]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_buf_item.c
xfs: remove unnecessary dirty bli format check for ordered bufs
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf_item.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_inode.h"
33
34
35 kmem_zone_t *xfs_buf_item_zone;
36
37 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
38 {
39 return container_of(lip, struct xfs_buf_log_item, bli_item);
40 }
41
42 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
43
44 static inline int
45 xfs_buf_log_format_size(
46 struct xfs_buf_log_format *blfp)
47 {
48 return offsetof(struct xfs_buf_log_format, blf_data_map) +
49 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
50 }
51
52 /*
53 * This returns the number of log iovecs needed to log the
54 * given buf log item.
55 *
56 * It calculates this as 1 iovec for the buf log format structure
57 * and 1 for each stretch of non-contiguous chunks to be logged.
58 * Contiguous chunks are logged in a single iovec.
59 *
60 * If the XFS_BLI_STALE flag has been set, then log nothing.
61 */
62 STATIC void
63 xfs_buf_item_size_segment(
64 struct xfs_buf_log_item *bip,
65 struct xfs_buf_log_format *blfp,
66 int *nvecs,
67 int *nbytes)
68 {
69 struct xfs_buf *bp = bip->bli_buf;
70 int next_bit;
71 int last_bit;
72
73 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
74 if (last_bit == -1)
75 return;
76
77 /*
78 * initial count for a dirty buffer is 2 vectors - the format structure
79 * and the first dirty region.
80 */
81 *nvecs += 2;
82 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
83
84 while (last_bit != -1) {
85 /*
86 * This takes the bit number to start looking from and
87 * returns the next set bit from there. It returns -1
88 * if there are no more bits set or the start bit is
89 * beyond the end of the bitmap.
90 */
91 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
92 last_bit + 1);
93 /*
94 * If we run out of bits, leave the loop,
95 * else if we find a new set of bits bump the number of vecs,
96 * else keep scanning the current set of bits.
97 */
98 if (next_bit == -1) {
99 break;
100 } else if (next_bit != last_bit + 1) {
101 last_bit = next_bit;
102 (*nvecs)++;
103 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
104 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
105 XFS_BLF_CHUNK)) {
106 last_bit = next_bit;
107 (*nvecs)++;
108 } else {
109 last_bit++;
110 }
111 *nbytes += XFS_BLF_CHUNK;
112 }
113 }
114
115 /*
116 * This returns the number of log iovecs needed to log the given buf log item.
117 *
118 * It calculates this as 1 iovec for the buf log format structure and 1 for each
119 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
120 * in a single iovec.
121 *
122 * Discontiguous buffers need a format structure per region that that is being
123 * logged. This makes the changes in the buffer appear to log recovery as though
124 * they came from separate buffers, just like would occur if multiple buffers
125 * were used instead of a single discontiguous buffer. This enables
126 * discontiguous buffers to be in-memory constructs, completely transparent to
127 * what ends up on disk.
128 *
129 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
130 * format structures.
131 */
132 STATIC void
133 xfs_buf_item_size(
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
137 {
138 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
139 int i;
140
141 ASSERT(atomic_read(&bip->bli_refcount) > 0);
142 if (bip->bli_flags & XFS_BLI_STALE) {
143 /*
144 * The buffer is stale, so all we need to log
145 * is the buf log format structure with the
146 * cancel flag in it.
147 */
148 trace_xfs_buf_item_size_stale(bip);
149 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
150 *nvecs += bip->bli_format_count;
151 for (i = 0; i < bip->bli_format_count; i++) {
152 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
153 }
154 return;
155 }
156
157 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
158
159 if (bip->bli_flags & XFS_BLI_ORDERED) {
160 /*
161 * The buffer has been logged just to order it.
162 * It is not being included in the transaction
163 * commit, so no vectors are used at all.
164 */
165 trace_xfs_buf_item_size_ordered(bip);
166 *nvecs = XFS_LOG_VEC_ORDERED;
167 return;
168 }
169
170 /*
171 * the vector count is based on the number of buffer vectors we have
172 * dirty bits in. This will only be greater than one when we have a
173 * compound buffer with more than one segment dirty. Hence for compound
174 * buffers we need to track which segment the dirty bits correspond to,
175 * and when we move from one segment to the next increment the vector
176 * count for the extra buf log format structure that will need to be
177 * written.
178 */
179 for (i = 0; i < bip->bli_format_count; i++) {
180 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
181 nvecs, nbytes);
182 }
183 trace_xfs_buf_item_size(bip);
184 }
185
186 static inline void
187 xfs_buf_item_copy_iovec(
188 struct xfs_log_vec *lv,
189 struct xfs_log_iovec **vecp,
190 struct xfs_buf *bp,
191 uint offset,
192 int first_bit,
193 uint nbits)
194 {
195 offset += first_bit * XFS_BLF_CHUNK;
196 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
197 xfs_buf_offset(bp, offset),
198 nbits * XFS_BLF_CHUNK);
199 }
200
201 static inline bool
202 xfs_buf_item_straddle(
203 struct xfs_buf *bp,
204 uint offset,
205 int next_bit,
206 int last_bit)
207 {
208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 XFS_BLF_CHUNK);
211 }
212
213 static void
214 xfs_buf_item_format_segment(
215 struct xfs_buf_log_item *bip,
216 struct xfs_log_vec *lv,
217 struct xfs_log_iovec **vecp,
218 uint offset,
219 struct xfs_buf_log_format *blfp)
220 {
221 struct xfs_buf *bp = bip->bli_buf;
222 uint base_size;
223 int first_bit;
224 int last_bit;
225 int next_bit;
226 uint nbits;
227
228 /* copy the flags across from the base format item */
229 blfp->blf_flags = bip->__bli_format.blf_flags;
230
231 /*
232 * Base size is the actual size of the ondisk structure - it reflects
233 * the actual size of the dirty bitmap rather than the size of the in
234 * memory structure.
235 */
236 base_size = xfs_buf_log_format_size(blfp);
237
238 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
239 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
240 /*
241 * If the map is not be dirty in the transaction, mark
242 * the size as zero and do not advance the vector pointer.
243 */
244 return;
245 }
246
247 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
248 blfp->blf_size = 1;
249
250 if (bip->bli_flags & XFS_BLI_STALE) {
251 /*
252 * The buffer is stale, so all we need to log
253 * is the buf log format structure with the
254 * cancel flag in it.
255 */
256 trace_xfs_buf_item_format_stale(bip);
257 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
258 return;
259 }
260
261
262 /*
263 * Fill in an iovec for each set of contiguous chunks.
264 */
265 last_bit = first_bit;
266 nbits = 1;
267 for (;;) {
268 /*
269 * This takes the bit number to start looking from and
270 * returns the next set bit from there. It returns -1
271 * if there are no more bits set or the start bit is
272 * beyond the end of the bitmap.
273 */
274 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
275 (uint)last_bit + 1);
276 /*
277 * If we run out of bits fill in the last iovec and get out of
278 * the loop. Else if we start a new set of bits then fill in
279 * the iovec for the series we were looking at and start
280 * counting the bits in the new one. Else we're still in the
281 * same set of bits so just keep counting and scanning.
282 */
283 if (next_bit == -1) {
284 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
285 first_bit, nbits);
286 blfp->blf_size++;
287 break;
288 } else if (next_bit != last_bit + 1 ||
289 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 first_bit, nbits);
292 blfp->blf_size++;
293 first_bit = next_bit;
294 last_bit = next_bit;
295 nbits = 1;
296 } else {
297 last_bit++;
298 nbits++;
299 }
300 }
301 }
302
303 /*
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
308 */
309 STATIC void
310 xfs_buf_item_format(
311 struct xfs_log_item *lip,
312 struct xfs_log_vec *lv)
313 {
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
316 struct xfs_log_iovec *vecp = NULL;
317 uint offset = 0;
318 int i;
319
320 ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 (bip->bli_flags & XFS_BLI_STALE));
323 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
324 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
325 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
326
327
328 /*
329 * If it is an inode buffer, transfer the in-memory state to the
330 * format flags and clear the in-memory state.
331 *
332 * For buffer based inode allocation, we do not transfer
333 * this state if the inode buffer allocation has not yet been committed
334 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
335 * correct replay of the inode allocation.
336 *
337 * For icreate item based inode allocation, the buffers aren't written
338 * to the journal during allocation, and hence we should always tag the
339 * buffer as an inode buffer so that the correct unlinked list replay
340 * occurs during recovery.
341 */
342 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
343 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
344 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
345 xfs_log_item_in_current_chkpt(lip)))
346 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
347 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
348 }
349
350 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
351 XFS_BLI_ORDERED) {
352 /*
353 * The buffer has been logged just to order it. It is not being
354 * included in the transaction commit, so don't format it.
355 */
356 trace_xfs_buf_item_format_ordered(bip);
357 return;
358 }
359
360 for (i = 0; i < bip->bli_format_count; i++) {
361 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
362 &bip->bli_formats[i]);
363 offset += BBTOB(bp->b_maps[i].bm_len);
364 }
365
366 /*
367 * Check to make sure everything is consistent.
368 */
369 trace_xfs_buf_item_format(bip);
370 }
371
372 /*
373 * This is called to pin the buffer associated with the buf log item in memory
374 * so it cannot be written out.
375 *
376 * We also always take a reference to the buffer log item here so that the bli
377 * is held while the item is pinned in memory. This means that we can
378 * unconditionally drop the reference count a transaction holds when the
379 * transaction is completed.
380 */
381 STATIC void
382 xfs_buf_item_pin(
383 struct xfs_log_item *lip)
384 {
385 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
386
387 ASSERT(atomic_read(&bip->bli_refcount) > 0);
388 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
389 (bip->bli_flags & XFS_BLI_ORDERED) ||
390 (bip->bli_flags & XFS_BLI_STALE));
391
392 trace_xfs_buf_item_pin(bip);
393
394 atomic_inc(&bip->bli_refcount);
395 atomic_inc(&bip->bli_buf->b_pin_count);
396 }
397
398 /*
399 * This is called to unpin the buffer associated with the buf log
400 * item which was previously pinned with a call to xfs_buf_item_pin().
401 *
402 * Also drop the reference to the buf item for the current transaction.
403 * If the XFS_BLI_STALE flag is set and we are the last reference,
404 * then free up the buf log item and unlock the buffer.
405 *
406 * If the remove flag is set we are called from uncommit in the
407 * forced-shutdown path. If that is true and the reference count on
408 * the log item is going to drop to zero we need to free the item's
409 * descriptor in the transaction.
410 */
411 STATIC void
412 xfs_buf_item_unpin(
413 struct xfs_log_item *lip,
414 int remove)
415 {
416 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
417 xfs_buf_t *bp = bip->bli_buf;
418 struct xfs_ail *ailp = lip->li_ailp;
419 int stale = bip->bli_flags & XFS_BLI_STALE;
420 int freed;
421
422 ASSERT(bp->b_fspriv == bip);
423 ASSERT(atomic_read(&bip->bli_refcount) > 0);
424
425 trace_xfs_buf_item_unpin(bip);
426
427 freed = atomic_dec_and_test(&bip->bli_refcount);
428
429 if (atomic_dec_and_test(&bp->b_pin_count))
430 wake_up_all(&bp->b_waiters);
431
432 if (freed && stale) {
433 ASSERT(bip->bli_flags & XFS_BLI_STALE);
434 ASSERT(xfs_buf_islocked(bp));
435 ASSERT(bp->b_flags & XBF_STALE);
436 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
437
438 trace_xfs_buf_item_unpin_stale(bip);
439
440 if (remove) {
441 /*
442 * If we are in a transaction context, we have to
443 * remove the log item from the transaction as we are
444 * about to release our reference to the buffer. If we
445 * don't, the unlock that occurs later in
446 * xfs_trans_uncommit() will try to reference the
447 * buffer which we no longer have a hold on.
448 */
449 if (lip->li_desc)
450 xfs_trans_del_item(lip);
451
452 /*
453 * Since the transaction no longer refers to the buffer,
454 * the buffer should no longer refer to the transaction.
455 */
456 bp->b_transp = NULL;
457 }
458
459 /*
460 * If we get called here because of an IO error, we may
461 * or may not have the item on the AIL. xfs_trans_ail_delete()
462 * will take care of that situation.
463 * xfs_trans_ail_delete() drops the AIL lock.
464 */
465 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
466 xfs_buf_do_callbacks(bp);
467 bp->b_fspriv = NULL;
468 bp->b_iodone = NULL;
469 } else {
470 spin_lock(&ailp->xa_lock);
471 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
472 xfs_buf_item_relse(bp);
473 ASSERT(bp->b_fspriv == NULL);
474 }
475 xfs_buf_relse(bp);
476 } else if (freed && remove) {
477 /*
478 * There are currently two references to the buffer - the active
479 * LRU reference and the buf log item. What we are about to do
480 * here - simulate a failed IO completion - requires 3
481 * references.
482 *
483 * The LRU reference is removed by the xfs_buf_stale() call. The
484 * buf item reference is removed by the xfs_buf_iodone()
485 * callback that is run by xfs_buf_do_callbacks() during ioend
486 * processing (via the bp->b_iodone callback), and then finally
487 * the ioend processing will drop the IO reference if the buffer
488 * is marked XBF_ASYNC.
489 *
490 * Hence we need to take an additional reference here so that IO
491 * completion processing doesn't free the buffer prematurely.
492 */
493 xfs_buf_lock(bp);
494 xfs_buf_hold(bp);
495 bp->b_flags |= XBF_ASYNC;
496 xfs_buf_ioerror(bp, -EIO);
497 bp->b_flags &= ~XBF_DONE;
498 xfs_buf_stale(bp);
499 xfs_buf_ioend(bp);
500 }
501 }
502
503 /*
504 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
505 * seconds so as to not spam logs too much on repeated detection of the same
506 * buffer being bad..
507 */
508
509 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
510
511 STATIC uint
512 xfs_buf_item_push(
513 struct xfs_log_item *lip,
514 struct list_head *buffer_list)
515 {
516 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
517 struct xfs_buf *bp = bip->bli_buf;
518 uint rval = XFS_ITEM_SUCCESS;
519
520 if (xfs_buf_ispinned(bp))
521 return XFS_ITEM_PINNED;
522 if (!xfs_buf_trylock(bp)) {
523 /*
524 * If we have just raced with a buffer being pinned and it has
525 * been marked stale, we could end up stalling until someone else
526 * issues a log force to unpin the stale buffer. Check for the
527 * race condition here so xfsaild recognizes the buffer is pinned
528 * and queues a log force to move it along.
529 */
530 if (xfs_buf_ispinned(bp))
531 return XFS_ITEM_PINNED;
532 return XFS_ITEM_LOCKED;
533 }
534
535 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
536
537 trace_xfs_buf_item_push(bip);
538
539 /* has a previous flush failed due to IO errors? */
540 if ((bp->b_flags & XBF_WRITE_FAIL) &&
541 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
542 xfs_warn(bp->b_target->bt_mount,
543 "Failing async write on buffer block 0x%llx. Retrying async write.",
544 (long long)bp->b_bn);
545 }
546
547 if (!xfs_buf_delwri_queue(bp, buffer_list))
548 rval = XFS_ITEM_FLUSHING;
549 xfs_buf_unlock(bp);
550 return rval;
551 }
552
553 /*
554 * Release the buffer associated with the buf log item. If there is no dirty
555 * logged data associated with the buffer recorded in the buf log item, then
556 * free the buf log item and remove the reference to it in the buffer.
557 *
558 * This call ignores the recursion count. It is only called when the buffer
559 * should REALLY be unlocked, regardless of the recursion count.
560 *
561 * We unconditionally drop the transaction's reference to the log item. If the
562 * item was logged, then another reference was taken when it was pinned, so we
563 * can safely drop the transaction reference now. This also allows us to avoid
564 * potential races with the unpin code freeing the bli by not referencing the
565 * bli after we've dropped the reference count.
566 *
567 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
568 * if necessary but do not unlock the buffer. This is for support of
569 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
570 * free the item.
571 */
572 STATIC void
573 xfs_buf_item_unlock(
574 struct xfs_log_item *lip)
575 {
576 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
577 struct xfs_buf *bp = bip->bli_buf;
578 bool aborted = !!(lip->li_flags & XFS_LI_ABORTED);
579 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD);
580 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
581 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
582
583 /* Clear the buffer's association with this transaction. */
584 bp->b_transp = NULL;
585
586 /*
587 * The per-transaction state has been copied above so clear it from the
588 * bli.
589 */
590 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
591
592 /*
593 * If the buf item is marked stale, then don't do anything. We'll
594 * unlock the buffer and free the buf item when the buffer is unpinned
595 * for the last time.
596 */
597 if (bip->bli_flags & XFS_BLI_STALE) {
598 trace_xfs_buf_item_unlock_stale(bip);
599 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
600 if (!aborted) {
601 atomic_dec(&bip->bli_refcount);
602 return;
603 }
604 }
605
606 trace_xfs_buf_item_unlock(bip);
607
608 /*
609 * If the buf item isn't tracking any data, free it, otherwise drop the
610 * reference we hold to it. If we are aborting the transaction, this may
611 * be the only reference to the buf item, so we free it anyway
612 * regardless of whether it is dirty or not. A dirty abort implies a
613 * shutdown, anyway.
614 *
615 * The bli dirty state should match whether the blf has logged segments
616 * except for ordered buffers, where only the bli should be dirty.
617 */
618 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
619 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
620
621 /*
622 * Clean buffers, by definition, cannot be in the AIL. However, aborted
623 * buffers may be in the AIL regardless of dirty state. An aborted
624 * transaction that invalidates a buffer already in the AIL may have
625 * marked it stale and cleared the dirty state, for example.
626 *
627 * Therefore if we are aborting a buffer and we've just taken the last
628 * reference away, we have to check if it is in the AIL before freeing
629 * it. We need to free it in this case, because an aborted transaction
630 * has already shut the filesystem down and this is the last chance we
631 * will have to do so.
632 */
633 if (atomic_dec_and_test(&bip->bli_refcount)) {
634 if (aborted) {
635 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
636 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
637 xfs_buf_item_relse(bp);
638 } else if (!dirty)
639 xfs_buf_item_relse(bp);
640 }
641
642 if (!hold)
643 xfs_buf_relse(bp);
644 }
645
646 /*
647 * This is called to find out where the oldest active copy of the
648 * buf log item in the on disk log resides now that the last log
649 * write of it completed at the given lsn.
650 * We always re-log all the dirty data in a buffer, so usually the
651 * latest copy in the on disk log is the only one that matters. For
652 * those cases we simply return the given lsn.
653 *
654 * The one exception to this is for buffers full of newly allocated
655 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
656 * flag set, indicating that only the di_next_unlinked fields from the
657 * inodes in the buffers will be replayed during recovery. If the
658 * original newly allocated inode images have not yet been flushed
659 * when the buffer is so relogged, then we need to make sure that we
660 * keep the old images in the 'active' portion of the log. We do this
661 * by returning the original lsn of that transaction here rather than
662 * the current one.
663 */
664 STATIC xfs_lsn_t
665 xfs_buf_item_committed(
666 struct xfs_log_item *lip,
667 xfs_lsn_t lsn)
668 {
669 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
670
671 trace_xfs_buf_item_committed(bip);
672
673 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
674 return lip->li_lsn;
675 return lsn;
676 }
677
678 STATIC void
679 xfs_buf_item_committing(
680 struct xfs_log_item *lip,
681 xfs_lsn_t commit_lsn)
682 {
683 }
684
685 /*
686 * This is the ops vector shared by all buf log items.
687 */
688 static const struct xfs_item_ops xfs_buf_item_ops = {
689 .iop_size = xfs_buf_item_size,
690 .iop_format = xfs_buf_item_format,
691 .iop_pin = xfs_buf_item_pin,
692 .iop_unpin = xfs_buf_item_unpin,
693 .iop_unlock = xfs_buf_item_unlock,
694 .iop_committed = xfs_buf_item_committed,
695 .iop_push = xfs_buf_item_push,
696 .iop_committing = xfs_buf_item_committing
697 };
698
699 STATIC int
700 xfs_buf_item_get_format(
701 struct xfs_buf_log_item *bip,
702 int count)
703 {
704 ASSERT(bip->bli_formats == NULL);
705 bip->bli_format_count = count;
706
707 if (count == 1) {
708 bip->bli_formats = &bip->__bli_format;
709 return 0;
710 }
711
712 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
713 KM_SLEEP);
714 if (!bip->bli_formats)
715 return -ENOMEM;
716 return 0;
717 }
718
719 STATIC void
720 xfs_buf_item_free_format(
721 struct xfs_buf_log_item *bip)
722 {
723 if (bip->bli_formats != &bip->__bli_format) {
724 kmem_free(bip->bli_formats);
725 bip->bli_formats = NULL;
726 }
727 }
728
729 /*
730 * Allocate a new buf log item to go with the given buffer.
731 * Set the buffer's b_fsprivate field to point to the new
732 * buf log item. If there are other item's attached to the
733 * buffer (see xfs_buf_attach_iodone() below), then put the
734 * buf log item at the front.
735 */
736 int
737 xfs_buf_item_init(
738 struct xfs_buf *bp,
739 struct xfs_mount *mp)
740 {
741 struct xfs_log_item *lip = bp->b_fspriv;
742 struct xfs_buf_log_item *bip;
743 int chunks;
744 int map_size;
745 int error;
746 int i;
747
748 /*
749 * Check to see if there is already a buf log item for
750 * this buffer. If there is, it is guaranteed to be
751 * the first. If we do already have one, there is
752 * nothing to do here so return.
753 */
754 ASSERT(bp->b_target->bt_mount == mp);
755 if (lip != NULL && lip->li_type == XFS_LI_BUF)
756 return 0;
757
758 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
759 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
760 bip->bli_buf = bp;
761
762 /*
763 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
764 * can be divided into. Make sure not to truncate any pieces.
765 * map_size is the size of the bitmap needed to describe the
766 * chunks of the buffer.
767 *
768 * Discontiguous buffer support follows the layout of the underlying
769 * buffer. This makes the implementation as simple as possible.
770 */
771 error = xfs_buf_item_get_format(bip, bp->b_map_count);
772 ASSERT(error == 0);
773 if (error) { /* to stop gcc throwing set-but-unused warnings */
774 kmem_zone_free(xfs_buf_item_zone, bip);
775 return error;
776 }
777
778
779 for (i = 0; i < bip->bli_format_count; i++) {
780 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
781 XFS_BLF_CHUNK);
782 map_size = DIV_ROUND_UP(chunks, NBWORD);
783
784 bip->bli_formats[i].blf_type = XFS_LI_BUF;
785 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
786 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
787 bip->bli_formats[i].blf_map_size = map_size;
788 }
789
790 /*
791 * Put the buf item into the list of items attached to the
792 * buffer at the front.
793 */
794 if (bp->b_fspriv)
795 bip->bli_item.li_bio_list = bp->b_fspriv;
796 bp->b_fspriv = bip;
797 xfs_buf_hold(bp);
798 return 0;
799 }
800
801
802 /*
803 * Mark bytes first through last inclusive as dirty in the buf
804 * item's bitmap.
805 */
806 static void
807 xfs_buf_item_log_segment(
808 uint first,
809 uint last,
810 uint *map)
811 {
812 uint first_bit;
813 uint last_bit;
814 uint bits_to_set;
815 uint bits_set;
816 uint word_num;
817 uint *wordp;
818 uint bit;
819 uint end_bit;
820 uint mask;
821
822 /*
823 * Convert byte offsets to bit numbers.
824 */
825 first_bit = first >> XFS_BLF_SHIFT;
826 last_bit = last >> XFS_BLF_SHIFT;
827
828 /*
829 * Calculate the total number of bits to be set.
830 */
831 bits_to_set = last_bit - first_bit + 1;
832
833 /*
834 * Get a pointer to the first word in the bitmap
835 * to set a bit in.
836 */
837 word_num = first_bit >> BIT_TO_WORD_SHIFT;
838 wordp = &map[word_num];
839
840 /*
841 * Calculate the starting bit in the first word.
842 */
843 bit = first_bit & (uint)(NBWORD - 1);
844
845 /*
846 * First set any bits in the first word of our range.
847 * If it starts at bit 0 of the word, it will be
848 * set below rather than here. That is what the variable
849 * bit tells us. The variable bits_set tracks the number
850 * of bits that have been set so far. End_bit is the number
851 * of the last bit to be set in this word plus one.
852 */
853 if (bit) {
854 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
855 mask = ((1U << (end_bit - bit)) - 1) << bit;
856 *wordp |= mask;
857 wordp++;
858 bits_set = end_bit - bit;
859 } else {
860 bits_set = 0;
861 }
862
863 /*
864 * Now set bits a whole word at a time that are between
865 * first_bit and last_bit.
866 */
867 while ((bits_to_set - bits_set) >= NBWORD) {
868 *wordp |= 0xffffffff;
869 bits_set += NBWORD;
870 wordp++;
871 }
872
873 /*
874 * Finally, set any bits left to be set in one last partial word.
875 */
876 end_bit = bits_to_set - bits_set;
877 if (end_bit) {
878 mask = (1U << end_bit) - 1;
879 *wordp |= mask;
880 }
881 }
882
883 /*
884 * Mark bytes first through last inclusive as dirty in the buf
885 * item's bitmap.
886 */
887 void
888 xfs_buf_item_log(
889 xfs_buf_log_item_t *bip,
890 uint first,
891 uint last)
892 {
893 int i;
894 uint start;
895 uint end;
896 struct xfs_buf *bp = bip->bli_buf;
897
898 /*
899 * walk each buffer segment and mark them dirty appropriately.
900 */
901 start = 0;
902 for (i = 0; i < bip->bli_format_count; i++) {
903 if (start > last)
904 break;
905 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
906
907 /* skip to the map that includes the first byte to log */
908 if (first > end) {
909 start += BBTOB(bp->b_maps[i].bm_len);
910 continue;
911 }
912
913 /*
914 * Trim the range to this segment and mark it in the bitmap.
915 * Note that we must convert buffer offsets to segment relative
916 * offsets (e.g., the first byte of each segment is byte 0 of
917 * that segment).
918 */
919 if (first < start)
920 first = start;
921 if (end > last)
922 end = last;
923 xfs_buf_item_log_segment(first - start, end - start,
924 &bip->bli_formats[i].blf_data_map[0]);
925
926 start += BBTOB(bp->b_maps[i].bm_len);
927 }
928 }
929
930
931 /*
932 * Return true if the buffer has any ranges logged/dirtied by a transaction,
933 * false otherwise.
934 */
935 bool
936 xfs_buf_item_dirty_format(
937 struct xfs_buf_log_item *bip)
938 {
939 int i;
940
941 for (i = 0; i < bip->bli_format_count; i++) {
942 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
943 bip->bli_formats[i].blf_map_size))
944 return true;
945 }
946
947 return false;
948 }
949
950 STATIC void
951 xfs_buf_item_free(
952 xfs_buf_log_item_t *bip)
953 {
954 xfs_buf_item_free_format(bip);
955 kmem_free(bip->bli_item.li_lv_shadow);
956 kmem_zone_free(xfs_buf_item_zone, bip);
957 }
958
959 /*
960 * This is called when the buf log item is no longer needed. It should
961 * free the buf log item associated with the given buffer and clear
962 * the buffer's pointer to the buf log item. If there are no more
963 * items in the list, clear the b_iodone field of the buffer (see
964 * xfs_buf_attach_iodone() below).
965 */
966 void
967 xfs_buf_item_relse(
968 xfs_buf_t *bp)
969 {
970 xfs_buf_log_item_t *bip = bp->b_fspriv;
971
972 trace_xfs_buf_item_relse(bp, _RET_IP_);
973 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
974
975 bp->b_fspriv = bip->bli_item.li_bio_list;
976 if (bp->b_fspriv == NULL)
977 bp->b_iodone = NULL;
978
979 xfs_buf_rele(bp);
980 xfs_buf_item_free(bip);
981 }
982
983
984 /*
985 * Add the given log item with its callback to the list of callbacks
986 * to be called when the buffer's I/O completes. If it is not set
987 * already, set the buffer's b_iodone() routine to be
988 * xfs_buf_iodone_callbacks() and link the log item into the list of
989 * items rooted at b_fsprivate. Items are always added as the second
990 * entry in the list if there is a first, because the buf item code
991 * assumes that the buf log item is first.
992 */
993 void
994 xfs_buf_attach_iodone(
995 xfs_buf_t *bp,
996 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
997 xfs_log_item_t *lip)
998 {
999 xfs_log_item_t *head_lip;
1000
1001 ASSERT(xfs_buf_islocked(bp));
1002
1003 lip->li_cb = cb;
1004 head_lip = bp->b_fspriv;
1005 if (head_lip) {
1006 lip->li_bio_list = head_lip->li_bio_list;
1007 head_lip->li_bio_list = lip;
1008 } else {
1009 bp->b_fspriv = lip;
1010 }
1011
1012 ASSERT(bp->b_iodone == NULL ||
1013 bp->b_iodone == xfs_buf_iodone_callbacks);
1014 bp->b_iodone = xfs_buf_iodone_callbacks;
1015 }
1016
1017 /*
1018 * We can have many callbacks on a buffer. Running the callbacks individually
1019 * can cause a lot of contention on the AIL lock, so we allow for a single
1020 * callback to be able to scan the remaining lip->li_bio_list for other items
1021 * of the same type and callback to be processed in the first call.
1022 *
1023 * As a result, the loop walking the callback list below will also modify the
1024 * list. it removes the first item from the list and then runs the callback.
1025 * The loop then restarts from the new head of the list. This allows the
1026 * callback to scan and modify the list attached to the buffer and we don't
1027 * have to care about maintaining a next item pointer.
1028 */
1029 STATIC void
1030 xfs_buf_do_callbacks(
1031 struct xfs_buf *bp)
1032 {
1033 struct xfs_log_item *lip;
1034
1035 while ((lip = bp->b_fspriv) != NULL) {
1036 bp->b_fspriv = lip->li_bio_list;
1037 ASSERT(lip->li_cb != NULL);
1038 /*
1039 * Clear the next pointer so we don't have any
1040 * confusion if the item is added to another buf.
1041 * Don't touch the log item after calling its
1042 * callback, because it could have freed itself.
1043 */
1044 lip->li_bio_list = NULL;
1045 lip->li_cb(bp, lip);
1046 }
1047 }
1048
1049 /*
1050 * Invoke the error state callback for each log item affected by the failed I/O.
1051 *
1052 * If a metadata buffer write fails with a non-permanent error, the buffer is
1053 * eventually resubmitted and so the completion callbacks are not run. The error
1054 * state may need to be propagated to the log items attached to the buffer,
1055 * however, so the next AIL push of the item knows hot to handle it correctly.
1056 */
1057 STATIC void
1058 xfs_buf_do_callbacks_fail(
1059 struct xfs_buf *bp)
1060 {
1061 struct xfs_log_item *next;
1062 struct xfs_log_item *lip = bp->b_fspriv;
1063 struct xfs_ail *ailp = lip->li_ailp;
1064
1065 spin_lock(&ailp->xa_lock);
1066 for (; lip; lip = next) {
1067 next = lip->li_bio_list;
1068 if (lip->li_ops->iop_error)
1069 lip->li_ops->iop_error(lip, bp);
1070 }
1071 spin_unlock(&ailp->xa_lock);
1072 }
1073
1074 static bool
1075 xfs_buf_iodone_callback_error(
1076 struct xfs_buf *bp)
1077 {
1078 struct xfs_log_item *lip = bp->b_fspriv;
1079 struct xfs_mount *mp = lip->li_mountp;
1080 static ulong lasttime;
1081 static xfs_buftarg_t *lasttarg;
1082 struct xfs_error_cfg *cfg;
1083
1084 /*
1085 * If we've already decided to shutdown the filesystem because of
1086 * I/O errors, there's no point in giving this a retry.
1087 */
1088 if (XFS_FORCED_SHUTDOWN(mp))
1089 goto out_stale;
1090
1091 if (bp->b_target != lasttarg ||
1092 time_after(jiffies, (lasttime + 5*HZ))) {
1093 lasttime = jiffies;
1094 xfs_buf_ioerror_alert(bp, __func__);
1095 }
1096 lasttarg = bp->b_target;
1097
1098 /* synchronous writes will have callers process the error */
1099 if (!(bp->b_flags & XBF_ASYNC))
1100 goto out_stale;
1101
1102 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1103 ASSERT(bp->b_iodone != NULL);
1104
1105 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1106
1107 /*
1108 * If the write was asynchronous then no one will be looking for the
1109 * error. If this is the first failure of this type, clear the error
1110 * state and write the buffer out again. This means we always retry an
1111 * async write failure at least once, but we also need to set the buffer
1112 * up to behave correctly now for repeated failures.
1113 */
1114 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1115 bp->b_last_error != bp->b_error) {
1116 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1117 bp->b_last_error = bp->b_error;
1118 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1119 !bp->b_first_retry_time)
1120 bp->b_first_retry_time = jiffies;
1121
1122 xfs_buf_ioerror(bp, 0);
1123 xfs_buf_submit(bp);
1124 return true;
1125 }
1126
1127 /*
1128 * Repeated failure on an async write. Take action according to the
1129 * error configuration we have been set up to use.
1130 */
1131
1132 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1133 ++bp->b_retries > cfg->max_retries)
1134 goto permanent_error;
1135 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1136 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1137 goto permanent_error;
1138
1139 /* At unmount we may treat errors differently */
1140 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1141 goto permanent_error;
1142
1143 /*
1144 * Still a transient error, run IO completion failure callbacks and let
1145 * the higher layers retry the buffer.
1146 */
1147 xfs_buf_do_callbacks_fail(bp);
1148 xfs_buf_ioerror(bp, 0);
1149 xfs_buf_relse(bp);
1150 return true;
1151
1152 /*
1153 * Permanent error - we need to trigger a shutdown if we haven't already
1154 * to indicate that inconsistency will result from this action.
1155 */
1156 permanent_error:
1157 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1158 out_stale:
1159 xfs_buf_stale(bp);
1160 bp->b_flags |= XBF_DONE;
1161 trace_xfs_buf_error_relse(bp, _RET_IP_);
1162 return false;
1163 }
1164
1165 /*
1166 * This is the iodone() function for buffers which have had callbacks attached
1167 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1168 * callback list, mark the buffer as having no more callbacks and then push the
1169 * buffer through IO completion processing.
1170 */
1171 void
1172 xfs_buf_iodone_callbacks(
1173 struct xfs_buf *bp)
1174 {
1175 /*
1176 * If there is an error, process it. Some errors require us
1177 * to run callbacks after failure processing is done so we
1178 * detect that and take appropriate action.
1179 */
1180 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1181 return;
1182
1183 /*
1184 * Successful IO or permanent error. Either way, we can clear the
1185 * retry state here in preparation for the next error that may occur.
1186 */
1187 bp->b_last_error = 0;
1188 bp->b_retries = 0;
1189 bp->b_first_retry_time = 0;
1190
1191 xfs_buf_do_callbacks(bp);
1192 bp->b_fspriv = NULL;
1193 bp->b_iodone = NULL;
1194 xfs_buf_ioend(bp);
1195 }
1196
1197 /*
1198 * This is the iodone() function for buffers which have been
1199 * logged. It is called when they are eventually flushed out.
1200 * It should remove the buf item from the AIL, and free the buf item.
1201 * It is called by xfs_buf_iodone_callbacks() above which will take
1202 * care of cleaning up the buffer itself.
1203 */
1204 void
1205 xfs_buf_iodone(
1206 struct xfs_buf *bp,
1207 struct xfs_log_item *lip)
1208 {
1209 struct xfs_ail *ailp = lip->li_ailp;
1210
1211 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1212
1213 xfs_buf_rele(bp);
1214
1215 /*
1216 * If we are forcibly shutting down, this may well be
1217 * off the AIL already. That's because we simulate the
1218 * log-committed callbacks to unpin these buffers. Or we may never
1219 * have put this item on AIL because of the transaction was
1220 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1221 *
1222 * Either way, AIL is useless if we're forcing a shutdown.
1223 */
1224 spin_lock(&ailp->xa_lock);
1225 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1226 xfs_buf_item_free(BUF_ITEM(lip));
1227 }
1228
1229 /*
1230 * Requeue a failed buffer for writeback
1231 *
1232 * Return true if the buffer has been re-queued properly, false otherwise
1233 */
1234 bool
1235 xfs_buf_resubmit_failed_buffers(
1236 struct xfs_buf *bp,
1237 struct xfs_log_item *lip,
1238 struct list_head *buffer_list)
1239 {
1240 struct xfs_log_item *next;
1241
1242 /*
1243 * Clear XFS_LI_FAILED flag from all items before resubmit
1244 *
1245 * XFS_LI_FAILED set/clear is protected by xa_lock, caller this
1246 * function already have it acquired
1247 */
1248 for (; lip; lip = next) {
1249 next = lip->li_bio_list;
1250 xfs_clear_li_failed(lip);
1251 }
1252
1253 /* Add this buffer back to the delayed write list */
1254 return xfs_buf_delwri_queue(bp, buffer_list);
1255 }