1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
20 static kmem_zone_t
*xfs_buf_zone
;
22 #define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
30 * b_sema (caller holds)
34 * b_sema (caller holds)
43 * xfs_buftarg_wait_rele
45 * b_lock (trylock due to inversion)
49 * b_lock (trylock due to inversion)
57 * Return true if the buffer is vmapped.
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
63 return bp
->b_addr
&& bp
->b_page_count
> 1;
70 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
90 if (bp
->b_flags
& XBF_NO_IOACCT
)
93 ASSERT(bp
->b_flags
& XBF_ASYNC
);
94 spin_lock(&bp
->b_lock
);
95 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
96 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
97 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
99 spin_unlock(&bp
->b_lock
);
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
107 __xfs_buf_ioacct_dec(
110 lockdep_assert_held(&bp
->b_lock
);
112 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
113 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
114 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
122 spin_lock(&bp
->b_lock
);
123 __xfs_buf_ioacct_dec(bp
);
124 spin_unlock(&bp
->b_lock
);
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
133 * This prevents build-up of stale buffers on the LRU.
139 ASSERT(xfs_buf_islocked(bp
));
141 bp
->b_flags
|= XBF_STALE
;
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
148 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
156 spin_lock(&bp
->b_lock
);
157 __xfs_buf_ioacct_dec(bp
);
159 atomic_set(&bp
->b_lru_ref
, 0);
160 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
161 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
162 atomic_dec(&bp
->b_hold
);
164 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
165 spin_unlock(&bp
->b_lock
);
173 ASSERT(bp
->b_maps
== NULL
);
174 bp
->b_map_count
= map_count
;
176 if (map_count
== 1) {
177 bp
->b_maps
= &bp
->__b_map
;
181 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
189 * Frees b_pages if it was allocated.
195 if (bp
->b_maps
!= &bp
->__b_map
) {
196 kmem_free(bp
->b_maps
);
201 static struct xfs_buf
*
203 struct xfs_buftarg
*target
,
204 struct xfs_buf_map
*map
,
206 xfs_buf_flags_t flags
)
212 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
220 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
222 atomic_set(&bp
->b_hold
, 1);
223 atomic_set(&bp
->b_lru_ref
, 1);
224 init_completion(&bp
->b_iowait
);
225 INIT_LIST_HEAD(&bp
->b_lru
);
226 INIT_LIST_HEAD(&bp
->b_list
);
227 INIT_LIST_HEAD(&bp
->b_li_list
);
228 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
229 spin_lock_init(&bp
->b_lock
);
230 bp
->b_target
= target
;
231 bp
->b_mount
= target
->bt_mount
;
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
239 error
= xfs_buf_get_maps(bp
, nmaps
);
241 kmem_zone_free(xfs_buf_zone
, bp
);
245 bp
->b_bn
= map
[0].bm_bn
;
247 for (i
= 0; i
< nmaps
; i
++) {
248 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
249 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
250 bp
->b_length
+= map
[i
].bm_len
;
253 atomic_set(&bp
->b_pin_count
, 0);
254 init_waitqueue_head(&bp
->b_waiters
);
256 XFS_STATS_INC(bp
->b_mount
, xb_create
);
257 trace_xfs_buf_init(bp
, _RET_IP_
);
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
271 /* Make sure that we have a page list */
272 if (bp
->b_pages
== NULL
) {
273 bp
->b_page_count
= page_count
;
274 if (page_count
<= XB_PAGES
) {
275 bp
->b_pages
= bp
->b_page_array
;
277 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
278 page_count
, KM_NOFS
);
279 if (bp
->b_pages
== NULL
)
282 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
288 * Frees b_pages if it was allocated.
294 if (bp
->b_pages
!= bp
->b_page_array
) {
295 kmem_free(bp
->b_pages
);
301 * Releases the specified buffer.
303 * The modification state of any associated pages is left unchanged.
304 * The buffer must not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
311 trace_xfs_buf_free(bp
, _RET_IP_
);
313 ASSERT(list_empty(&bp
->b_lru
));
315 if (bp
->b_flags
& _XBF_PAGES
) {
318 if (xfs_buf_is_vmapped(bp
))
319 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
322 for (i
= 0; i
< bp
->b_page_count
; i
++) {
323 struct page
*page
= bp
->b_pages
[i
];
327 } else if (bp
->b_flags
& _XBF_KMEM
)
328 kmem_free(bp
->b_addr
);
329 _xfs_buf_free_pages(bp
);
330 xfs_buf_free_maps(bp
);
331 kmem_zone_free(xfs_buf_zone
, bp
);
335 * Allocates all the pages for buffer in question and builds it's page list.
338 xfs_buf_allocate_memory(
343 size_t nbytes
, offset
;
344 gfp_t gfp_mask
= xb_to_gfp(flags
);
345 unsigned short page_count
, i
;
346 xfs_off_t start
, end
;
348 xfs_km_flags_t kmflag_mask
= 0;
351 * assure zeroed buffer for non-read cases.
353 if (!(flags
& XBF_READ
)) {
354 kmflag_mask
|= KM_ZERO
;
355 gfp_mask
|= __GFP_ZERO
;
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
363 size
= BBTOB(bp
->b_length
);
364 if (size
< PAGE_SIZE
) {
365 int align_mask
= xfs_buftarg_dma_alignment(bp
->b_target
);
366 bp
->b_addr
= kmem_alloc_io(size
, align_mask
,
367 KM_NOFS
| kmflag_mask
);
369 /* low memory - use alloc_page loop instead */
373 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
374 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp
->b_addr
);
380 bp
->b_offset
= offset_in_page(bp
->b_addr
);
381 bp
->b_pages
= bp
->b_page_array
;
382 bp
->b_pages
[0] = kmem_to_page(bp
->b_addr
);
383 bp
->b_page_count
= 1;
384 bp
->b_flags
|= _XBF_KMEM
;
389 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
390 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
392 page_count
= end
- start
;
393 error
= _xfs_buf_get_pages(bp
, page_count
);
397 offset
= bp
->b_offset
;
398 bp
->b_flags
|= _XBF_PAGES
;
400 for (i
= 0; i
< bp
->b_page_count
; i
++) {
404 page
= alloc_page(gfp_mask
);
405 if (unlikely(page
== NULL
)) {
406 if (flags
& XBF_READ_AHEAD
) {
407 bp
->b_page_count
= i
;
413 * This could deadlock.
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
418 if (!(++retries
% 100))
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current
->comm
, current
->pid
,
424 XFS_STATS_INC(bp
->b_mount
, xb_page_retries
);
425 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
429 XFS_STATS_INC(bp
->b_mount
, xb_page_found
);
431 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
433 bp
->b_pages
[i
] = page
;
439 for (i
= 0; i
< bp
->b_page_count
; i
++)
440 __free_page(bp
->b_pages
[i
]);
441 bp
->b_flags
&= ~_XBF_PAGES
;
446 * Map buffer into kernel address-space if necessary.
453 ASSERT(bp
->b_flags
& _XBF_PAGES
);
454 if (bp
->b_page_count
== 1) {
455 /* A single page buffer is always mappable */
456 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
457 } else if (flags
& XBF_UNMAPPED
) {
464 * vm_map_ram() will allocate auxillary structures (e.g.
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
471 nofs_flag
= memalloc_nofs_save();
473 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
478 } while (retried
++ <= 1);
479 memalloc_nofs_restore(nofs_flag
);
483 bp
->b_addr
+= bp
->b_offset
;
490 * Finding and Reading Buffers
494 struct rhashtable_compare_arg
*arg
,
497 const struct xfs_buf_map
*map
= arg
->key
;
498 const struct xfs_buf
*bp
= obj
;
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
506 if (bp
->b_bn
!= map
->bm_bn
)
509 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
518 ASSERT(bp
->b_flags
& XBF_STALE
);
524 static const struct rhashtable_params xfs_buf_hash_params
= {
525 .min_size
= 32, /* empty AGs have minimal footprint */
527 .key_len
= sizeof(xfs_daddr_t
),
528 .key_offset
= offsetof(struct xfs_buf
, b_bn
),
529 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
530 .automatic_shrinking
= true,
531 .obj_cmpfn
= _xfs_buf_obj_cmp
,
536 struct xfs_perag
*pag
)
538 spin_lock_init(&pag
->pag_buf_lock
);
539 return rhashtable_init(&pag
->pag_buf_hash
, &xfs_buf_hash_params
);
543 xfs_buf_hash_destroy(
544 struct xfs_perag
*pag
)
546 rhashtable_destroy(&pag
->pag_buf_hash
);
550 * Look up a buffer in the buffer cache and return it referenced and locked
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
569 struct xfs_buftarg
*btp
,
570 struct xfs_buf_map
*map
,
572 xfs_buf_flags_t flags
,
573 struct xfs_buf
*new_bp
,
574 struct xfs_buf
**found_bp
)
576 struct xfs_perag
*pag
;
578 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
584 for (i
= 0; i
< nmaps
; i
++)
585 cmap
.bm_len
+= map
[i
].bm_len
;
587 /* Check for IOs smaller than the sector size / not sector aligned */
588 ASSERT(!(BBTOB(cmap
.bm_len
) < btp
->bt_meta_sectorsize
));
589 ASSERT(!(BBTOB(cmap
.bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
595 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
596 if (cmap
.bm_bn
< 0 || cmap
.bm_bn
>= eofs
) {
597 xfs_alert(btp
->bt_mount
,
598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 __func__
, cmap
.bm_bn
, eofs
);
601 return -EFSCORRUPTED
;
604 pag
= xfs_perag_get(btp
->bt_mount
,
605 xfs_daddr_to_agno(btp
->bt_mount
, cmap
.bm_bn
));
607 spin_lock(&pag
->pag_buf_lock
);
608 bp
= rhashtable_lookup_fast(&pag
->pag_buf_hash
, &cmap
,
609 xfs_buf_hash_params
);
611 atomic_inc(&bp
->b_hold
);
617 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
618 spin_unlock(&pag
->pag_buf_lock
);
623 /* the buffer keeps the perag reference until it is freed */
625 rhashtable_insert_fast(&pag
->pag_buf_hash
, &new_bp
->b_rhash_head
,
626 xfs_buf_hash_params
);
627 spin_unlock(&pag
->pag_buf_lock
);
632 spin_unlock(&pag
->pag_buf_lock
);
635 if (!xfs_buf_trylock(bp
)) {
636 if (flags
& XBF_TRYLOCK
) {
638 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
642 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
650 if (bp
->b_flags
& XBF_STALE
) {
651 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
652 ASSERT(bp
->b_iodone
== NULL
);
653 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
657 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
658 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
665 struct xfs_buftarg
*target
,
668 xfs_buf_flags_t flags
)
672 DEFINE_SINGLE_BUF_MAP(map
, blkno
, numblks
);
674 error
= xfs_buf_find(target
, &map
, 1, flags
, NULL
, &bp
);
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
687 struct xfs_buftarg
*target
,
688 struct xfs_buf_map
*map
,
690 xfs_buf_flags_t flags
)
693 struct xfs_buf
*new_bp
;
696 error
= xfs_buf_find(target
, map
, nmaps
, flags
, NULL
, &bp
);
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags
& XBF_TRYLOCK
);
707 /* cache miss, go for insert */
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
718 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
719 if (unlikely(!new_bp
))
722 error
= xfs_buf_allocate_memory(new_bp
, flags
);
724 xfs_buf_free(new_bp
);
728 error
= xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
, &bp
);
730 xfs_buf_free(new_bp
);
735 xfs_buf_free(new_bp
);
739 error
= _xfs_buf_map_pages(bp
, flags
);
740 if (unlikely(error
)) {
741 xfs_warn(target
->bt_mount
,
742 "%s: failed to map pagesn", __func__
);
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
752 if (!(flags
& XBF_READ
))
753 xfs_buf_ioerror(bp
, 0);
755 XFS_STATS_INC(target
->bt_mount
, xb_get
);
756 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
763 xfs_buf_flags_t flags
)
765 ASSERT(!(flags
& XBF_WRITE
));
766 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
768 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
769 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
771 return xfs_buf_submit(bp
);
775 * Reverify a buffer found in cache without an attached ->b_ops.
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
794 const struct xfs_buf_ops
*ops
)
796 ASSERT(bp
->b_flags
& XBF_DONE
);
797 ASSERT(bp
->b_error
== 0);
799 if (!ops
|| bp
->b_ops
)
803 bp
->b_ops
->verify_read(bp
);
805 bp
->b_flags
&= ~XBF_DONE
;
811 struct xfs_buftarg
*target
,
812 struct xfs_buf_map
*map
,
814 xfs_buf_flags_t flags
,
815 const struct xfs_buf_ops
*ops
)
821 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
825 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
827 if (!(bp
->b_flags
& XBF_DONE
)) {
828 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
830 _xfs_buf_read(bp
, flags
);
834 xfs_buf_reverify(bp
, ops
);
836 if (flags
& XBF_ASYNC
) {
838 * Read ahead call which is already satisfied,
845 /* We do not want read in the flags */
846 bp
->b_flags
&= ~XBF_READ
;
847 ASSERT(bp
->b_ops
!= NULL
|| ops
== NULL
);
852 * If we are not low on memory then do the readahead in a deadlock
856 xfs_buf_readahead_map(
857 struct xfs_buftarg
*target
,
858 struct xfs_buf_map
*map
,
860 const struct xfs_buf_ops
*ops
)
862 if (bdi_read_congested(target
->bt_bdev
->bd_bdi
))
865 xfs_buf_read_map(target
, map
, nmaps
,
866 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
874 xfs_buf_read_uncached(
875 struct xfs_buftarg
*target
,
879 struct xfs_buf
**bpp
,
880 const struct xfs_buf_ops
*ops
)
886 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
890 /* set up the buffer for a read IO */
891 ASSERT(bp
->b_map_count
== 1);
892 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
893 bp
->b_maps
[0].bm_bn
= daddr
;
894 bp
->b_flags
|= XBF_READ
;
899 int error
= bp
->b_error
;
909 xfs_buf_get_uncached(
910 struct xfs_buftarg
*target
,
914 unsigned long page_count
;
917 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
921 if (unlikely(bp
== NULL
))
924 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
925 error
= _xfs_buf_get_pages(bp
, page_count
);
929 for (i
= 0; i
< page_count
; i
++) {
930 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
934 bp
->b_flags
|= _XBF_PAGES
;
936 error
= _xfs_buf_map_pages(bp
, 0);
937 if (unlikely(error
)) {
938 xfs_warn(target
->bt_mount
,
939 "%s: failed to map pages", __func__
);
943 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
948 __free_page(bp
->b_pages
[i
]);
949 _xfs_buf_free_pages(bp
);
951 xfs_buf_free_maps(bp
);
952 kmem_zone_free(xfs_buf_zone
, bp
);
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
960 * Must hold the buffer already to call this function.
966 trace_xfs_buf_hold(bp
, _RET_IP_
);
967 atomic_inc(&bp
->b_hold
);
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
978 struct xfs_perag
*pag
= bp
->b_pag
;
980 bool freebuf
= false;
982 trace_xfs_buf_rele(bp
, _RET_IP_
);
985 ASSERT(list_empty(&bp
->b_lru
));
986 if (atomic_dec_and_test(&bp
->b_hold
)) {
987 xfs_buf_ioacct_dec(bp
);
993 ASSERT(atomic_read(&bp
->b_hold
) > 0);
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1005 spin_lock(&bp
->b_lock
);
1006 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1014 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1015 __xfs_buf_ioacct_dec(bp
);
1019 /* the last reference has been dropped ... */
1020 __xfs_buf_ioacct_dec(bp
);
1021 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1027 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
1028 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1029 atomic_inc(&bp
->b_hold
);
1031 spin_unlock(&pag
->pag_buf_lock
);
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1039 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1040 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1042 ASSERT(list_empty(&bp
->b_lru
));
1045 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1046 rhashtable_remove_fast(&pag
->pag_buf_hash
, &bp
->b_rhash_head
,
1047 xfs_buf_hash_params
);
1048 spin_unlock(&pag
->pag_buf_lock
);
1054 spin_unlock(&bp
->b_lock
);
1062 * Lock a buffer object, if it is not already locked.
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1078 locked
= down_trylock(&bp
->b_sema
) == 0;
1080 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1082 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1087 * Lock a buffer object.
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1099 trace_xfs_buf_lock(bp
, _RET_IP_
);
1101 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1102 xfs_log_force(bp
->b_mount
, 0);
1105 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1112 ASSERT(xfs_buf_islocked(bp
));
1115 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1122 DECLARE_WAITQUEUE (wait
, current
);
1124 if (atomic_read(&bp
->b_pin_count
) == 0)
1127 add_wait_queue(&bp
->b_waiters
, &wait
);
1129 set_current_state(TASK_UNINTERRUPTIBLE
);
1130 if (atomic_read(&bp
->b_pin_count
) == 0)
1134 remove_wait_queue(&bp
->b_waiters
, &wait
);
1135 set_current_state(TASK_RUNNING
);
1139 * Buffer Utility Routines
1146 bool read
= bp
->b_flags
& XBF_READ
;
1148 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1150 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1156 if (!bp
->b_error
&& bp
->b_io_error
)
1157 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1159 /* Only validate buffers that were read without errors */
1160 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1161 ASSERT(!bp
->b_iodone
);
1162 bp
->b_ops
->verify_read(bp
);
1166 bp
->b_flags
&= ~XBF_WRITE_FAIL
;
1167 bp
->b_flags
|= XBF_DONE
;
1171 (*(bp
->b_iodone
))(bp
);
1172 else if (bp
->b_flags
& XBF_ASYNC
)
1175 complete(&bp
->b_iowait
);
1180 struct work_struct
*work
)
1182 struct xfs_buf
*bp
=
1183 container_of(work
, xfs_buf_t
, b_ioend_work
);
1189 xfs_buf_ioend_async(
1192 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1193 queue_work(bp
->b_mount
->m_buf_workqueue
, &bp
->b_ioend_work
);
1200 xfs_failaddr_t failaddr
)
1202 ASSERT(error
<= 0 && error
>= -1000);
1203 bp
->b_error
= error
;
1204 trace_xfs_buf_ioerror(bp
, error
, failaddr
);
1208 xfs_buf_ioerror_alert(
1212 xfs_alert(bp
->b_mount
,
1213 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1214 func
, (uint64_t)XFS_BUF_ADDR(bp
), bp
->b_length
,
1224 ASSERT(xfs_buf_islocked(bp
));
1226 bp
->b_flags
|= XBF_WRITE
;
1227 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1230 error
= xfs_buf_submit(bp
);
1232 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
1240 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1243 * don't overwrite existing errors - otherwise we can lose errors on
1244 * buffers that require multiple bios to complete.
1246 if (bio
->bi_status
) {
1247 int error
= blk_status_to_errno(bio
->bi_status
);
1249 cmpxchg(&bp
->b_io_error
, 0, error
);
1252 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1253 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1255 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1256 xfs_buf_ioend_async(bp
);
1261 xfs_buf_ioapply_map(
1270 int total_nr_pages
= bp
->b_page_count
;
1273 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1277 /* skip the pages in the buffer before the start offset */
1279 offset
= *buf_offset
;
1280 while (offset
>= PAGE_SIZE
) {
1282 offset
-= PAGE_SIZE
;
1286 * Limit the IO size to the length of the current vector, and update the
1287 * remaining IO count for the next time around.
1289 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1291 *buf_offset
+= size
;
1294 atomic_inc(&bp
->b_io_remaining
);
1295 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1297 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1298 bio_set_dev(bio
, bp
->b_target
->bt_bdev
);
1299 bio
->bi_iter
.bi_sector
= sector
;
1300 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1301 bio
->bi_private
= bp
;
1302 bio_set_op_attrs(bio
, op
, op_flags
);
1304 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1305 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1310 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1312 if (rbytes
< nbytes
)
1316 sector
+= BTOBB(nbytes
);
1321 if (likely(bio
->bi_iter
.bi_size
)) {
1322 if (xfs_buf_is_vmapped(bp
)) {
1323 flush_kernel_vmap_range(bp
->b_addr
,
1324 xfs_buf_vmap_len(bp
));
1331 * This is guaranteed not to be the last io reference count
1332 * because the caller (xfs_buf_submit) holds a count itself.
1334 atomic_dec(&bp
->b_io_remaining
);
1335 xfs_buf_ioerror(bp
, -EIO
);
1345 struct blk_plug plug
;
1353 * Make sure we capture only current IO errors rather than stale errors
1354 * left over from previous use of the buffer (e.g. failed readahead).
1358 if (bp
->b_flags
& XBF_WRITE
) {
1362 * Run the write verifier callback function if it exists. If
1363 * this function fails it will mark the buffer with an error and
1364 * the IO should not be dispatched.
1367 bp
->b_ops
->verify_write(bp
);
1369 xfs_force_shutdown(bp
->b_mount
,
1370 SHUTDOWN_CORRUPT_INCORE
);
1373 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1374 struct xfs_mount
*mp
= bp
->b_mount
;
1377 * non-crc filesystems don't attach verifiers during
1378 * log recovery, so don't warn for such filesystems.
1380 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1382 "%s: no buf ops on daddr 0x%llx len %d",
1383 __func__
, bp
->b_bn
, bp
->b_length
);
1384 xfs_hex_dump(bp
->b_addr
,
1385 XFS_CORRUPTION_DUMP_LEN
);
1389 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1391 op_flags
= REQ_RAHEAD
;
1396 /* we only use the buffer cache for meta-data */
1397 op_flags
|= REQ_META
;
1400 * Walk all the vectors issuing IO on them. Set up the initial offset
1401 * into the buffer and the desired IO size before we start -
1402 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 offset
= bp
->b_offset
;
1406 size
= BBTOB(bp
->b_length
);
1407 blk_start_plug(&plug
);
1408 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1409 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1413 break; /* all done */
1415 blk_finish_plug(&plug
);
1419 * Wait for I/O completion of a sync buffer and return the I/O error code.
1425 ASSERT(!(bp
->b_flags
& XBF_ASYNC
));
1427 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1428 wait_for_completion(&bp
->b_iowait
);
1429 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1435 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1436 * the buffer lock ownership and the current reference to the IO. It is not
1437 * safe to reference the buffer after a call to this function unless the caller
1438 * holds an additional reference itself.
1447 trace_xfs_buf_submit(bp
, _RET_IP_
);
1449 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1451 /* on shutdown we stale and complete the buffer immediately */
1452 if (XFS_FORCED_SHUTDOWN(bp
->b_mount
)) {
1453 xfs_buf_ioerror(bp
, -EIO
);
1454 bp
->b_flags
&= ~XBF_DONE
;
1461 * Grab a reference so the buffer does not go away underneath us. For
1462 * async buffers, I/O completion drops the callers reference, which
1463 * could occur before submission returns.
1467 if (bp
->b_flags
& XBF_WRITE
)
1468 xfs_buf_wait_unpin(bp
);
1470 /* clear the internal error state to avoid spurious errors */
1474 * Set the count to 1 initially, this will stop an I/O completion
1475 * callout which happens before we have started all the I/O from calling
1476 * xfs_buf_ioend too early.
1478 atomic_set(&bp
->b_io_remaining
, 1);
1479 if (bp
->b_flags
& XBF_ASYNC
)
1480 xfs_buf_ioacct_inc(bp
);
1481 _xfs_buf_ioapply(bp
);
1484 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1485 * reference we took above. If we drop it to zero, run completion so
1486 * that we don't return to the caller with completion still pending.
1488 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1489 if (bp
->b_error
|| !(bp
->b_flags
& XBF_ASYNC
))
1492 xfs_buf_ioend_async(bp
);
1496 error
= xfs_buf_iowait(bp
);
1499 * Release the hold that keeps the buffer referenced for the entire
1500 * I/O. Note that if the buffer is async, it is not safe to reference
1501 * after this release.
1515 return bp
->b_addr
+ offset
;
1517 offset
+= bp
->b_offset
;
1518 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1519 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1530 bend
= boff
+ bsize
;
1531 while (boff
< bend
) {
1533 int page_index
, page_offset
, csize
;
1535 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1536 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1537 page
= bp
->b_pages
[page_index
];
1538 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1539 BBTOB(bp
->b_length
) - boff
);
1541 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1543 memset(page_address(page
) + page_offset
, 0, csize
);
1550 * Handling of buffer targets (buftargs).
1554 * Wait for any bufs with callbacks that have been submitted but have not yet
1555 * returned. These buffers will have an elevated hold count, so wait on those
1556 * while freeing all the buffers only held by the LRU.
1558 static enum lru_status
1559 xfs_buftarg_wait_rele(
1560 struct list_head
*item
,
1561 struct list_lru_one
*lru
,
1562 spinlock_t
*lru_lock
,
1566 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1567 struct list_head
*dispose
= arg
;
1569 if (atomic_read(&bp
->b_hold
) > 1) {
1570 /* need to wait, so skip it this pass */
1571 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1574 if (!spin_trylock(&bp
->b_lock
))
1578 * clear the LRU reference count so the buffer doesn't get
1579 * ignored in xfs_buf_rele().
1581 atomic_set(&bp
->b_lru_ref
, 0);
1582 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1583 list_lru_isolate_move(lru
, item
, dispose
);
1584 spin_unlock(&bp
->b_lock
);
1590 struct xfs_buftarg
*btp
)
1596 * First wait on the buftarg I/O count for all in-flight buffers to be
1597 * released. This is critical as new buffers do not make the LRU until
1598 * they are released.
1600 * Next, flush the buffer workqueue to ensure all completion processing
1601 * has finished. Just waiting on buffer locks is not sufficient for
1602 * async IO as the reference count held over IO is not released until
1603 * after the buffer lock is dropped. Hence we need to ensure here that
1604 * all reference counts have been dropped before we start walking the
1607 while (percpu_counter_sum(&btp
->bt_io_count
))
1609 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1611 /* loop until there is nothing left on the lru list. */
1612 while (list_lru_count(&btp
->bt_lru
)) {
1613 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1614 &dispose
, LONG_MAX
);
1616 while (!list_empty(&dispose
)) {
1618 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1619 list_del_init(&bp
->b_lru
);
1620 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1621 xfs_alert(btp
->bt_mount
,
1622 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1623 (long long)bp
->b_bn
);
1624 xfs_alert(btp
->bt_mount
,
1625 "Please run xfs_repair to determine the extent of the problem.");
1634 static enum lru_status
1635 xfs_buftarg_isolate(
1636 struct list_head
*item
,
1637 struct list_lru_one
*lru
,
1638 spinlock_t
*lru_lock
,
1641 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1642 struct list_head
*dispose
= arg
;
1645 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1646 * If we fail to get the lock, just skip it.
1648 if (!spin_trylock(&bp
->b_lock
))
1651 * Decrement the b_lru_ref count unless the value is already
1652 * zero. If the value is already zero, we need to reclaim the
1653 * buffer, otherwise it gets another trip through the LRU.
1655 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1656 spin_unlock(&bp
->b_lock
);
1660 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1661 list_lru_isolate_move(lru
, item
, dispose
);
1662 spin_unlock(&bp
->b_lock
);
1666 static unsigned long
1667 xfs_buftarg_shrink_scan(
1668 struct shrinker
*shrink
,
1669 struct shrink_control
*sc
)
1671 struct xfs_buftarg
*btp
= container_of(shrink
,
1672 struct xfs_buftarg
, bt_shrinker
);
1674 unsigned long freed
;
1676 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1677 xfs_buftarg_isolate
, &dispose
);
1679 while (!list_empty(&dispose
)) {
1681 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1682 list_del_init(&bp
->b_lru
);
1689 static unsigned long
1690 xfs_buftarg_shrink_count(
1691 struct shrinker
*shrink
,
1692 struct shrink_control
*sc
)
1694 struct xfs_buftarg
*btp
= container_of(shrink
,
1695 struct xfs_buftarg
, bt_shrinker
);
1696 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1701 struct xfs_buftarg
*btp
)
1703 unregister_shrinker(&btp
->bt_shrinker
);
1704 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1705 percpu_counter_destroy(&btp
->bt_io_count
);
1706 list_lru_destroy(&btp
->bt_lru
);
1708 xfs_blkdev_issue_flush(btp
);
1714 xfs_setsize_buftarg(
1716 unsigned int sectorsize
)
1718 /* Set up metadata sector size info */
1719 btp
->bt_meta_sectorsize
= sectorsize
;
1720 btp
->bt_meta_sectormask
= sectorsize
- 1;
1722 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1723 xfs_warn(btp
->bt_mount
,
1724 "Cannot set_blocksize to %u on device %pg",
1725 sectorsize
, btp
->bt_bdev
);
1729 /* Set up device logical sector size mask */
1730 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1731 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1737 * When allocating the initial buffer target we have not yet
1738 * read in the superblock, so don't know what sized sectors
1739 * are being used at this early stage. Play safe.
1742 xfs_setsize_buftarg_early(
1744 struct block_device
*bdev
)
1746 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1751 struct xfs_mount
*mp
,
1752 struct block_device
*bdev
,
1753 struct dax_device
*dax_dev
)
1757 btp
= kmem_zalloc(sizeof(*btp
), KM_NOFS
);
1760 btp
->bt_dev
= bdev
->bd_dev
;
1761 btp
->bt_bdev
= bdev
;
1762 btp
->bt_daxdev
= dax_dev
;
1764 if (xfs_setsize_buftarg_early(btp
, bdev
))
1767 if (list_lru_init(&btp
->bt_lru
))
1770 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1773 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1774 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1775 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1776 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1777 if (register_shrinker(&btp
->bt_shrinker
))
1782 percpu_counter_destroy(&btp
->bt_io_count
);
1784 list_lru_destroy(&btp
->bt_lru
);
1791 * Cancel a delayed write list.
1793 * Remove each buffer from the list, clear the delwri queue flag and drop the
1794 * associated buffer reference.
1797 xfs_buf_delwri_cancel(
1798 struct list_head
*list
)
1802 while (!list_empty(list
)) {
1803 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1806 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1807 list_del_init(&bp
->b_list
);
1813 * Add a buffer to the delayed write list.
1815 * This queues a buffer for writeout if it hasn't already been. Note that
1816 * neither this routine nor the buffer list submission functions perform
1817 * any internal synchronization. It is expected that the lists are thread-local
1820 * Returns true if we queued up the buffer, or false if it already had
1821 * been on the buffer list.
1824 xfs_buf_delwri_queue(
1826 struct list_head
*list
)
1828 ASSERT(xfs_buf_islocked(bp
));
1829 ASSERT(!(bp
->b_flags
& XBF_READ
));
1832 * If the buffer is already marked delwri it already is queued up
1833 * by someone else for imediate writeout. Just ignore it in that
1836 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1837 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1841 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1844 * If a buffer gets written out synchronously or marked stale while it
1845 * is on a delwri list we lazily remove it. To do this, the other party
1846 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1847 * It remains referenced and on the list. In a rare corner case it
1848 * might get readded to a delwri list after the synchronous writeout, in
1849 * which case we need just need to re-add the flag here.
1851 bp
->b_flags
|= _XBF_DELWRI_Q
;
1852 if (list_empty(&bp
->b_list
)) {
1853 atomic_inc(&bp
->b_hold
);
1854 list_add_tail(&bp
->b_list
, list
);
1861 * Compare function is more complex than it needs to be because
1862 * the return value is only 32 bits and we are doing comparisons
1868 struct list_head
*a
,
1869 struct list_head
*b
)
1871 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1872 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1875 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1884 * Submit buffers for write. If wait_list is specified, the buffers are
1885 * submitted using sync I/O and placed on the wait list such that the caller can
1886 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1887 * at I/O completion time. In either case, buffers remain locked until I/O
1888 * completes and the buffer is released from the queue.
1891 xfs_buf_delwri_submit_buffers(
1892 struct list_head
*buffer_list
,
1893 struct list_head
*wait_list
)
1895 struct xfs_buf
*bp
, *n
;
1897 struct blk_plug plug
;
1899 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1901 blk_start_plug(&plug
);
1902 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1904 if (xfs_buf_ispinned(bp
)) {
1908 if (!xfs_buf_trylock(bp
))
1915 * Someone else might have written the buffer synchronously or
1916 * marked it stale in the meantime. In that case only the
1917 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1918 * reference and remove it from the list here.
1920 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1921 list_del_init(&bp
->b_list
);
1926 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1929 * If we have a wait list, each buffer (and associated delwri
1930 * queue reference) transfers to it and is submitted
1931 * synchronously. Otherwise, drop the buffer from the delwri
1932 * queue and submit async.
1934 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1935 bp
->b_flags
|= XBF_WRITE
;
1937 bp
->b_flags
&= ~XBF_ASYNC
;
1938 list_move_tail(&bp
->b_list
, wait_list
);
1940 bp
->b_flags
|= XBF_ASYNC
;
1941 list_del_init(&bp
->b_list
);
1943 __xfs_buf_submit(bp
, false);
1945 blk_finish_plug(&plug
);
1951 * Write out a buffer list asynchronously.
1953 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1954 * out and not wait for I/O completion on any of the buffers. This interface
1955 * is only safely useable for callers that can track I/O completion by higher
1956 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1959 * Note: this function will skip buffers it would block on, and in doing so
1960 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1961 * it is up to the caller to ensure that the buffer list is fully submitted or
1962 * cancelled appropriately when they are finished with the list. Failure to
1963 * cancel or resubmit the list until it is empty will result in leaked buffers
1967 xfs_buf_delwri_submit_nowait(
1968 struct list_head
*buffer_list
)
1970 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
1974 * Write out a buffer list synchronously.
1976 * This will take the @buffer_list, write all buffers out and wait for I/O
1977 * completion on all of the buffers. @buffer_list is consumed by the function,
1978 * so callers must have some other way of tracking buffers if they require such
1982 xfs_buf_delwri_submit(
1983 struct list_head
*buffer_list
)
1985 LIST_HEAD (wait_list
);
1986 int error
= 0, error2
;
1989 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
1991 /* Wait for IO to complete. */
1992 while (!list_empty(&wait_list
)) {
1993 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
1995 list_del_init(&bp
->b_list
);
1998 * Wait on the locked buffer, check for errors and unlock and
1999 * release the delwri queue reference.
2001 error2
= xfs_buf_iowait(bp
);
2011 * Push a single buffer on a delwri queue.
2013 * The purpose of this function is to submit a single buffer of a delwri queue
2014 * and return with the buffer still on the original queue. The waiting delwri
2015 * buffer submission infrastructure guarantees transfer of the delwri queue
2016 * buffer reference to a temporary wait list. We reuse this infrastructure to
2017 * transfer the buffer back to the original queue.
2019 * Note the buffer transitions from the queued state, to the submitted and wait
2020 * listed state and back to the queued state during this call. The buffer
2021 * locking and queue management logic between _delwri_pushbuf() and
2022 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2026 xfs_buf_delwri_pushbuf(
2028 struct list_head
*buffer_list
)
2030 LIST_HEAD (submit_list
);
2033 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2035 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2038 * Isolate the buffer to a new local list so we can submit it for I/O
2039 * independently from the rest of the original list.
2042 list_move(&bp
->b_list
, &submit_list
);
2046 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2047 * the buffer on the wait list with the original reference. Rather than
2048 * bounce the buffer from a local wait list back to the original list
2049 * after I/O completion, reuse the original list as the wait list.
2051 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2054 * The buffer is now locked, under I/O and wait listed on the original
2055 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2056 * return with the buffer unlocked and on the original queue.
2058 error
= xfs_buf_iowait(bp
);
2059 bp
->b_flags
|= _XBF_DELWRI_Q
;
2068 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2069 KM_ZONE_HWALIGN
, NULL
);
2080 xfs_buf_terminate(void)
2082 kmem_zone_destroy(xfs_buf_zone
);
2085 void xfs_buf_set_ref(struct xfs_buf
*bp
, int lru_ref
)
2088 * Set the lru reference count to 0 based on the error injection tag.
2089 * This allows userspace to disrupt buffer caching for debug/testing
2092 if (XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_LRU_REF
))
2095 atomic_set(&bp
->b_lru_ref
, lru_ref
);
2099 * Verify an on-disk magic value against the magic value specified in the
2100 * verifier structure. The verifier magic is in disk byte order so the caller is
2101 * expected to pass the value directly from disk.
2108 struct xfs_mount
*mp
= bp
->b_mount
;
2111 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2112 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic
[idx
]))
2114 return dmagic
== bp
->b_ops
->magic
[idx
];
2117 * Verify an on-disk magic value against the magic value specified in the
2118 * verifier structure. The verifier magic is in disk byte order so the caller is
2119 * expected to pass the value directly from disk.
2126 struct xfs_mount
*mp
= bp
->b_mount
;
2129 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2130 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic16
[idx
]))
2132 return dmagic
== bp
->b_ops
->magic16
[idx
];