffer
655 */
656 xfs_buf_relse(bp);
657 return NULL;
658 } else {
659 /* We do not want read in the flags */
660 bp->b_flags &= ~XBF_READ;
661 }
662 }
663
664 return bp;
665 }
666
667 /*
668 * If we are not low on memory then do the readahead in a deadlock
669 * safe manner.
670 */
671 void
672 xfs_buf_readahead_map(
673 struct xfs_buftarg *target,
674 struct xfs_buf_map *map,
675 int nmaps,
676 const struct xfs_buf_ops *ops)
677 {
678 if (bdi_read_congested(target->bt_bdi))
679 return;
680
681 xfs_buf_read_map(target, map, nmaps,
682 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
683 }
684
685 /*
686 * Read an uncached buffer from disk. Allocates and returns a locked
687 * buffer containing the disk contents or nothing.
688 */
689 int
690 xfs_buf_read_uncached(
691 struct xfs_buftarg *target,
692 xfs_daddr_t daddr,
693 size_t numblks,
694 int flags,
695 struct xfs_buf **bpp,
696 const struct xfs_buf_ops *ops)
697 {
698 struct xfs_buf *bp;
699
700 *bpp = NULL;
701
702 bp = xfs_buf_get_uncached(target, numblks, flags);
703 if (!bp)
704 return -ENOMEM;
705
706 /* set up the buffer for a read IO */
707 ASSERT(bp->b_map_count == 1);
708 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
709 bp->b_maps[0].bm_bn = daddr;
710 bp->b_flags |= XBF_READ;
711 bp->b_ops = ops;
712
713 xfs_buf_submit_wait(bp);
714 if (bp->b_error) {
715 int error = bp->b_error;
716 xfs_buf_relse(bp);
717 return error;
718 }
719
720 *bpp = bp;
721 return 0;
722 }
723
724 /*
725 * Return a buffer allocated as an empty buffer and associated to external
726 * memory via xfs_buf_associate_memory() back to it's empty state.
727 */
728 void
729 xfs_buf_set_empty(
730 struct xfs_buf *bp,
731 size_t numblks)
732 {
733 if (bp->b_pages)
734 _xfs_buf_free_pages(bp);
735
736 bp->b_pages = NULL;
737 bp->b_page_count = 0;
738 bp->b_addr = NULL;
739 bp->b_length = numblks;
740 bp->b_io_length = numblks;
741
742 ASSERT(bp->b_map_count == 1);
743 bp->b_bn = XFS_BUF_DADDR_NULL;
744 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
745 bp->b_maps[0].bm_len = bp->b_length;
746 }
747
748 static inline struct page *
749 mem_to_page(
750 void *addr)
751 {
752 if ((!is_vmalloc_addr(addr))) {
753 return virt_to_page(addr);
754 } else {
755 return vmalloc_to_page(addr);
756 }
757 }
758
759 int
760 xfs_buf_associate_memory(
761 xfs_buf_t *bp,
762 void *mem,
763 size_t len)
764 {
765 int rval;
766 int i = 0;
767 unsigned long pageaddr;
768 unsigned long offset;
769 size_t buflen;
770 int page_count;
771
772 pageaddr = (unsigned long)mem & PAGE_MASK;
773 offset = (unsigned long)mem - pageaddr;
774 buflen = PAGE_ALIGN(len + offset);
775 page_count = buflen >> PAGE_SHIFT;
776
777 /* Free any previous set of page pointers */
778 if (bp->b_pages)
779 _xfs_buf_free_pages(bp);
780
781 bp->b_pages = NULL;
782 bp->b_addr = mem;
783
784 rval = _xfs_buf_get_pages(bp, page_count);
785 if (rval)
786 return rval;
787
788 bp->b_offset = offset;
789
790 for (i = 0; i < bp->b_page_count; i++) {
791 bp->b_pages[i] = mem_to_page((void *)pageaddr);
792 pageaddr += PAGE_SIZE;
793 }
794
795 bp->b_io_length = BTOBB(len);
796 bp->b_length = BTOBB(buflen);
797
798 return 0;
799 }
800
801 xfs_buf_t *
802 xfs_buf_get_uncached(
803 struct xfs_buftarg *target,
804 size_t numblks,
805 int flags)
806 {
807 unsigned long page_count;
808 int error, i;
809 struct xfs_buf *bp;
810 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
811
812 bp = _xfs_buf_alloc(target, &map, 1, 0);
813 if (unlikely(bp == NULL))
814 goto fail;
815
816 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
817 error = _xfs_buf_get_pages(bp, page_count);
818 if (error)
819 goto fail_free_buf;
820
821 for (i = 0; i < page_count; i++) {
822 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
823 if (!bp->b_pages[i])
824 goto fail_free_mem;
825 }
826 bp->b_flags |= _XBF_PAGES;
827
828 error = _xfs_buf_map_pages(bp, 0);
829 if (unlikely(error)) {
830 xfs_warn(target->bt_mount,
831 "%s: failed to map pages", __func__);
832 goto fail_free_mem;
833 }
834
835 trace_xfs_buf_get_uncached(bp, _RET_IP_);
836 return bp;
837
838 fail_free_mem:
839 while (--i >= 0)
840 __free_page(bp->b_pages[i]);
841 _xfs_buf_free_pages(bp);
842 fail_free_buf:
843 xfs_buf_free_maps(bp);
844 kmem_zone_free(xfs_buf_zone, bp);
845 fail:
846 return NULL;
847 }
848
849 /*
850 * Increment reference count on buffer, to hold the buffer concurrently
851 * with another thread which may release (free) the buffer asynchronously.
852 * Must hold the buffer already to call this function.
853 */
854 void
855 xfs_buf_hold(
856 xfs_buf_t *bp)
857 {
858 trace_xfs_buf_hold(bp, _RET_IP_);
859 atomic_inc(&bp->b_hold);
860 }
861
862 /*
863 * Releases a hold on the specified buffer. If the
864 * the hold count is 1, calls xfs_buf_free.
865 */
866 void
867 xfs_buf_rele(
868 xfs_buf_t *bp)
869 {
870 struct xfs_perag *pag = bp->b_pag;
871
872 trace_xfs_buf_rele(bp, _RET_IP_);
873
874 if (!pag) {
875 ASSERT(list_empty(&bp->b_lru));
876 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
877 if (atomic_dec_and_test(&bp->b_hold))
878 xfs_buf_free(bp);
879 return;
880 }
881
882 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
883
884 ASSERT(atomic_read(&bp->b_hold) > 0);
885 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
886 spin_lock(&bp->b_lock);
887 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
888 /*
889 * If the buffer is added to the LRU take a new
890 * reference to the buffer for the LRU and clear the
891 * (now stale) dispose list state flag
892 */
893 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
894 bp->b_state &= ~XFS_BSTATE_DISPOSE;
895 atomic_inc(&bp->b_hold);
896 }
897 spin_unlock(&bp->b_lock);
898 spin_unlock(&pag->pag_buf_lock);
899 } else {
900 /*
901 * most of the time buffers will already be removed from
902 * the LRU, so optimise that case by checking for the
903 * XFS_BSTATE_DISPOSE flag indicating the last list the
904 * buffer was on was the disposal list
905 */
906 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
907 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
908 } else {
909 ASSERT(list_empty(&bp->b_lru));
910 }
911 spin_unlock(&bp->b_lock);
912
913 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
914 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
915 spin_unlock(&pag->pag_buf_lock);
916 xfs_perag_put(pag);
917 xfs_buf_free(bp);
918 }
919 }
920 }
921
922
923 /*
924 * Lock a buffer object, if it is not already locked.
925 *
926 * If we come across a stale, pinned, locked buffer, we know that we are
927 * being asked to lock a buffer that has been reallocated. Because it is
928 * pinned, we know that the log has not been pushed to disk and hence it
929 * will still be locked. Rather than continuing to have trylock attempts
930 * fail until someone else pushes the log, push it ourselves before
931 * returning. This means that the xfsaild will not get stuck trying
932 * to push on stale inode buffers.
933 */
934 int
935 xfs_buf_trylock(
936 struct xfs_buf *bp)
937 {
938 int locked;
939
940 locked = down_trylock(&bp->b_sema) == 0;
941 if (locked)
942 XB_SET_OWNER(bp);
943
944 trace_xfs_buf_trylock(bp, _RET_IP_);
945 return locked;
946 }
947
948 /*
949 * Lock a buffer object.
950 *
951 * If we come across a stale, pinned, locked buffer, we know that we
952 * are being asked to lock a buffer that has been reallocated. Because
953 * it is pinned, we know that the log has not been pushed to disk and
954 * hence it will still be locked. Rather than sleeping until someone
955 * else pushes the log, push it ourselves before trying to get the lock.
956 */
957 void
958 xfs_buf_lock(
959 struct xfs_buf *bp)
960 {
961 trace_xfs_buf_lock(bp, _RET_IP_);
962
963 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
964 xfs_log_force(bp->b_target->bt_mount, 0);
965 down(&bp->b_sema);
966 XB_SET_OWNER(bp);
967
968 trace_xfs_buf_lock_done(bp, _RET_IP_);
969 }
970
971 void
972 xfs_buf_unlock(
973 struct xfs_buf *bp)
974 {
975 XB_CLEAR_OWNER(bp);
976 up(&bp->b_sema);
977
978 trace_xfs_buf_unlock(bp, _RET_IP_);
979 }
980
981 STATIC void
982 xfs_buf_wait_unpin(
983 xfs_buf_t *bp)
984 {
985 DECLARE_WAITQUEUE (wait, current);
986
987 if (atomic_read(&bp->b_pin_count) == 0)
988 return;
989
990 add_wait_queue(&bp->b_waiters, &wait);
991 for (;;) {
992 set_current_state(TASK_UNINTERRUPTIBLE);
993 if (atomic_read(&bp->b_pin_count) == 0)
994 break;
995 io_schedule();
996 }
997 remove_wait_queue(&bp->b_waiters, &wait);
998 set_current_state(TASK_RUNNING);
999 }
1000
1001 /*
1002 * Buffer Utility Routines
1003 */
1004
1005 void
1006 xfs_buf_ioend(
1007 struct xfs_buf *bp)
1008 {
1009 bool read = bp->b_flags & XBF_READ;
1010
1011 trace_xfs_buf_iodone(bp, _RET_IP_);
1012
1013 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1014
1015 /*
1016 * Pull in IO completion errors now. We are guaranteed to be running
1017 * single threaded, so we don't need the lock to read b_io_error.
1018 */
1019 if (!bp->b_error && bp->b_io_error)
1020 xfs_buf_ioerror(bp, bp->b_io_error);
1021
1022 /* Only validate buffers that were read without errors */
1023 if (read && !bp->b_error && bp->b_ops) {
1024 ASSERT(!bp->b_iodone);
1025 bp->b_ops->verify_read(bp);
1026 }
1027
1028 if (!bp->b_error)
1029 bp->b_flags |= XBF_DONE;
1030
1031 if (bp->b_iodone)
1032 (*(bp->b_iodone))(bp);
1033 else if (bp->b_flags & XBF_ASYNC)
1034 xfs_buf_relse(bp);
1035 else
1036 complete(&bp->b_iowait);
1037 }
1038
1039 static void
1040 xfs_buf_ioend_work(
1041 struct work_struct *work)
1042 {
1043 struct xfs_buf *bp =
1044 container_of(work, xfs_buf_t, b_ioend_work);
1045
1046 xfs_buf_ioend(bp);
1047 }
1048
1049 void
1050 xfs_buf_ioend_async(
1051 struct xfs_buf *bp)
1052 {
1053 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1054 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1055 }
1056
1057 void
1058 xfs_buf_ioerror(
1059 xfs_buf_t *bp,
1060 int error)
1061 {
1062 ASSERT(error <= 0 && error >= -1000);
1063 bp->b_error = error;
1064 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1065 }
1066
1067 void
1068 xfs_buf_ioerror_alert(
1069 struct xfs_buf *bp,
1070 const char *func)
1071 {
1072 xfs_alert(bp->b_target->bt_mount,
1073 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1074 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1075 }
1076
1077 int
1078 xfs_bwrite(
1079 struct xfs_buf *bp)
1080 {
1081 int error;
1082
1083 ASSERT(xfs_buf_islocked(bp));
1084
1085 bp->b_flags |= XBF_WRITE;
1086 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1087 XBF_WRITE_FAIL | XBF_DONE);
1088
1089 error = xfs_buf_submit_wait(bp);
1090 if (error) {
1091 xfs_force_shutdown(bp->b_target->bt_mount,
1092 SHUTDOWN_META_IO_ERROR);
1093 }
1094 return error;
1095 }
1096
1097 STATIC void
1098 xfs_buf_bio_end_io(
1099 struct bio *bio,
1100 int error)
1101 {
1102 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1103
1104 /*
1105 * don't overwrite existing errors - otherwise we can lose errors on
1106 * buffers that require multiple bios to complete.
1107 */
1108 if (error) {
1109 spin_lock(&bp->b_lock);
1110 if (!bp->b_io_error)
1111 bp->b_io_error = error;
1112 spin_unlock(&bp->b_lock);
1113 }
1114
1115 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1116 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1117
1118 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1119 xfs_buf_ioend_async(bp);
1120 bio_put(bio);
1121 }
1122
1123 static void
1124 xfs_buf_ioapply_map(
1125 struct xfs_buf *bp,
1126 int map,
1127 int *buf_offset,
1128 int *count,
1129 int rw)
1130 {
1131 int page_index;
1132 int total_nr_pages = bp->b_page_count;
1133 int nr_pages;
1134 struct bio *bio;
1135 sector_t sector = bp->b_maps[map].bm_bn;
1136 int size;
1137 int offset;
1138
1139 total_nr_pages = bp->b_page_count;
1140
1141 /* skip the pages in the buffer before the start offset */
1142 page_index = 0;
1143 offset = *buf_offset;
1144 while (offset >= PAGE_SIZE) {
1145 page_index++;
1146 offset -= PAGE_SIZE;
1147 }
1148
1149 /*
1150 * Limit the IO size to the length of the current vector, and update the
1151 * remaining IO count for the next time around.
1152 */
1153 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1154 *count -= size;
1155 *buf_offset += size;
1156
1157 next_chunk:
1158 atomic_inc(&bp->b_io_remaining);
1159 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1160 if (nr_pages > total_nr_pages)
1161 nr_pages = total_nr_pages;
1162
1163 bio = bio_alloc(GFP_NOIO, nr_pages);
1164 bio->bi_bdev = bp->b_target->bt_bdev;
1165 bio->bi_iter.bi_sector = sector;
1166 bio->bi_end_io = xfs_buf_bio_end_io;
1167 bio->bi_private = bp;
1168
1169
1170 for (; size && nr_pages; nr_pages--, page_index++) {
1171 int rbytes, nbytes = PAGE_SIZE - offset;
1172
1173 if (nbytes > size)
1174 nbytes = size;
1175
1176 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1177 offset);
1178 if (rbytes < nbytes)
1179 break;
1180
1181 offset = 0;
1182 sector += BTOBB(nbytes);
1183 size -= nbytes;
1184 total_nr_pages--;
1185 }
1186
1187 if (likely(bio->bi_iter.bi_size)) {
1188 if (xfs_buf_is_vmapped(bp)) {
1189 flush_kernel_vmap_range(bp->b_addr,
1190 xfs_buf_vmap_len(bp));
1191 }
1192 submit_bio(rw, bio);
1193 if (size)
1194 goto next_chunk;
1195 } else {
1196 /*
1197 * This is guaranteed not to be the last io reference count
1198 * because the caller (xfs_buf_submit) holds a count itself.
1199 */
1200 atomic_dec(&bp->b_io_remaining);
1201 xfs_buf_ioerror(bp, -EIO);
1202 bio_put(bio);
1203 }
1204
1205 }
1206
1207 STATIC void
1208 _xfs_buf_ioapply(
1209 struct xfs_buf *bp)
1210 {
1211 struct blk_plug plug;
1212 int rw;
1213 int offset;
1214 int size;
1215 int i;
1216
1217 /*
1218 * Make sure we capture only current IO errors rather than stale errors
1219 * left over from previous use of the buffer (e.g. failed readahead).
1220 */
1221 bp->b_error = 0;
1222
1223 /*
1224 * Initialize the I/O completion workqueue if we haven't yet or the
1225 * submitter has not opted to specify a custom one.
1226 */
1227 if (!bp->b_ioend_wq)
1228 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1229
1230 if (bp->b_flags & XBF_WRITE) {
1231 if (bp->b_flags & XBF_SYNCIO)
1232 rw = WRITE_SYNC;
1233 else
1234 rw = WRITE;
1235 if (bp->b_flags & XBF_FUA)
1236 rw |= REQ_FUA;
1237 if (bp->b_flags & XBF_FLUSH)
1238 rw |= REQ_FLUSH;
1239
1240 /*
1241 * Run the write verifier callback function if it exists. If
1242 * this function fails it will mark the buffer with an error and
1243 * the IO should not be dispatched.
1244 */
1245 if (bp->b_ops) {
1246 bp->b_ops->verify_write(bp);
1247 if (bp->b_error) {
1248 xfs_force_shutdown(bp->b_target->bt_mount,
1249 SHUTDOWN_CORRUPT_INCORE);
1250 return;
1251 }
1252 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1253 struct xfs_mount *mp = bp->b_target->bt_mount;
1254
1255 /*
1256 * non-crc filesystems don't attach verifiers during
1257 * log recovery, so don't warn for such filesystems.
1258 */
1259 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1260 xfs_warn(mp,
1261 "%s: no ops on block 0x%llx/0x%x",
1262 __func__, bp->b_bn, bp->b_length);
1263 xfs_hex_dump(bp->b_addr, 64);
1264 dump_stack();
1265 }
1266 }
1267 } else if (bp->b_flags & XBF_READ_AHEAD) {
1268 rw = READA;
1269 } else {
1270 rw = READ;
1271 }
1272
1273 /* we only use the buffer cache for meta-data */
1274 rw |= REQ_META;
1275
1276 /*
1277 * Walk all the vectors issuing IO on them. Set up the initial offset
1278 * into the buffer and the desired IO size before we start -
1279 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1280 * subsequent call.
1281 */
1282 offset = bp->b_offset;
1283 size = BBTOB(bp->b_io_length);
1284 blk_start_plug(&plug);
1285 for (i = 0; i < bp->b_map_count; i++) {
1286 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1287 if (bp->b_error)
1288 break;
1289 if (size <= 0)
1290 break; /* all done */
1291 }
1292 blk_finish_plug(&plug);
1293 }
1294
1295 /*
1296 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1297 * the current reference to the IO. It is not safe to reference the buffer after
1298 * a call to this function unless the caller holds an additional reference
1299 * itself.
1300 */
1301 void
1302 xfs_buf_submit(
1303 struct xfs_buf *bp)
1304 {
1305 trace_xfs_buf_submit(bp, _RET_IP_);
1306
1307 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1308 ASSERT(bp->b_flags & XBF_ASYNC);
1309
1310 /* on shutdown we stale and complete the buffer immediately */
1311 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1312 xfs_buf_ioerror(bp, -EIO);
1313 bp->b_flags &= ~XBF_DONE;
1314 xfs_buf_stale(bp);
1315 xfs_buf_ioend(bp);
1316 return;
1317 }
1318
1319 if (bp->b_flags & XBF_WRITE)
1320 xfs_buf_wait_unpin(bp);
1321
1322 /* clear the internal error state to avoid spurious errors */
1323 bp->b_io_error = 0;
1324
1325 /*
1326 * The caller's reference is released during I/O completion.
1327 * This occurs some time after the last b_io_remaining reference is
1328 * released, so after we drop our Io reference we have to have some
1329 * other reference to ensure the buffer doesn't go away from underneath
1330 * us. Take a direct reference to ensure we have safe access to the
1331 * buffer until we are finished with it.
1332 */
1333 xfs_buf_hold(bp);
1334
1335 /*
1336 * Set the count to 1 initially, this will stop an I/O completion
1337 * callout which happens before we have started all the I/O from calling
1338 * xfs_buf_ioend too early.
1339 */
1340 atomic_set(&bp->b_io_remaining, 1);
1341 _xfs_buf_ioapply(bp);
1342
1343 /*
1344 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1345 * reference we took above. If we drop it to zero, run completion so
1346 * that we don't return to the caller with completion still pending.
1347 */
1348 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1349 if (bp->b_error)
1350 xfs_buf_ioend(bp);
1351 else
1352 xfs_buf_ioend_async(bp);
1353 }
1354
1355 xfs_buf_rele(bp);
1356 /* Note: it is not safe to reference bp now we've dropped our ref */
1357 }
1358
1359 /*
1360 * Synchronous buffer IO submission path, read or write.
1361 */
1362 int
1363 xfs_buf_submit_wait(
1364 struct xfs_buf *bp)
1365 {
1366 int error;
1367
1368 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1369
1370 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1371
1372 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1373 xfs_buf_ioerror(bp, -EIO);
1374 xfs_buf_stale(bp);
1375 bp->b_flags &= ~XBF_DONE;
1376 return -EIO;
1377 }
1378
1379 if (bp->b_flags & XBF_WRITE)
1380 xfs_buf_wait_unpin(bp);
1381
1382 /* clear the internal error state to avoid spurious errors */
1383 bp->b_io_error = 0;
1384
1385 /*
1386 * For synchronous IO, the IO does not inherit the submitters reference
1387 * count, nor the buffer lock. Hence we cannot release the reference we
1388 * are about to take until we've waited for all IO completion to occur,
1389 * including any xfs_buf_ioend_async() work that may be pending.
1390 */
1391 xfs_buf_hold(bp);
1392
1393 /*
1394 * Set the count to 1 initially, this will stop an I/O completion
1395 * callout which happens before we have started all the I/O from calling
1396 * xfs_buf_ioend too early.
1397 */
1398 atomic_set(&bp->b_io_remaining, 1);
1399 _xfs_buf_ioapply(bp);
1400
1401 /*
1402 * make sure we run completion synchronously if it raced with us and is
1403 * already complete.
1404 */
1405 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1406 xfs_buf_ioend(bp);
1407
1408 /* wait for completion before gathering the error from the buffer */
1409 trace_xfs_buf_iowait(bp, _RET_IP_);
1410 wait_for_completion(&bp->b_iowait);
1411 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1412 error = bp->b_error;
1413
1414 /*
1415 * all done now, we can release the hold that keeps the buffer
1416 * referenced for the entire IO.
1417 */
1418 xfs_buf_rele(bp);
1419 return error;
1420 }
1421
1422 void *
1423 xfs_buf_offset(
1424 struct xfs_buf *bp,
1425 size_t offset)
1426 {
1427 struct page *page;
1428
1429 if (bp->b_addr)
1430 return bp->b_addr + offset;
1431
1432 offset += bp->b_offset;
1433 page = bp->b_pages[offset >> PAGE_SHIFT];
1434 return page_address(page) + (offset & (PAGE_SIZE-1));
1435 }
1436
1437 /*
1438 * Move data into or out of a buffer.
1439 */
1440 void
1441 xfs_buf_iomove(
1442 xfs_buf_t *bp, /* buffer to process */
1443 size_t boff, /* starting buffer offset */
1444 size_t bsize, /* length to copy */
1445 void *data, /* data address */
1446 xfs_buf_rw_t mode) /* read/write/zero flag */
1447 {
1448 size_t bend;
1449
1450 bend = boff + bsize;
1451 while (boff < bend) {
1452 struct page *page;
1453 int page_index, page_offset, csize;
1454
1455 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1456 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1457 page = bp->b_pages[page_index];
1458 csize = min_t(size_t, PAGE_SIZE - page_offset,
1459 BBTOB(bp->b_io_length) - boff);
1460
1461 ASSERT((csize + page_offset) <= PAGE_SIZE);
1462
1463 switch (mode) {
1464 case XBRW_ZERO:
1465 memset(page_address(page) + page_offset, 0, csize);
1466 break;
1467 case XBRW_READ:
1468 memcpy(data, page_address(page) + page_offset, csize);
1469 break;
1470 case XBRW_WRITE:
1471 memcpy(page_address(page) + page_offset, data, csize);
1472 }
1473
1474 boff += csize;
1475 data += csize;
1476 }
1477 }
1478
1479 /*
1480 * Handling of buffer targets (buftargs).
1481 */
1482
1483 /*
1484 * Wait for any bufs with callbacks that have been submitted but have not yet
1485 * returned. These buffers will have an elevated hold count, so wait on those
1486 * while freeing all the buffers only held by the LRU.
1487 */
1488 static enum lru_status
1489 xfs_buftarg_wait_rele(
1490 struct list_head *item,
1491 struct list_lru_one *lru,
1492 spinlock_t *lru_lock,
1493 void *arg)
1494
1495 {
1496 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1497 struct list_head *dispose = arg;
1498
1499 if (atomic_read(&bp->b_hold) > 1) {
1500 /* need to wait, so skip it this pass */
1501 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1502 return LRU_SKIP;
1503 }
1504 if (!spin_trylock(&bp->b_lock))
1505 return LRU_SKIP;
1506
1507 /*
1508 * clear the LRU reference count so the buffer doesn't get
1509 * ignored in xfs_buf_rele().
1510 */
1511 atomic_set(&bp->b_lru_ref, 0);
1512 bp->b_state |= XFS_BSTATE_DISPOSE;
1513 list_lru_isolate_move(lru, item, dispose);
1514 spin_unlock(&bp->b_lock);
1515 return LRU_REMOVED;
1516 }
1517
1518 void
1519 xfs_wait_buftarg(
1520 struct xfs_buftarg *btp)
1521 {
1522 LIST_HEAD(dispose);
1523 int loop = 0;
1524
1525 /* loop until there is nothing left on the lru list. */
1526 while (list_lru_count(&btp->bt_lru)) {
1527 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1528 &dispose, LONG_MAX);
1529
1530 while (!list_empty(&dispose)) {
1531 struct xfs_buf *bp;
1532 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1533 list_del_init(&bp->b_lru);
1534 if (bp->b_flags & XBF_WRITE_FAIL) {
1535 xfs_alert(btp->bt_mount,
1536 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1537 "Please run xfs_repair to determine the extent of the problem.",
1538 (long long)bp->b_bn);
1539 }
1540 xfs_buf_rele(bp);
1541 }
1542 if (loop++ != 0)
1543 delay(100);
1544 }
1545 }
1546
1547 static enum lru_status
1548 xfs_buftarg_isolate(
1549 struct list_head *item,
1550 struct list_lru_one *lru,
1551 spinlock_t *lru_lock,
1552 void *arg)
1553 {
1554 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1555 struct list_head *dispose = arg;
1556
1557 /*
1558 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1559 * If we fail to get the lock, just skip it.
1560 */
1561 if (!spin_trylock(&bp->b_lock))
1562 return LRU_SKIP;
1563 /*
1564 * Decrement the b_lru_ref count unless the value is already
1565 * zero. If the value is already zero, we need to reclaim the
1566 * buffer, otherwise it gets another trip through the LRU.
1567 */
1568 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1569 spin_unlock(&bp->b_lock);
1570 return LRU_ROTATE;
1571 }
1572
1573 bp->b_state |= XFS_BSTATE_DISPOSE;
1574 list_lru_isolate_move(lru, item, dispose);
1575 spin_unlock(&bp->b_lock);
1576 return LRU_REMOVED;
1577 }
1578
1579 static unsigned long
1580 xfs_buftarg_shrink_scan(
1581 struct shrinker *shrink,
1582 struct shrink_control *sc)
1583 {
1584 struct xfs_buftarg *btp = container_of(shrink,
1585 struct xfs_buftarg, bt_shrinker);
1586 LIST_HEAD(dispose);
1587 unsigned long freed;
1588
1589 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1590 xfs_buftarg_isolate, &dispose);
1591
1592 while (!list_empty(&dispose)) {
1593 struct xfs_buf *bp;
1594 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1595 list_del_init(&bp->b_lru);
1596 xfs_buf_rele(bp);
1597 }
1598
1599 return freed;
1600 }
1601
1602 static unsigned long
1603 xfs_buftarg_shrink_count(
1604 struct shrinker *shrink,
1605 struct shrink_control *sc)
1606 {
1607 struct xfs_buftarg *btp = container_of(shrink,
1608 struct xfs_buftarg, bt_shrinker);
1609 return list_lru_shrink_count(&btp->bt_lru, sc);
1610 }
1611
1612 void
1613 xfs_free_buftarg(
1614 struct xfs_mount *mp,
1615 struct xfs_buftarg *btp)
1616 {
1617 unregister_shrinker(&btp->bt_shrinker);
1618 list_lru_destroy(&btp->bt_lru);
1619
1620 if (mp->m_flags & XFS_MOUNT_BARRIER)
1621 xfs_blkdev_issue_flush(btp);
1622
1623 kmem_free(btp);
1624 }
1625
1626 int
1627 xfs_setsize_buftarg(
1628 xfs_buftarg_t *btp,
1629 unsigned int sectorsize)
1630 {
1631 /* Set up metadata sector size info */
1632 btp->bt_meta_sectorsize = sectorsize;
1633 btp->bt_meta_sectormask = sectorsize - 1;
1634
1635 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1636 char name[BDEVNAME_SIZE];
1637
1638 bdevname(btp->bt_bdev, name);
1639
1640 xfs_warn(btp->bt_mount,
1641 "Cannot set_blocksize to %u on device %s",
1642 sectorsize, name);
1643 return -EINVAL;
1644 }
1645
1646 /* Set up device logical sector size mask */
1647 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1648 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1649
1650 return 0;
1651 }
1652
1653 /*
1654 * When allocating the initial buffer target we have not yet
1655 * read in the superblock, so don't know what sized sectors
1656 * are being used at this early stage. Play safe.
1657 */
1658 STATIC int
1659 xfs_setsize_buftarg_early(
1660 xfs_buftarg_t *btp,
1661 struct block_device *bdev)
1662 {
1663 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1664 }
1665
1666 xfs_buftarg_t *
1667 xfs_alloc_buftarg(
1668 struct xfs_mount *mp,
1669 struct block_device *bdev)
1670 {
1671 xfs_buftarg_t *btp;
1672
1673 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1674
1675 btp->bt_mount = mp;
1676 btp->bt_dev = bdev->bd_dev;
1677 btp->bt_bdev = bdev;
1678 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1679
1680 if (xfs_setsize_buftarg_early(btp, bdev))
1681 goto error;
1682
1683 if (list_lru_init(&btp->bt_lru))
1684 goto error;
1685
1686 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1687 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1688 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1689 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1690 register_shrinker(&btp->bt_shrinker);
1691 return btp;
1692
1693 error:
1694 kmem_free(btp);
1695 return NULL;
1696 }
1697
1698 /*
1699 * Add a buffer to the delayed write list.
1700 *
1701 * This queues a buffer for writeout if it hasn't already been. Note that
1702 * neither this routine nor the buffer list submission functions perform
1703 * any internal synchronization. It is expected that the lists are thread-local
1704 * to the callers.
1705 *
1706 * Returns true if we queued up the buffer, or false if it already had
1707 * been on the buffer list.
1708 */
1709 bool
1710 xfs_buf_delwri_queue(
1711 struct xfs_buf *bp,
1712 struct list_head *list)
1713 {
1714 ASSERT(xfs_buf_islocked(bp));
1715 ASSERT(!(bp->b_flags & XBF_READ));
1716
1717 /*
1718 * If the buffer is already marked delwri it already is queued up
1719 * by someone else for imediate writeout. Just ignore it in that
1720 * case.
1721 */
1722 if (bp->b_flags & _XBF_DELWRI_Q) {
1723 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1724 return false;
1725 }
1726
1727 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1728
1729 /*
1730 * If a buffer gets written out synchronously or marked stale while it
1731 * is on a delwri list we lazily remove it. To do this, the other party
1732 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1733 * It remains referenced and on the list. In a rare corner case it
1734 * might get readded to a delwri list after the synchronous writeout, in
1735 * which case we need just need to re-add the flag here.
1736 */
1737 bp->b_flags |= _XBF_DELWRI_Q;
1738 if (list_empty(&bp->b_list)) {
1739 atomic_inc(&bp->b_hold);
1740 list_add_tail(&bp->b_list, list);
1741 }
1742
1743 return true;
1744 }
1745
1746 /*
1747 * Compare function is more complex than it needs to be because
1748 * the return value is only 32 bits and we are doing comparisons
1749 * on 64 bit values
1750 */
1751 static int
1752 xfs_buf_cmp(
1753 void *priv,
1754 struct list_head *a,
1755 struct list_head *b)
1756 {
1757 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1758 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1759 xfs_daddr_t diff;
1760
1761 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1762 if (diff < 0)
1763 return -1;
1764 if (diff > 0)
1765 return 1;
1766 return 0;
1767 }
1768
1769 static int
1770 __xfs_buf_delwri_submit(
1771 struct list_head *buffer_list,
1772 struct list_head *io_list,
1773 bool wait)
1774 {
1775 struct blk_plug plug;
1776 struct xfs_buf *bp, *n;
1777 int pinned = 0;
1778
1779 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1780 if (!wait) {
1781 if (xfs_buf_ispinned(bp)) {
1782 pinned++;
1783 continue;
1784 }
1785 if (!xfs_buf_trylock(bp))
1786 continue;
1787 } else {
1788 xfs_buf_lock(bp);
1789 }
1790
1791 /*
1792 * Someone else might have written the buffer synchronously or
1793 * marked it stale in the meantime. In that case only the
1794 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1795 * reference and remove it from the list here.
1796 */
1797 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1798 list_del_init(&bp->b_list);
1799 xfs_buf_relse(bp);
1800 continue;
1801 }
1802
1803 list_move_tail(&bp->b_list, io_list);
1804 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1805 }
1806
1807 list_sort(NULL, io_list, xfs_buf_cmp);
1808
1809 blk_start_plug(&plug);
1810 list_for_each_entry_safe(bp, n, io_list, b_list) {
1811 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1812 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1813
1814 /*
1815 * we do all Io submission async. This means if we need to wait
1816 * for IO completion we need to take an extra reference so the
1817 * buffer is still valid on the other side.
1818 */
1819 if (wait)
1820 xfs_buf_hold(bp);
1821 else
1822 list_del_init(&bp->b_list);
1823
1824 xfs_buf_submit(bp);
1825 }
1826 blk_finish_plug(&plug);
1827
1828 return pinned;
1829 }
1830
1831 /*
1832 * Write out a buffer list asynchronously.
1833 *
1834 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1835 * out and not wait for I/O completion on any of the buffers. This interface
1836 * is only safely useable for callers that can track I/O completion by higher
1837 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1838 * function.
1839 */
1840 int
1841 xfs_buf_delwri_submit_nowait(
1842 struct list_head *buffer_list)
1843 {
1844 LIST_HEAD (io_list);
1845 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1846 }
1847
1848 /*
1849 * Write out a buffer list synchronously.
1850 *
1851 * This will take the @buffer_list, write all buffers out and wait for I/O
1852 * completion on all of the buffers. @buffer_list is consumed by the function,
1853 * so callers must have some other way of tracking buffers if they require such
1854 * functionality.
1855 */
1856 int
1857 xfs_buf_delwri_submit(
1858 struct list_head *buffer_list)
1859 {
1860 LIST_HEAD (io_list);
1861 int error = 0, error2;
1862 struct xfs_buf *bp;
1863
1864 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1865
1866 /* Wait for IO to complete. */
1867 while (!list_empty(&io_list)) {
1868 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1869
1870 list_del_init(&bp->b_list);
1871
1872 /* locking the buffer will wait for async IO completion. */
1873 xfs_buf_lock(bp);
1874 error2 = bp->b_error;
1875 xfs_buf_relse(bp);
1876 if (!error)
1877 error = error2;
1878 }
1879
1880 return error;
1881 }
1882
1883 int __init
1884 xfs_buf_init(void)
1885 {
1886 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1887 KM_ZONE_HWALIGN, NULL);
1888 if (!xfs_buf_zone)
1889 goto out;
1890
1891 return 0;
1892
1893 out:
1894 return -ENOMEM;
1895 }
1896
1897 void
1898 xfs_buf_terminate(void)
1899 {
1900 kmem_zone_destroy(xfs_buf_zone);
1901 }