]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_buf_item.c
xfs: do not add buffers to the delwri queue until pushed
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf_item.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32
33
34 kmem_zone_t *xfs_buf_item_zone;
35
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40
41
42 #ifdef XFS_TRANS_DEBUG
43 /*
44 * This function uses an alternate strategy for tracking the bytes
45 * that the user requests to be logged. This can then be used
46 * in conjunction with the bli_orig array in the buf log item to
47 * catch bugs in our callers' code.
48 *
49 * We also double check the bits set in xfs_buf_item_log using a
50 * simple algorithm to check that every byte is accounted for.
51 */
52 STATIC void
53 xfs_buf_item_log_debug(
54 xfs_buf_log_item_t *bip,
55 uint first,
56 uint last)
57 {
58 uint x;
59 uint byte;
60 uint nbytes;
61 uint chunk_num;
62 uint word_num;
63 uint bit_num;
64 uint bit_set;
65 uint *wordp;
66
67 ASSERT(bip->bli_logged != NULL);
68 byte = first;
69 nbytes = last - first + 1;
70 bfset(bip->bli_logged, first, nbytes);
71 for (x = 0; x < nbytes; x++) {
72 chunk_num = byte >> XFS_BLF_SHIFT;
73 word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 bit_num = chunk_num & (NBWORD - 1);
75 wordp = &(bip->bli_format.blf_data_map[word_num]);
76 bit_set = *wordp & (1 << bit_num);
77 ASSERT(bit_set);
78 byte++;
79 }
80 }
81
82 /*
83 * This function is called when we flush something into a buffer without
84 * logging it. This happens for things like inodes which are logged
85 * separately from the buffer.
86 */
87 void
88 xfs_buf_item_flush_log_debug(
89 xfs_buf_t *bp,
90 uint first,
91 uint last)
92 {
93 xfs_buf_log_item_t *bip = bp->b_fspriv;
94 uint nbytes;
95
96 if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
97 return;
98
99 ASSERT(bip->bli_logged != NULL);
100 nbytes = last - first + 1;
101 bfset(bip->bli_logged, first, nbytes);
102 }
103
104 /*
105 * This function is called to verify that our callers have logged
106 * all the bytes that they changed.
107 *
108 * It does this by comparing the original copy of the buffer stored in
109 * the buf log item's bli_orig array to the current copy of the buffer
110 * and ensuring that all bytes which mismatch are set in the bli_logged
111 * array of the buf log item.
112 */
113 STATIC void
114 xfs_buf_item_log_check(
115 xfs_buf_log_item_t *bip)
116 {
117 char *orig;
118 char *buffer;
119 int x;
120 xfs_buf_t *bp;
121
122 ASSERT(bip->bli_orig != NULL);
123 ASSERT(bip->bli_logged != NULL);
124
125 bp = bip->bli_buf;
126 ASSERT(XFS_BUF_COUNT(bp) > 0);
127 ASSERT(bp->b_addr != NULL);
128 orig = bip->bli_orig;
129 buffer = bp->b_addr;
130 for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
131 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
132 xfs_emerg(bp->b_mount,
133 "%s: bip %x buffer %x orig %x index %d",
134 __func__, bip, bp, orig, x);
135 ASSERT(0);
136 }
137 }
138 }
139 #else
140 #define xfs_buf_item_log_debug(x,y,z)
141 #define xfs_buf_item_log_check(x)
142 #endif
143
144 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
145
146 /*
147 * This returns the number of log iovecs needed to log the
148 * given buf log item.
149 *
150 * It calculates this as 1 iovec for the buf log format structure
151 * and 1 for each stretch of non-contiguous chunks to be logged.
152 * Contiguous chunks are logged in a single iovec.
153 *
154 * If the XFS_BLI_STALE flag has been set, then log nothing.
155 */
156 STATIC uint
157 xfs_buf_item_size(
158 struct xfs_log_item *lip)
159 {
160 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
161 struct xfs_buf *bp = bip->bli_buf;
162 uint nvecs;
163 int next_bit;
164 int last_bit;
165
166 ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 if (bip->bli_flags & XFS_BLI_STALE) {
168 /*
169 * The buffer is stale, so all we need to log
170 * is the buf log format structure with the
171 * cancel flag in it.
172 */
173 trace_xfs_buf_item_size_stale(bip);
174 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
175 return 1;
176 }
177
178 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
179 nvecs = 1;
180 last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
181 bip->bli_format.blf_map_size, 0);
182 ASSERT(last_bit != -1);
183 nvecs++;
184 while (last_bit != -1) {
185 /*
186 * This takes the bit number to start looking from and
187 * returns the next set bit from there. It returns -1
188 * if there are no more bits set or the start bit is
189 * beyond the end of the bitmap.
190 */
191 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
192 bip->bli_format.blf_map_size,
193 last_bit + 1);
194 /*
195 * If we run out of bits, leave the loop,
196 * else if we find a new set of bits bump the number of vecs,
197 * else keep scanning the current set of bits.
198 */
199 if (next_bit == -1) {
200 last_bit = -1;
201 } else if (next_bit != last_bit + 1) {
202 last_bit = next_bit;
203 nvecs++;
204 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
205 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
206 XFS_BLF_CHUNK)) {
207 last_bit = next_bit;
208 nvecs++;
209 } else {
210 last_bit++;
211 }
212 }
213
214 trace_xfs_buf_item_size(bip);
215 return nvecs;
216 }
217
218 /*
219 * This is called to fill in the vector of log iovecs for the
220 * given log buf item. It fills the first entry with a buf log
221 * format structure, and the rest point to contiguous chunks
222 * within the buffer.
223 */
224 STATIC void
225 xfs_buf_item_format(
226 struct xfs_log_item *lip,
227 struct xfs_log_iovec *vecp)
228 {
229 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
230 struct xfs_buf *bp = bip->bli_buf;
231 uint base_size;
232 uint nvecs;
233 int first_bit;
234 int last_bit;
235 int next_bit;
236 uint nbits;
237 uint buffer_offset;
238
239 ASSERT(atomic_read(&bip->bli_refcount) > 0);
240 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
241 (bip->bli_flags & XFS_BLI_STALE));
242
243 /*
244 * The size of the base structure is the size of the
245 * declared structure plus the space for the extra words
246 * of the bitmap. We subtract one from the map size, because
247 * the first element of the bitmap is accounted for in the
248 * size of the base structure.
249 */
250 base_size =
251 (uint)(sizeof(xfs_buf_log_format_t) +
252 ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
253 vecp->i_addr = &bip->bli_format;
254 vecp->i_len = base_size;
255 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
256 vecp++;
257 nvecs = 1;
258
259 /*
260 * If it is an inode buffer, transfer the in-memory state to the
261 * format flags and clear the in-memory state. We do not transfer
262 * this state if the inode buffer allocation has not yet been committed
263 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
264 * correct replay of the inode allocation.
265 */
266 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
267 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
268 xfs_log_item_in_current_chkpt(lip)))
269 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
270 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
271 }
272
273 if (bip->bli_flags & XFS_BLI_STALE) {
274 /*
275 * The buffer is stale, so all we need to log
276 * is the buf log format structure with the
277 * cancel flag in it.
278 */
279 trace_xfs_buf_item_format_stale(bip);
280 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
281 bip->bli_format.blf_size = nvecs;
282 return;
283 }
284
285 /*
286 * Fill in an iovec for each set of contiguous chunks.
287 */
288 first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
289 bip->bli_format.blf_map_size, 0);
290 ASSERT(first_bit != -1);
291 last_bit = first_bit;
292 nbits = 1;
293 for (;;) {
294 /*
295 * This takes the bit number to start looking from and
296 * returns the next set bit from there. It returns -1
297 * if there are no more bits set or the start bit is
298 * beyond the end of the bitmap.
299 */
300 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
301 bip->bli_format.blf_map_size,
302 (uint)last_bit + 1);
303 /*
304 * If we run out of bits fill in the last iovec and get
305 * out of the loop.
306 * Else if we start a new set of bits then fill in the
307 * iovec for the series we were looking at and start
308 * counting the bits in the new one.
309 * Else we're still in the same set of bits so just
310 * keep counting and scanning.
311 */
312 if (next_bit == -1) {
313 buffer_offset = first_bit * XFS_BLF_CHUNK;
314 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
315 vecp->i_len = nbits * XFS_BLF_CHUNK;
316 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
317 nvecs++;
318 break;
319 } else if (next_bit != last_bit + 1) {
320 buffer_offset = first_bit * XFS_BLF_CHUNK;
321 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
322 vecp->i_len = nbits * XFS_BLF_CHUNK;
323 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
324 nvecs++;
325 vecp++;
326 first_bit = next_bit;
327 last_bit = next_bit;
328 nbits = 1;
329 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
330 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
331 XFS_BLF_CHUNK)) {
332 buffer_offset = first_bit * XFS_BLF_CHUNK;
333 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
334 vecp->i_len = nbits * XFS_BLF_CHUNK;
335 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
336 /* You would think we need to bump the nvecs here too, but we do not
337 * this number is used by recovery, and it gets confused by the boundary
338 * split here
339 * nvecs++;
340 */
341 vecp++;
342 first_bit = next_bit;
343 last_bit = next_bit;
344 nbits = 1;
345 } else {
346 last_bit++;
347 nbits++;
348 }
349 }
350 bip->bli_format.blf_size = nvecs;
351
352 /*
353 * Check to make sure everything is consistent.
354 */
355 trace_xfs_buf_item_format(bip);
356 xfs_buf_item_log_check(bip);
357 }
358
359 /*
360 * This is called to pin the buffer associated with the buf log item in memory
361 * so it cannot be written out.
362 *
363 * We also always take a reference to the buffer log item here so that the bli
364 * is held while the item is pinned in memory. This means that we can
365 * unconditionally drop the reference count a transaction holds when the
366 * transaction is completed.
367 */
368 STATIC void
369 xfs_buf_item_pin(
370 struct xfs_log_item *lip)
371 {
372 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
373
374 ASSERT(atomic_read(&bip->bli_refcount) > 0);
375 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
376 (bip->bli_flags & XFS_BLI_STALE));
377
378 trace_xfs_buf_item_pin(bip);
379
380 atomic_inc(&bip->bli_refcount);
381 atomic_inc(&bip->bli_buf->b_pin_count);
382 }
383
384 /*
385 * This is called to unpin the buffer associated with the buf log
386 * item which was previously pinned with a call to xfs_buf_item_pin().
387 *
388 * Also drop the reference to the buf item for the current transaction.
389 * If the XFS_BLI_STALE flag is set and we are the last reference,
390 * then free up the buf log item and unlock the buffer.
391 *
392 * If the remove flag is set we are called from uncommit in the
393 * forced-shutdown path. If that is true and the reference count on
394 * the log item is going to drop to zero we need to free the item's
395 * descriptor in the transaction.
396 */
397 STATIC void
398 xfs_buf_item_unpin(
399 struct xfs_log_item *lip,
400 int remove)
401 {
402 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
403 xfs_buf_t *bp = bip->bli_buf;
404 struct xfs_ail *ailp = lip->li_ailp;
405 int stale = bip->bli_flags & XFS_BLI_STALE;
406 int freed;
407
408 ASSERT(bp->b_fspriv == bip);
409 ASSERT(atomic_read(&bip->bli_refcount) > 0);
410
411 trace_xfs_buf_item_unpin(bip);
412
413 freed = atomic_dec_and_test(&bip->bli_refcount);
414
415 if (atomic_dec_and_test(&bp->b_pin_count))
416 wake_up_all(&bp->b_waiters);
417
418 if (freed && stale) {
419 ASSERT(bip->bli_flags & XFS_BLI_STALE);
420 ASSERT(xfs_buf_islocked(bp));
421 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
422 ASSERT(XFS_BUF_ISSTALE(bp));
423 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
424
425 trace_xfs_buf_item_unpin_stale(bip);
426
427 if (remove) {
428 /*
429 * If we are in a transaction context, we have to
430 * remove the log item from the transaction as we are
431 * about to release our reference to the buffer. If we
432 * don't, the unlock that occurs later in
433 * xfs_trans_uncommit() will try to reference the
434 * buffer which we no longer have a hold on.
435 */
436 if (lip->li_desc)
437 xfs_trans_del_item(lip);
438
439 /*
440 * Since the transaction no longer refers to the buffer,
441 * the buffer should no longer refer to the transaction.
442 */
443 bp->b_transp = NULL;
444 }
445
446 /*
447 * If we get called here because of an IO error, we may
448 * or may not have the item on the AIL. xfs_trans_ail_delete()
449 * will take care of that situation.
450 * xfs_trans_ail_delete() drops the AIL lock.
451 */
452 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
453 xfs_buf_do_callbacks(bp);
454 bp->b_fspriv = NULL;
455 bp->b_iodone = NULL;
456 } else {
457 spin_lock(&ailp->xa_lock);
458 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
459 xfs_buf_item_relse(bp);
460 ASSERT(bp->b_fspriv == NULL);
461 }
462 xfs_buf_relse(bp);
463 } else if (freed && remove) {
464 xfs_buf_lock(bp);
465 xfs_buf_ioerror(bp, EIO);
466 XFS_BUF_UNDONE(bp);
467 xfs_buf_stale(bp);
468 xfs_buf_ioend(bp, 0);
469 }
470 }
471
472 /*
473 * This is called to attempt to lock the buffer associated with this
474 * buf log item. Don't sleep on the buffer lock. If we can't get
475 * the lock right away, return 0. If we can get the lock, take a
476 * reference to the buffer. If this is a delayed write buffer that
477 * needs AIL help to be written back, invoke the pushbuf routine
478 * rather than the normal success path.
479 */
480 STATIC uint
481 xfs_buf_item_trylock(
482 struct xfs_log_item *lip)
483 {
484 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
485 struct xfs_buf *bp = bip->bli_buf;
486
487 if (xfs_buf_ispinned(bp))
488 return XFS_ITEM_PINNED;
489 if (!xfs_buf_trylock(bp))
490 return XFS_ITEM_LOCKED;
491
492 /* take a reference to the buffer. */
493 xfs_buf_hold(bp);
494
495 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
496 trace_xfs_buf_item_trylock(bip);
497 if (XFS_BUF_ISDELAYWRITE(bp))
498 return XFS_ITEM_PUSHBUF;
499 return XFS_ITEM_SUCCESS;
500 }
501
502 /*
503 * Release the buffer associated with the buf log item. If there is no dirty
504 * logged data associated with the buffer recorded in the buf log item, then
505 * free the buf log item and remove the reference to it in the buffer.
506 *
507 * This call ignores the recursion count. It is only called when the buffer
508 * should REALLY be unlocked, regardless of the recursion count.
509 *
510 * We unconditionally drop the transaction's reference to the log item. If the
511 * item was logged, then another reference was taken when it was pinned, so we
512 * can safely drop the transaction reference now. This also allows us to avoid
513 * potential races with the unpin code freeing the bli by not referencing the
514 * bli after we've dropped the reference count.
515 *
516 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
517 * if necessary but do not unlock the buffer. This is for support of
518 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
519 * free the item.
520 */
521 STATIC void
522 xfs_buf_item_unlock(
523 struct xfs_log_item *lip)
524 {
525 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
526 struct xfs_buf *bp = bip->bli_buf;
527 int aborted;
528 uint hold;
529
530 /* Clear the buffer's association with this transaction. */
531 bp->b_transp = NULL;
532
533 /*
534 * If this is a transaction abort, don't return early. Instead, allow
535 * the brelse to happen. Normally it would be done for stale
536 * (cancelled) buffers at unpin time, but we'll never go through the
537 * pin/unpin cycle if we abort inside commit.
538 */
539 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
540
541 /*
542 * Before possibly freeing the buf item, determine if we should
543 * release the buffer at the end of this routine.
544 */
545 hold = bip->bli_flags & XFS_BLI_HOLD;
546
547 /* Clear the per transaction state. */
548 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
549
550 /*
551 * If the buf item is marked stale, then don't do anything. We'll
552 * unlock the buffer and free the buf item when the buffer is unpinned
553 * for the last time.
554 */
555 if (bip->bli_flags & XFS_BLI_STALE) {
556 trace_xfs_buf_item_unlock_stale(bip);
557 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
558 if (!aborted) {
559 atomic_dec(&bip->bli_refcount);
560 return;
561 }
562 }
563
564 trace_xfs_buf_item_unlock(bip);
565
566 /*
567 * If the buf item isn't tracking any data, free it, otherwise drop the
568 * reference we hold to it.
569 */
570 if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
571 bip->bli_format.blf_map_size))
572 xfs_buf_item_relse(bp);
573 else
574 atomic_dec(&bip->bli_refcount);
575
576 if (!hold)
577 xfs_buf_relse(bp);
578 }
579
580 /*
581 * This is called to find out where the oldest active copy of the
582 * buf log item in the on disk log resides now that the last log
583 * write of it completed at the given lsn.
584 * We always re-log all the dirty data in a buffer, so usually the
585 * latest copy in the on disk log is the only one that matters. For
586 * those cases we simply return the given lsn.
587 *
588 * The one exception to this is for buffers full of newly allocated
589 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
590 * flag set, indicating that only the di_next_unlinked fields from the
591 * inodes in the buffers will be replayed during recovery. If the
592 * original newly allocated inode images have not yet been flushed
593 * when the buffer is so relogged, then we need to make sure that we
594 * keep the old images in the 'active' portion of the log. We do this
595 * by returning the original lsn of that transaction here rather than
596 * the current one.
597 */
598 STATIC xfs_lsn_t
599 xfs_buf_item_committed(
600 struct xfs_log_item *lip,
601 xfs_lsn_t lsn)
602 {
603 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
604
605 trace_xfs_buf_item_committed(bip);
606
607 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
608 return lip->li_lsn;
609 return lsn;
610 }
611
612 /*
613 * The buffer is locked, but is not a delayed write buffer.
614 */
615 STATIC void
616 xfs_buf_item_push(
617 struct xfs_log_item *lip)
618 {
619 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
620 struct xfs_buf *bp = bip->bli_buf;
621
622 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
623 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
624
625 trace_xfs_buf_item_push(bip);
626
627 xfs_buf_delwri_queue(bp);
628 xfs_buf_relse(bp);
629 }
630
631 /*
632 * The buffer is locked and is a delayed write buffer. Promote the buffer
633 * in the delayed write queue as the caller knows that they must invoke
634 * the xfsbufd to get this buffer written. We have to unlock the buffer
635 * to allow the xfsbufd to write it, too.
636 */
637 STATIC bool
638 xfs_buf_item_pushbuf(
639 struct xfs_log_item *lip)
640 {
641 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
642 struct xfs_buf *bp = bip->bli_buf;
643
644 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
645 ASSERT(XFS_BUF_ISDELAYWRITE(bp));
646
647 trace_xfs_buf_item_pushbuf(bip);
648
649 xfs_buf_delwri_promote(bp);
650 xfs_buf_relse(bp);
651 return true;
652 }
653
654 STATIC void
655 xfs_buf_item_committing(
656 struct xfs_log_item *lip,
657 xfs_lsn_t commit_lsn)
658 {
659 }
660
661 /*
662 * This is the ops vector shared by all buf log items.
663 */
664 static const struct xfs_item_ops xfs_buf_item_ops = {
665 .iop_size = xfs_buf_item_size,
666 .iop_format = xfs_buf_item_format,
667 .iop_pin = xfs_buf_item_pin,
668 .iop_unpin = xfs_buf_item_unpin,
669 .iop_trylock = xfs_buf_item_trylock,
670 .iop_unlock = xfs_buf_item_unlock,
671 .iop_committed = xfs_buf_item_committed,
672 .iop_push = xfs_buf_item_push,
673 .iop_pushbuf = xfs_buf_item_pushbuf,
674 .iop_committing = xfs_buf_item_committing
675 };
676
677
678 /*
679 * Allocate a new buf log item to go with the given buffer.
680 * Set the buffer's b_fsprivate field to point to the new
681 * buf log item. If there are other item's attached to the
682 * buffer (see xfs_buf_attach_iodone() below), then put the
683 * buf log item at the front.
684 */
685 void
686 xfs_buf_item_init(
687 xfs_buf_t *bp,
688 xfs_mount_t *mp)
689 {
690 xfs_log_item_t *lip = bp->b_fspriv;
691 xfs_buf_log_item_t *bip;
692 int chunks;
693 int map_size;
694
695 /*
696 * Check to see if there is already a buf log item for
697 * this buffer. If there is, it is guaranteed to be
698 * the first. If we do already have one, there is
699 * nothing to do here so return.
700 */
701 ASSERT(bp->b_target->bt_mount == mp);
702 if (lip != NULL && lip->li_type == XFS_LI_BUF)
703 return;
704
705 /*
706 * chunks is the number of XFS_BLF_CHUNK size pieces
707 * the buffer can be divided into. Make sure not to
708 * truncate any pieces. map_size is the size of the
709 * bitmap needed to describe the chunks of the buffer.
710 */
711 chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
712 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
713
714 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
715 KM_SLEEP);
716 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
717 bip->bli_buf = bp;
718 xfs_buf_hold(bp);
719 bip->bli_format.blf_type = XFS_LI_BUF;
720 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
721 bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
722 bip->bli_format.blf_map_size = map_size;
723
724 #ifdef XFS_TRANS_DEBUG
725 /*
726 * Allocate the arrays for tracking what needs to be logged
727 * and what our callers request to be logged. bli_orig
728 * holds a copy of the original, clean buffer for comparison
729 * against, and bli_logged keeps a 1 bit flag per byte in
730 * the buffer to indicate which bytes the callers have asked
731 * to have logged.
732 */
733 bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
734 memcpy(bip->bli_orig, bp->b_addr, XFS_BUF_COUNT(bp));
735 bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
736 #endif
737
738 /*
739 * Put the buf item into the list of items attached to the
740 * buffer at the front.
741 */
742 if (bp->b_fspriv)
743 bip->bli_item.li_bio_list = bp->b_fspriv;
744 bp->b_fspriv = bip;
745 }
746
747
748 /*
749 * Mark bytes first through last inclusive as dirty in the buf
750 * item's bitmap.
751 */
752 void
753 xfs_buf_item_log(
754 xfs_buf_log_item_t *bip,
755 uint first,
756 uint last)
757 {
758 uint first_bit;
759 uint last_bit;
760 uint bits_to_set;
761 uint bits_set;
762 uint word_num;
763 uint *wordp;
764 uint bit;
765 uint end_bit;
766 uint mask;
767
768 /*
769 * Mark the item as having some dirty data for
770 * quick reference in xfs_buf_item_dirty.
771 */
772 bip->bli_flags |= XFS_BLI_DIRTY;
773
774 /*
775 * Convert byte offsets to bit numbers.
776 */
777 first_bit = first >> XFS_BLF_SHIFT;
778 last_bit = last >> XFS_BLF_SHIFT;
779
780 /*
781 * Calculate the total number of bits to be set.
782 */
783 bits_to_set = last_bit - first_bit + 1;
784
785 /*
786 * Get a pointer to the first word in the bitmap
787 * to set a bit in.
788 */
789 word_num = first_bit >> BIT_TO_WORD_SHIFT;
790 wordp = &(bip->bli_format.blf_data_map[word_num]);
791
792 /*
793 * Calculate the starting bit in the first word.
794 */
795 bit = first_bit & (uint)(NBWORD - 1);
796
797 /*
798 * First set any bits in the first word of our range.
799 * If it starts at bit 0 of the word, it will be
800 * set below rather than here. That is what the variable
801 * bit tells us. The variable bits_set tracks the number
802 * of bits that have been set so far. End_bit is the number
803 * of the last bit to be set in this word plus one.
804 */
805 if (bit) {
806 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
807 mask = ((1 << (end_bit - bit)) - 1) << bit;
808 *wordp |= mask;
809 wordp++;
810 bits_set = end_bit - bit;
811 } else {
812 bits_set = 0;
813 }
814
815 /*
816 * Now set bits a whole word at a time that are between
817 * first_bit and last_bit.
818 */
819 while ((bits_to_set - bits_set) >= NBWORD) {
820 *wordp |= 0xffffffff;
821 bits_set += NBWORD;
822 wordp++;
823 }
824
825 /*
826 * Finally, set any bits left to be set in one last partial word.
827 */
828 end_bit = bits_to_set - bits_set;
829 if (end_bit) {
830 mask = (1 << end_bit) - 1;
831 *wordp |= mask;
832 }
833
834 xfs_buf_item_log_debug(bip, first, last);
835 }
836
837
838 /*
839 * Return 1 if the buffer has some data that has been logged (at any
840 * point, not just the current transaction) and 0 if not.
841 */
842 uint
843 xfs_buf_item_dirty(
844 xfs_buf_log_item_t *bip)
845 {
846 return (bip->bli_flags & XFS_BLI_DIRTY);
847 }
848
849 STATIC void
850 xfs_buf_item_free(
851 xfs_buf_log_item_t *bip)
852 {
853 #ifdef XFS_TRANS_DEBUG
854 kmem_free(bip->bli_orig);
855 kmem_free(bip->bli_logged);
856 #endif /* XFS_TRANS_DEBUG */
857
858 kmem_zone_free(xfs_buf_item_zone, bip);
859 }
860
861 /*
862 * This is called when the buf log item is no longer needed. It should
863 * free the buf log item associated with the given buffer and clear
864 * the buffer's pointer to the buf log item. If there are no more
865 * items in the list, clear the b_iodone field of the buffer (see
866 * xfs_buf_attach_iodone() below).
867 */
868 void
869 xfs_buf_item_relse(
870 xfs_buf_t *bp)
871 {
872 xfs_buf_log_item_t *bip;
873
874 trace_xfs_buf_item_relse(bp, _RET_IP_);
875
876 bip = bp->b_fspriv;
877 bp->b_fspriv = bip->bli_item.li_bio_list;
878 if (bp->b_fspriv == NULL)
879 bp->b_iodone = NULL;
880
881 xfs_buf_rele(bp);
882 xfs_buf_item_free(bip);
883 }
884
885
886 /*
887 * Add the given log item with its callback to the list of callbacks
888 * to be called when the buffer's I/O completes. If it is not set
889 * already, set the buffer's b_iodone() routine to be
890 * xfs_buf_iodone_callbacks() and link the log item into the list of
891 * items rooted at b_fsprivate. Items are always added as the second
892 * entry in the list if there is a first, because the buf item code
893 * assumes that the buf log item is first.
894 */
895 void
896 xfs_buf_attach_iodone(
897 xfs_buf_t *bp,
898 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
899 xfs_log_item_t *lip)
900 {
901 xfs_log_item_t *head_lip;
902
903 ASSERT(xfs_buf_islocked(bp));
904
905 lip->li_cb = cb;
906 head_lip = bp->b_fspriv;
907 if (head_lip) {
908 lip->li_bio_list = head_lip->li_bio_list;
909 head_lip->li_bio_list = lip;
910 } else {
911 bp->b_fspriv = lip;
912 }
913
914 ASSERT(bp->b_iodone == NULL ||
915 bp->b_iodone == xfs_buf_iodone_callbacks);
916 bp->b_iodone = xfs_buf_iodone_callbacks;
917 }
918
919 /*
920 * We can have many callbacks on a buffer. Running the callbacks individually
921 * can cause a lot of contention on the AIL lock, so we allow for a single
922 * callback to be able to scan the remaining lip->li_bio_list for other items
923 * of the same type and callback to be processed in the first call.
924 *
925 * As a result, the loop walking the callback list below will also modify the
926 * list. it removes the first item from the list and then runs the callback.
927 * The loop then restarts from the new head of the list. This allows the
928 * callback to scan and modify the list attached to the buffer and we don't
929 * have to care about maintaining a next item pointer.
930 */
931 STATIC void
932 xfs_buf_do_callbacks(
933 struct xfs_buf *bp)
934 {
935 struct xfs_log_item *lip;
936
937 while ((lip = bp->b_fspriv) != NULL) {
938 bp->b_fspriv = lip->li_bio_list;
939 ASSERT(lip->li_cb != NULL);
940 /*
941 * Clear the next pointer so we don't have any
942 * confusion if the item is added to another buf.
943 * Don't touch the log item after calling its
944 * callback, because it could have freed itself.
945 */
946 lip->li_bio_list = NULL;
947 lip->li_cb(bp, lip);
948 }
949 }
950
951 /*
952 * This is the iodone() function for buffers which have had callbacks
953 * attached to them by xfs_buf_attach_iodone(). It should remove each
954 * log item from the buffer's list and call the callback of each in turn.
955 * When done, the buffer's fsprivate field is set to NULL and the buffer
956 * is unlocked with a call to iodone().
957 */
958 void
959 xfs_buf_iodone_callbacks(
960 struct xfs_buf *bp)
961 {
962 struct xfs_log_item *lip = bp->b_fspriv;
963 struct xfs_mount *mp = lip->li_mountp;
964 static ulong lasttime;
965 static xfs_buftarg_t *lasttarg;
966
967 if (likely(!xfs_buf_geterror(bp)))
968 goto do_callbacks;
969
970 /*
971 * If we've already decided to shutdown the filesystem because of
972 * I/O errors, there's no point in giving this a retry.
973 */
974 if (XFS_FORCED_SHUTDOWN(mp)) {
975 xfs_buf_stale(bp);
976 XFS_BUF_DONE(bp);
977 trace_xfs_buf_item_iodone(bp, _RET_IP_);
978 goto do_callbacks;
979 }
980
981 if (bp->b_target != lasttarg ||
982 time_after(jiffies, (lasttime + 5*HZ))) {
983 lasttime = jiffies;
984 xfs_buf_ioerror_alert(bp, __func__);
985 }
986 lasttarg = bp->b_target;
987
988 /*
989 * If the write was asynchronous then no one will be looking for the
990 * error. Clear the error state and write the buffer out again.
991 *
992 * During sync or umount we'll write all pending buffers again
993 * synchronous, which will catch these errors if they keep hanging
994 * around.
995 */
996 if (XFS_BUF_ISASYNC(bp)) {
997 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
998
999 if (!XFS_BUF_ISSTALE(bp)) {
1000 xfs_buf_delwri_queue(bp);
1001 XFS_BUF_DONE(bp);
1002 }
1003 ASSERT(bp->b_iodone != NULL);
1004 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1005 xfs_buf_relse(bp);
1006 return;
1007 }
1008
1009 /*
1010 * If the write of the buffer was synchronous, we want to make
1011 * sure to return the error to the caller of xfs_bwrite().
1012 */
1013 xfs_buf_stale(bp);
1014 XFS_BUF_DONE(bp);
1015
1016 trace_xfs_buf_error_relse(bp, _RET_IP_);
1017
1018 do_callbacks:
1019 xfs_buf_do_callbacks(bp);
1020 bp->b_fspriv = NULL;
1021 bp->b_iodone = NULL;
1022 xfs_buf_ioend(bp, 0);
1023 }
1024
1025 /*
1026 * This is the iodone() function for buffers which have been
1027 * logged. It is called when they are eventually flushed out.
1028 * It should remove the buf item from the AIL, and free the buf item.
1029 * It is called by xfs_buf_iodone_callbacks() above which will take
1030 * care of cleaning up the buffer itself.
1031 */
1032 void
1033 xfs_buf_iodone(
1034 struct xfs_buf *bp,
1035 struct xfs_log_item *lip)
1036 {
1037 struct xfs_ail *ailp = lip->li_ailp;
1038
1039 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1040
1041 xfs_buf_rele(bp);
1042
1043 /*
1044 * If we are forcibly shutting down, this may well be
1045 * off the AIL already. That's because we simulate the
1046 * log-committed callbacks to unpin these buffers. Or we may never
1047 * have put this item on AIL because of the transaction was
1048 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1049 *
1050 * Either way, AIL is useless if we're forcing a shutdown.
1051 */
1052 spin_lock(&ailp->xa_lock);
1053 xfs_trans_ail_delete(ailp, lip);
1054 xfs_buf_item_free(BUF_ITEM(lip));
1055 }