]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_buf_item.c
Merge tag 'powerpc-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf_item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24
25
26 kmem_zone_t *xfs_buf_item_zone;
27
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
35 xfs_buf_log_check_iovec(
36 struct xfs_log_iovec *iovec)
37 {
38 struct xfs_buf_log_format *blfp = iovec->i_addr;
39 char *bmp_end;
40 char *item_end;
41
42 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 return false;
44
45 item_end = (char *)iovec->i_addr + iovec->i_len;
46 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 return bmp_end <= item_end;
48 }
49
50 static inline int
51 xfs_buf_log_format_size(
52 struct xfs_buf_log_format *blfp)
53 {
54 return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57
58 /*
59 * This returns the number of log iovecs needed to log the
60 * given buf log item.
61 *
62 * It calculates this as 1 iovec for the buf log format structure
63 * and 1 for each stretch of non-contiguous chunks to be logged.
64 * Contiguous chunks are logged in a single iovec.
65 *
66 * If the XFS_BLI_STALE flag has been set, then log nothing.
67 */
68 STATIC void
69 xfs_buf_item_size_segment(
70 struct xfs_buf_log_item *bip,
71 struct xfs_buf_log_format *blfp,
72 int *nvecs,
73 int *nbytes)
74 {
75 struct xfs_buf *bp = bip->bli_buf;
76 int next_bit;
77 int last_bit;
78
79 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
80 if (last_bit == -1)
81 return;
82
83 /*
84 * initial count for a dirty buffer is 2 vectors - the format structure
85 * and the first dirty region.
86 */
87 *nvecs += 2;
88 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
89
90 while (last_bit != -1) {
91 /*
92 * This takes the bit number to start looking from and
93 * returns the next set bit from there. It returns -1
94 * if there are no more bits set or the start bit is
95 * beyond the end of the bitmap.
96 */
97 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
98 last_bit + 1);
99 /*
100 * If we run out of bits, leave the loop,
101 * else if we find a new set of bits bump the number of vecs,
102 * else keep scanning the current set of bits.
103 */
104 if (next_bit == -1) {
105 break;
106 } else if (next_bit != last_bit + 1) {
107 last_bit = next_bit;
108 (*nvecs)++;
109 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
110 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
111 XFS_BLF_CHUNK)) {
112 last_bit = next_bit;
113 (*nvecs)++;
114 } else {
115 last_bit++;
116 }
117 *nbytes += XFS_BLF_CHUNK;
118 }
119 }
120
121 /*
122 * This returns the number of log iovecs needed to log the given buf log item.
123 *
124 * It calculates this as 1 iovec for the buf log format structure and 1 for each
125 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
126 * in a single iovec.
127 *
128 * Discontiguous buffers need a format structure per region that is being
129 * logged. This makes the changes in the buffer appear to log recovery as though
130 * they came from separate buffers, just like would occur if multiple buffers
131 * were used instead of a single discontiguous buffer. This enables
132 * discontiguous buffers to be in-memory constructs, completely transparent to
133 * what ends up on disk.
134 *
135 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
136 * format structures.
137 */
138 STATIC void
139 xfs_buf_item_size(
140 struct xfs_log_item *lip,
141 int *nvecs,
142 int *nbytes)
143 {
144 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
145 int i;
146
147 ASSERT(atomic_read(&bip->bli_refcount) > 0);
148 if (bip->bli_flags & XFS_BLI_STALE) {
149 /*
150 * The buffer is stale, so all we need to log
151 * is the buf log format structure with the
152 * cancel flag in it.
153 */
154 trace_xfs_buf_item_size_stale(bip);
155 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
156 *nvecs += bip->bli_format_count;
157 for (i = 0; i < bip->bli_format_count; i++) {
158 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
159 }
160 return;
161 }
162
163 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
164
165 if (bip->bli_flags & XFS_BLI_ORDERED) {
166 /*
167 * The buffer has been logged just to order it.
168 * It is not being included in the transaction
169 * commit, so no vectors are used at all.
170 */
171 trace_xfs_buf_item_size_ordered(bip);
172 *nvecs = XFS_LOG_VEC_ORDERED;
173 return;
174 }
175
176 /*
177 * the vector count is based on the number of buffer vectors we have
178 * dirty bits in. This will only be greater than one when we have a
179 * compound buffer with more than one segment dirty. Hence for compound
180 * buffers we need to track which segment the dirty bits correspond to,
181 * and when we move from one segment to the next increment the vector
182 * count for the extra buf log format structure that will need to be
183 * written.
184 */
185 for (i = 0; i < bip->bli_format_count; i++) {
186 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
187 nvecs, nbytes);
188 }
189 trace_xfs_buf_item_size(bip);
190 }
191
192 static inline void
193 xfs_buf_item_copy_iovec(
194 struct xfs_log_vec *lv,
195 struct xfs_log_iovec **vecp,
196 struct xfs_buf *bp,
197 uint offset,
198 int first_bit,
199 uint nbits)
200 {
201 offset += first_bit * XFS_BLF_CHUNK;
202 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
203 xfs_buf_offset(bp, offset),
204 nbits * XFS_BLF_CHUNK);
205 }
206
207 static inline bool
208 xfs_buf_item_straddle(
209 struct xfs_buf *bp,
210 uint offset,
211 int next_bit,
212 int last_bit)
213 {
214 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
215 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
216 XFS_BLF_CHUNK);
217 }
218
219 static void
220 xfs_buf_item_format_segment(
221 struct xfs_buf_log_item *bip,
222 struct xfs_log_vec *lv,
223 struct xfs_log_iovec **vecp,
224 uint offset,
225 struct xfs_buf_log_format *blfp)
226 {
227 struct xfs_buf *bp = bip->bli_buf;
228 uint base_size;
229 int first_bit;
230 int last_bit;
231 int next_bit;
232 uint nbits;
233
234 /* copy the flags across from the base format item */
235 blfp->blf_flags = bip->__bli_format.blf_flags;
236
237 /*
238 * Base size is the actual size of the ondisk structure - it reflects
239 * the actual size of the dirty bitmap rather than the size of the in
240 * memory structure.
241 */
242 base_size = xfs_buf_log_format_size(blfp);
243
244 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
245 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
246 /*
247 * If the map is not be dirty in the transaction, mark
248 * the size as zero and do not advance the vector pointer.
249 */
250 return;
251 }
252
253 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
254 blfp->blf_size = 1;
255
256 if (bip->bli_flags & XFS_BLI_STALE) {
257 /*
258 * The buffer is stale, so all we need to log
259 * is the buf log format structure with the
260 * cancel flag in it.
261 */
262 trace_xfs_buf_item_format_stale(bip);
263 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
264 return;
265 }
266
267
268 /*
269 * Fill in an iovec for each set of contiguous chunks.
270 */
271 last_bit = first_bit;
272 nbits = 1;
273 for (;;) {
274 /*
275 * This takes the bit number to start looking from and
276 * returns the next set bit from there. It returns -1
277 * if there are no more bits set or the start bit is
278 * beyond the end of the bitmap.
279 */
280 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
281 (uint)last_bit + 1);
282 /*
283 * If we run out of bits fill in the last iovec and get out of
284 * the loop. Else if we start a new set of bits then fill in
285 * the iovec for the series we were looking at and start
286 * counting the bits in the new one. Else we're still in the
287 * same set of bits so just keep counting and scanning.
288 */
289 if (next_bit == -1) {
290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 first_bit, nbits);
292 blfp->blf_size++;
293 break;
294 } else if (next_bit != last_bit + 1 ||
295 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
296 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
297 first_bit, nbits);
298 blfp->blf_size++;
299 first_bit = next_bit;
300 last_bit = next_bit;
301 nbits = 1;
302 } else {
303 last_bit++;
304 nbits++;
305 }
306 }
307 }
308
309 /*
310 * This is called to fill in the vector of log iovecs for the
311 * given log buf item. It fills the first entry with a buf log
312 * format structure, and the rest point to contiguous chunks
313 * within the buffer.
314 */
315 STATIC void
316 xfs_buf_item_format(
317 struct xfs_log_item *lip,
318 struct xfs_log_vec *lv)
319 {
320 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
321 struct xfs_buf *bp = bip->bli_buf;
322 struct xfs_log_iovec *vecp = NULL;
323 uint offset = 0;
324 int i;
325
326 ASSERT(atomic_read(&bip->bli_refcount) > 0);
327 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
328 (bip->bli_flags & XFS_BLI_STALE));
329 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
330 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
331 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
332 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
333 (bip->bli_flags & XFS_BLI_STALE));
334
335
336 /*
337 * If it is an inode buffer, transfer the in-memory state to the
338 * format flags and clear the in-memory state.
339 *
340 * For buffer based inode allocation, we do not transfer
341 * this state if the inode buffer allocation has not yet been committed
342 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
343 * correct replay of the inode allocation.
344 *
345 * For icreate item based inode allocation, the buffers aren't written
346 * to the journal during allocation, and hence we should always tag the
347 * buffer as an inode buffer so that the correct unlinked list replay
348 * occurs during recovery.
349 */
350 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
351 if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
352 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
353 xfs_log_item_in_current_chkpt(lip)))
354 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
355 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
356 }
357
358 for (i = 0; i < bip->bli_format_count; i++) {
359 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
360 &bip->bli_formats[i]);
361 offset += BBTOB(bp->b_maps[i].bm_len);
362 }
363
364 /*
365 * Check to make sure everything is consistent.
366 */
367 trace_xfs_buf_item_format(bip);
368 }
369
370 /*
371 * This is called to pin the buffer associated with the buf log item in memory
372 * so it cannot be written out.
373 *
374 * We also always take a reference to the buffer log item here so that the bli
375 * is held while the item is pinned in memory. This means that we can
376 * unconditionally drop the reference count a transaction holds when the
377 * transaction is completed.
378 */
379 STATIC void
380 xfs_buf_item_pin(
381 struct xfs_log_item *lip)
382 {
383 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
384
385 ASSERT(atomic_read(&bip->bli_refcount) > 0);
386 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
387 (bip->bli_flags & XFS_BLI_ORDERED) ||
388 (bip->bli_flags & XFS_BLI_STALE));
389
390 trace_xfs_buf_item_pin(bip);
391
392 atomic_inc(&bip->bli_refcount);
393 atomic_inc(&bip->bli_buf->b_pin_count);
394 }
395
396 /*
397 * This is called to unpin the buffer associated with the buf log
398 * item which was previously pinned with a call to xfs_buf_item_pin().
399 *
400 * Also drop the reference to the buf item for the current transaction.
401 * If the XFS_BLI_STALE flag is set and we are the last reference,
402 * then free up the buf log item and unlock the buffer.
403 *
404 * If the remove flag is set we are called from uncommit in the
405 * forced-shutdown path. If that is true and the reference count on
406 * the log item is going to drop to zero we need to free the item's
407 * descriptor in the transaction.
408 */
409 STATIC void
410 xfs_buf_item_unpin(
411 struct xfs_log_item *lip,
412 int remove)
413 {
414 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
415 xfs_buf_t *bp = bip->bli_buf;
416 int stale = bip->bli_flags & XFS_BLI_STALE;
417 int freed;
418
419 ASSERT(bp->b_log_item == bip);
420 ASSERT(atomic_read(&bip->bli_refcount) > 0);
421
422 trace_xfs_buf_item_unpin(bip);
423
424 freed = atomic_dec_and_test(&bip->bli_refcount);
425
426 if (atomic_dec_and_test(&bp->b_pin_count))
427 wake_up_all(&bp->b_waiters);
428
429 if (freed && stale) {
430 ASSERT(bip->bli_flags & XFS_BLI_STALE);
431 ASSERT(xfs_buf_islocked(bp));
432 ASSERT(bp->b_flags & XBF_STALE);
433 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
434
435 trace_xfs_buf_item_unpin_stale(bip);
436
437 if (remove) {
438 /*
439 * If we are in a transaction context, we have to
440 * remove the log item from the transaction as we are
441 * about to release our reference to the buffer. If we
442 * don't, the unlock that occurs later in
443 * xfs_trans_uncommit() will try to reference the
444 * buffer which we no longer have a hold on.
445 */
446 if (!list_empty(&lip->li_trans))
447 xfs_trans_del_item(lip);
448
449 /*
450 * Since the transaction no longer refers to the buffer,
451 * the buffer should no longer refer to the transaction.
452 */
453 bp->b_transp = NULL;
454 }
455
456 /*
457 * If we get called here because of an IO error, we may or may
458 * not have the item on the AIL. xfs_trans_ail_delete() will
459 * take care of that situation. xfs_trans_ail_delete() drops
460 * the AIL lock.
461 */
462 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
463 xfs_buf_item_done(bp);
464 xfs_buf_inode_iodone(bp);
465 ASSERT(list_empty(&bp->b_li_list));
466 } else {
467 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
468 xfs_buf_item_relse(bp);
469 ASSERT(bp->b_log_item == NULL);
470 }
471 xfs_buf_relse(bp);
472 } else if (freed && remove) {
473 /*
474 * The buffer must be locked and held by the caller to simulate
475 * an async I/O failure.
476 */
477 xfs_buf_lock(bp);
478 xfs_buf_hold(bp);
479 bp->b_flags |= XBF_ASYNC;
480 xfs_buf_ioend_fail(bp);
481 }
482 }
483
484 STATIC uint
485 xfs_buf_item_push(
486 struct xfs_log_item *lip,
487 struct list_head *buffer_list)
488 {
489 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
490 struct xfs_buf *bp = bip->bli_buf;
491 uint rval = XFS_ITEM_SUCCESS;
492
493 if (xfs_buf_ispinned(bp))
494 return XFS_ITEM_PINNED;
495 if (!xfs_buf_trylock(bp)) {
496 /*
497 * If we have just raced with a buffer being pinned and it has
498 * been marked stale, we could end up stalling until someone else
499 * issues a log force to unpin the stale buffer. Check for the
500 * race condition here so xfsaild recognizes the buffer is pinned
501 * and queues a log force to move it along.
502 */
503 if (xfs_buf_ispinned(bp))
504 return XFS_ITEM_PINNED;
505 return XFS_ITEM_LOCKED;
506 }
507
508 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
509
510 trace_xfs_buf_item_push(bip);
511
512 /* has a previous flush failed due to IO errors? */
513 if (bp->b_flags & XBF_WRITE_FAIL) {
514 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
515 "Failing async write on buffer block 0x%llx. Retrying async write.",
516 (long long)bp->b_bn);
517 }
518
519 if (!xfs_buf_delwri_queue(bp, buffer_list))
520 rval = XFS_ITEM_FLUSHING;
521 xfs_buf_unlock(bp);
522 return rval;
523 }
524
525 /*
526 * Drop the buffer log item refcount and take appropriate action. This helper
527 * determines whether the bli must be freed or not, since a decrement to zero
528 * does not necessarily mean the bli is unused.
529 *
530 * Return true if the bli is freed, false otherwise.
531 */
532 bool
533 xfs_buf_item_put(
534 struct xfs_buf_log_item *bip)
535 {
536 struct xfs_log_item *lip = &bip->bli_item;
537 bool aborted;
538 bool dirty;
539
540 /* drop the bli ref and return if it wasn't the last one */
541 if (!atomic_dec_and_test(&bip->bli_refcount))
542 return false;
543
544 /*
545 * We dropped the last ref and must free the item if clean or aborted.
546 * If the bli is dirty and non-aborted, the buffer was clean in the
547 * transaction but still awaiting writeback from previous changes. In
548 * that case, the bli is freed on buffer writeback completion.
549 */
550 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
551 XFS_FORCED_SHUTDOWN(lip->li_mountp);
552 dirty = bip->bli_flags & XFS_BLI_DIRTY;
553 if (dirty && !aborted)
554 return false;
555
556 /*
557 * The bli is aborted or clean. An aborted item may be in the AIL
558 * regardless of dirty state. For example, consider an aborted
559 * transaction that invalidated a dirty bli and cleared the dirty
560 * state.
561 */
562 if (aborted)
563 xfs_trans_ail_delete(lip, 0);
564 xfs_buf_item_relse(bip->bli_buf);
565 return true;
566 }
567
568 /*
569 * Release the buffer associated with the buf log item. If there is no dirty
570 * logged data associated with the buffer recorded in the buf log item, then
571 * free the buf log item and remove the reference to it in the buffer.
572 *
573 * This call ignores the recursion count. It is only called when the buffer
574 * should REALLY be unlocked, regardless of the recursion count.
575 *
576 * We unconditionally drop the transaction's reference to the log item. If the
577 * item was logged, then another reference was taken when it was pinned, so we
578 * can safely drop the transaction reference now. This also allows us to avoid
579 * potential races with the unpin code freeing the bli by not referencing the
580 * bli after we've dropped the reference count.
581 *
582 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
583 * if necessary but do not unlock the buffer. This is for support of
584 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
585 * free the item.
586 */
587 STATIC void
588 xfs_buf_item_release(
589 struct xfs_log_item *lip)
590 {
591 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
592 struct xfs_buf *bp = bip->bli_buf;
593 bool released;
594 bool hold = bip->bli_flags & XFS_BLI_HOLD;
595 bool stale = bip->bli_flags & XFS_BLI_STALE;
596 #if defined(DEBUG) || defined(XFS_WARN)
597 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
598 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
599 bool aborted = test_bit(XFS_LI_ABORTED,
600 &lip->li_flags);
601 #endif
602
603 trace_xfs_buf_item_release(bip);
604
605 /*
606 * The bli dirty state should match whether the blf has logged segments
607 * except for ordered buffers, where only the bli should be dirty.
608 */
609 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
610 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
611 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
612
613 /*
614 * Clear the buffer's association with this transaction and
615 * per-transaction state from the bli, which has been copied above.
616 */
617 bp->b_transp = NULL;
618 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
619
620 /*
621 * Unref the item and unlock the buffer unless held or stale. Stale
622 * buffers remain locked until final unpin unless the bli is freed by
623 * the unref call. The latter implies shutdown because buffer
624 * invalidation dirties the bli and transaction.
625 */
626 released = xfs_buf_item_put(bip);
627 if (hold || (stale && !released))
628 return;
629 ASSERT(!stale || aborted);
630 xfs_buf_relse(bp);
631 }
632
633 STATIC void
634 xfs_buf_item_committing(
635 struct xfs_log_item *lip,
636 xfs_lsn_t commit_lsn)
637 {
638 return xfs_buf_item_release(lip);
639 }
640
641 /*
642 * This is called to find out where the oldest active copy of the
643 * buf log item in the on disk log resides now that the last log
644 * write of it completed at the given lsn.
645 * We always re-log all the dirty data in a buffer, so usually the
646 * latest copy in the on disk log is the only one that matters. For
647 * those cases we simply return the given lsn.
648 *
649 * The one exception to this is for buffers full of newly allocated
650 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
651 * flag set, indicating that only the di_next_unlinked fields from the
652 * inodes in the buffers will be replayed during recovery. If the
653 * original newly allocated inode images have not yet been flushed
654 * when the buffer is so relogged, then we need to make sure that we
655 * keep the old images in the 'active' portion of the log. We do this
656 * by returning the original lsn of that transaction here rather than
657 * the current one.
658 */
659 STATIC xfs_lsn_t
660 xfs_buf_item_committed(
661 struct xfs_log_item *lip,
662 xfs_lsn_t lsn)
663 {
664 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
665
666 trace_xfs_buf_item_committed(bip);
667
668 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
669 return lip->li_lsn;
670 return lsn;
671 }
672
673 static const struct xfs_item_ops xfs_buf_item_ops = {
674 .iop_size = xfs_buf_item_size,
675 .iop_format = xfs_buf_item_format,
676 .iop_pin = xfs_buf_item_pin,
677 .iop_unpin = xfs_buf_item_unpin,
678 .iop_release = xfs_buf_item_release,
679 .iop_committing = xfs_buf_item_committing,
680 .iop_committed = xfs_buf_item_committed,
681 .iop_push = xfs_buf_item_push,
682 };
683
684 STATIC void
685 xfs_buf_item_get_format(
686 struct xfs_buf_log_item *bip,
687 int count)
688 {
689 ASSERT(bip->bli_formats == NULL);
690 bip->bli_format_count = count;
691
692 if (count == 1) {
693 bip->bli_formats = &bip->__bli_format;
694 return;
695 }
696
697 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
698 0);
699 }
700
701 STATIC void
702 xfs_buf_item_free_format(
703 struct xfs_buf_log_item *bip)
704 {
705 if (bip->bli_formats != &bip->__bli_format) {
706 kmem_free(bip->bli_formats);
707 bip->bli_formats = NULL;
708 }
709 }
710
711 /*
712 * Allocate a new buf log item to go with the given buffer.
713 * Set the buffer's b_log_item field to point to the new
714 * buf log item.
715 */
716 int
717 xfs_buf_item_init(
718 struct xfs_buf *bp,
719 struct xfs_mount *mp)
720 {
721 struct xfs_buf_log_item *bip = bp->b_log_item;
722 int chunks;
723 int map_size;
724 int i;
725
726 /*
727 * Check to see if there is already a buf log item for
728 * this buffer. If we do already have one, there is
729 * nothing to do here so return.
730 */
731 ASSERT(bp->b_mount == mp);
732 if (bip) {
733 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
734 ASSERT(!bp->b_transp);
735 ASSERT(bip->bli_buf == bp);
736 return 0;
737 }
738
739 bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
740 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
741 bip->bli_buf = bp;
742
743 /*
744 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
745 * can be divided into. Make sure not to truncate any pieces.
746 * map_size is the size of the bitmap needed to describe the
747 * chunks of the buffer.
748 *
749 * Discontiguous buffer support follows the layout of the underlying
750 * buffer. This makes the implementation as simple as possible.
751 */
752 xfs_buf_item_get_format(bip, bp->b_map_count);
753
754 for (i = 0; i < bip->bli_format_count; i++) {
755 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
756 XFS_BLF_CHUNK);
757 map_size = DIV_ROUND_UP(chunks, NBWORD);
758
759 if (map_size > XFS_BLF_DATAMAP_SIZE) {
760 kmem_cache_free(xfs_buf_item_zone, bip);
761 xfs_err(mp,
762 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
763 map_size,
764 BBTOB(bp->b_maps[i].bm_len));
765 return -EFSCORRUPTED;
766 }
767
768 bip->bli_formats[i].blf_type = XFS_LI_BUF;
769 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
770 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
771 bip->bli_formats[i].blf_map_size = map_size;
772 }
773
774 bp->b_log_item = bip;
775 xfs_buf_hold(bp);
776 return 0;
777 }
778
779
780 /*
781 * Mark bytes first through last inclusive as dirty in the buf
782 * item's bitmap.
783 */
784 static void
785 xfs_buf_item_log_segment(
786 uint first,
787 uint last,
788 uint *map)
789 {
790 uint first_bit;
791 uint last_bit;
792 uint bits_to_set;
793 uint bits_set;
794 uint word_num;
795 uint *wordp;
796 uint bit;
797 uint end_bit;
798 uint mask;
799
800 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
801 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
802
803 /*
804 * Convert byte offsets to bit numbers.
805 */
806 first_bit = first >> XFS_BLF_SHIFT;
807 last_bit = last >> XFS_BLF_SHIFT;
808
809 /*
810 * Calculate the total number of bits to be set.
811 */
812 bits_to_set = last_bit - first_bit + 1;
813
814 /*
815 * Get a pointer to the first word in the bitmap
816 * to set a bit in.
817 */
818 word_num = first_bit >> BIT_TO_WORD_SHIFT;
819 wordp = &map[word_num];
820
821 /*
822 * Calculate the starting bit in the first word.
823 */
824 bit = first_bit & (uint)(NBWORD - 1);
825
826 /*
827 * First set any bits in the first word of our range.
828 * If it starts at bit 0 of the word, it will be
829 * set below rather than here. That is what the variable
830 * bit tells us. The variable bits_set tracks the number
831 * of bits that have been set so far. End_bit is the number
832 * of the last bit to be set in this word plus one.
833 */
834 if (bit) {
835 end_bit = min(bit + bits_to_set, (uint)NBWORD);
836 mask = ((1U << (end_bit - bit)) - 1) << bit;
837 *wordp |= mask;
838 wordp++;
839 bits_set = end_bit - bit;
840 } else {
841 bits_set = 0;
842 }
843
844 /*
845 * Now set bits a whole word at a time that are between
846 * first_bit and last_bit.
847 */
848 while ((bits_to_set - bits_set) >= NBWORD) {
849 *wordp = 0xffffffff;
850 bits_set += NBWORD;
851 wordp++;
852 }
853
854 /*
855 * Finally, set any bits left to be set in one last partial word.
856 */
857 end_bit = bits_to_set - bits_set;
858 if (end_bit) {
859 mask = (1U << end_bit) - 1;
860 *wordp |= mask;
861 }
862 }
863
864 /*
865 * Mark bytes first through last inclusive as dirty in the buf
866 * item's bitmap.
867 */
868 void
869 xfs_buf_item_log(
870 struct xfs_buf_log_item *bip,
871 uint first,
872 uint last)
873 {
874 int i;
875 uint start;
876 uint end;
877 struct xfs_buf *bp = bip->bli_buf;
878
879 /*
880 * walk each buffer segment and mark them dirty appropriately.
881 */
882 start = 0;
883 for (i = 0; i < bip->bli_format_count; i++) {
884 if (start > last)
885 break;
886 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
887
888 /* skip to the map that includes the first byte to log */
889 if (first > end) {
890 start += BBTOB(bp->b_maps[i].bm_len);
891 continue;
892 }
893
894 /*
895 * Trim the range to this segment and mark it in the bitmap.
896 * Note that we must convert buffer offsets to segment relative
897 * offsets (e.g., the first byte of each segment is byte 0 of
898 * that segment).
899 */
900 if (first < start)
901 first = start;
902 if (end > last)
903 end = last;
904 xfs_buf_item_log_segment(first - start, end - start,
905 &bip->bli_formats[i].blf_data_map[0]);
906
907 start += BBTOB(bp->b_maps[i].bm_len);
908 }
909 }
910
911
912 /*
913 * Return true if the buffer has any ranges logged/dirtied by a transaction,
914 * false otherwise.
915 */
916 bool
917 xfs_buf_item_dirty_format(
918 struct xfs_buf_log_item *bip)
919 {
920 int i;
921
922 for (i = 0; i < bip->bli_format_count; i++) {
923 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
924 bip->bli_formats[i].blf_map_size))
925 return true;
926 }
927
928 return false;
929 }
930
931 STATIC void
932 xfs_buf_item_free(
933 struct xfs_buf_log_item *bip)
934 {
935 xfs_buf_item_free_format(bip);
936 kmem_free(bip->bli_item.li_lv_shadow);
937 kmem_cache_free(xfs_buf_item_zone, bip);
938 }
939
940 /*
941 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
942 */
943 void
944 xfs_buf_item_relse(
945 xfs_buf_t *bp)
946 {
947 struct xfs_buf_log_item *bip = bp->b_log_item;
948
949 trace_xfs_buf_item_relse(bp, _RET_IP_);
950 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
951
952 bp->b_log_item = NULL;
953 xfs_buf_rele(bp);
954 xfs_buf_item_free(bip);
955 }
956
957 void
958 xfs_buf_item_done(
959 struct xfs_buf *bp)
960 {
961 /*
962 * If we are forcibly shutting down, this may well be off the AIL
963 * already. That's because we simulate the log-committed callbacks to
964 * unpin these buffers. Or we may never have put this item on AIL
965 * because of the transaction was aborted forcibly.
966 * xfs_trans_ail_delete() takes care of these.
967 *
968 * Either way, AIL is useless if we're forcing a shutdown.
969 *
970 * Note that log recovery writes might have buffer items that are not on
971 * the AIL even when the file system is not shut down.
972 */
973 xfs_trans_ail_delete(&bp->b_log_item->bli_item,
974 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
975 SHUTDOWN_CORRUPT_INCORE);
976 xfs_buf_item_relse(bp);
977 }