]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/xfs/xfs_da_btree.c
Merge branch 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux...
[mirror_ubuntu-eoan-kernel.git] / fs / xfs / xfs_da_btree.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dir2_format.h"
31 #include "xfs_dir2.h"
32 #include "xfs_dir2_priv.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_bmap.h"
38 #include "xfs_attr.h"
39 #include "xfs_attr_leaf.h"
40 #include "xfs_error.h"
41 #include "xfs_trace.h"
42 #include "xfs_cksum.h"
43 #include "xfs_buf_item.h"
44
45 /*
46 * xfs_da_btree.c
47 *
48 * Routines to implement directories as Btrees of hashed names.
49 */
50
51 /*========================================================================
52 * Function prototypes for the kernel.
53 *========================================================================*/
54
55 /*
56 * Routines used for growing the Btree.
57 */
58 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
59 xfs_da_state_blk_t *existing_root,
60 xfs_da_state_blk_t *new_child);
61 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
62 xfs_da_state_blk_t *existing_blk,
63 xfs_da_state_blk_t *split_blk,
64 xfs_da_state_blk_t *blk_to_add,
65 int treelevel,
66 int *result);
67 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
68 xfs_da_state_blk_t *node_blk_1,
69 xfs_da_state_blk_t *node_blk_2);
70 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
71 xfs_da_state_blk_t *old_node_blk,
72 xfs_da_state_blk_t *new_node_blk);
73
74 /*
75 * Routines used for shrinking the Btree.
76 */
77 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
78 xfs_da_state_blk_t *root_blk);
79 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
80 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
81 xfs_da_state_blk_t *drop_blk);
82 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
83 xfs_da_state_blk_t *src_node_blk,
84 xfs_da_state_blk_t *dst_node_blk);
85
86 /*
87 * Utility routines.
88 */
89 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state,
90 xfs_da_state_blk_t *drop_blk,
91 xfs_da_state_blk_t *save_blk);
92
93
94 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */
95
96 /*
97 * Allocate a dir-state structure.
98 * We don't put them on the stack since they're large.
99 */
100 xfs_da_state_t *
101 xfs_da_state_alloc(void)
102 {
103 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
104 }
105
106 /*
107 * Kill the altpath contents of a da-state structure.
108 */
109 STATIC void
110 xfs_da_state_kill_altpath(xfs_da_state_t *state)
111 {
112 int i;
113
114 for (i = 0; i < state->altpath.active; i++)
115 state->altpath.blk[i].bp = NULL;
116 state->altpath.active = 0;
117 }
118
119 /*
120 * Free a da-state structure.
121 */
122 void
123 xfs_da_state_free(xfs_da_state_t *state)
124 {
125 xfs_da_state_kill_altpath(state);
126 #ifdef DEBUG
127 memset((char *)state, 0, sizeof(*state));
128 #endif /* DEBUG */
129 kmem_zone_free(xfs_da_state_zone, state);
130 }
131
132 void
133 xfs_da3_node_hdr_from_disk(
134 struct xfs_da3_icnode_hdr *to,
135 struct xfs_da_intnode *from)
136 {
137 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
138 from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
139
140 if (from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
141 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)from;
142
143 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
144 to->back = be32_to_cpu(hdr3->info.hdr.back);
145 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
146 to->count = be16_to_cpu(hdr3->__count);
147 to->level = be16_to_cpu(hdr3->__level);
148 return;
149 }
150 to->forw = be32_to_cpu(from->hdr.info.forw);
151 to->back = be32_to_cpu(from->hdr.info.back);
152 to->magic = be16_to_cpu(from->hdr.info.magic);
153 to->count = be16_to_cpu(from->hdr.__count);
154 to->level = be16_to_cpu(from->hdr.__level);
155 }
156
157 void
158 xfs_da3_node_hdr_to_disk(
159 struct xfs_da_intnode *to,
160 struct xfs_da3_icnode_hdr *from)
161 {
162 ASSERT(from->magic == XFS_DA_NODE_MAGIC ||
163 from->magic == XFS_DA3_NODE_MAGIC);
164
165 if (from->magic == XFS_DA3_NODE_MAGIC) {
166 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)to;
167
168 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
169 hdr3->info.hdr.back = cpu_to_be32(from->back);
170 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
171 hdr3->__count = cpu_to_be16(from->count);
172 hdr3->__level = cpu_to_be16(from->level);
173 return;
174 }
175 to->hdr.info.forw = cpu_to_be32(from->forw);
176 to->hdr.info.back = cpu_to_be32(from->back);
177 to->hdr.info.magic = cpu_to_be16(from->magic);
178 to->hdr.__count = cpu_to_be16(from->count);
179 to->hdr.__level = cpu_to_be16(from->level);
180 }
181
182 static bool
183 xfs_da3_node_verify(
184 struct xfs_buf *bp)
185 {
186 struct xfs_mount *mp = bp->b_target->bt_mount;
187 struct xfs_da_intnode *hdr = bp->b_addr;
188 struct xfs_da3_icnode_hdr ichdr;
189
190 xfs_da3_node_hdr_from_disk(&ichdr, hdr);
191
192 if (xfs_sb_version_hascrc(&mp->m_sb)) {
193 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
194
195 if (ichdr.magic != XFS_DA3_NODE_MAGIC)
196 return false;
197
198 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
199 return false;
200 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
201 return false;
202 } else {
203 if (ichdr.magic != XFS_DA_NODE_MAGIC)
204 return false;
205 }
206 if (ichdr.level == 0)
207 return false;
208 if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
209 return false;
210 if (ichdr.count == 0)
211 return false;
212
213 /*
214 * we don't know if the node is for and attribute or directory tree,
215 * so only fail if the count is outside both bounds
216 */
217 if (ichdr.count > mp->m_dir_node_ents &&
218 ichdr.count > mp->m_attr_node_ents)
219 return false;
220
221 /* XXX: hash order check? */
222
223 return true;
224 }
225
226 static void
227 xfs_da3_node_write_verify(
228 struct xfs_buf *bp)
229 {
230 struct xfs_mount *mp = bp->b_target->bt_mount;
231 struct xfs_buf_log_item *bip = bp->b_fspriv;
232 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
233
234 if (!xfs_da3_node_verify(bp)) {
235 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
236 xfs_buf_ioerror(bp, EFSCORRUPTED);
237 return;
238 }
239
240 if (!xfs_sb_version_hascrc(&mp->m_sb))
241 return;
242
243 if (bip)
244 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
245
246 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_DA3_NODE_CRC_OFF);
247 }
248
249 /*
250 * leaf/node format detection on trees is sketchy, so a node read can be done on
251 * leaf level blocks when detection identifies the tree as a node format tree
252 * incorrectly. In this case, we need to swap the verifier to match the correct
253 * format of the block being read.
254 */
255 static void
256 xfs_da3_node_read_verify(
257 struct xfs_buf *bp)
258 {
259 struct xfs_mount *mp = bp->b_target->bt_mount;
260 struct xfs_da_blkinfo *info = bp->b_addr;
261
262 switch (be16_to_cpu(info->magic)) {
263 case XFS_DA3_NODE_MAGIC:
264 if (!xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
265 XFS_DA3_NODE_CRC_OFF))
266 break;
267 /* fall through */
268 case XFS_DA_NODE_MAGIC:
269 if (!xfs_da3_node_verify(bp))
270 break;
271 return;
272 case XFS_ATTR_LEAF_MAGIC:
273 case XFS_ATTR3_LEAF_MAGIC:
274 bp->b_ops = &xfs_attr3_leaf_buf_ops;
275 bp->b_ops->verify_read(bp);
276 return;
277 case XFS_DIR2_LEAFN_MAGIC:
278 case XFS_DIR3_LEAFN_MAGIC:
279 bp->b_ops = &xfs_dir3_leafn_buf_ops;
280 bp->b_ops->verify_read(bp);
281 return;
282 default:
283 break;
284 }
285
286 /* corrupt block */
287 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
288 xfs_buf_ioerror(bp, EFSCORRUPTED);
289 }
290
291 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
292 .verify_read = xfs_da3_node_read_verify,
293 .verify_write = xfs_da3_node_write_verify,
294 };
295
296 int
297 xfs_da3_node_read(
298 struct xfs_trans *tp,
299 struct xfs_inode *dp,
300 xfs_dablk_t bno,
301 xfs_daddr_t mappedbno,
302 struct xfs_buf **bpp,
303 int which_fork)
304 {
305 int err;
306
307 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
308 which_fork, &xfs_da3_node_buf_ops);
309 if (!err && tp) {
310 struct xfs_da_blkinfo *info = (*bpp)->b_addr;
311 int type;
312
313 switch (be16_to_cpu(info->magic)) {
314 case XFS_DA_NODE_MAGIC:
315 case XFS_DA3_NODE_MAGIC:
316 type = XFS_BLFT_DA_NODE_BUF;
317 break;
318 case XFS_ATTR_LEAF_MAGIC:
319 case XFS_ATTR3_LEAF_MAGIC:
320 type = XFS_BLFT_ATTR_LEAF_BUF;
321 break;
322 case XFS_DIR2_LEAFN_MAGIC:
323 case XFS_DIR3_LEAFN_MAGIC:
324 type = XFS_BLFT_DIR_LEAFN_BUF;
325 break;
326 default:
327 type = 0;
328 ASSERT(0);
329 break;
330 }
331 xfs_trans_buf_set_type(tp, *bpp, type);
332 }
333 return err;
334 }
335
336 /*========================================================================
337 * Routines used for growing the Btree.
338 *========================================================================*/
339
340 /*
341 * Create the initial contents of an intermediate node.
342 */
343 int
344 xfs_da3_node_create(
345 struct xfs_da_args *args,
346 xfs_dablk_t blkno,
347 int level,
348 struct xfs_buf **bpp,
349 int whichfork)
350 {
351 struct xfs_da_intnode *node;
352 struct xfs_trans *tp = args->trans;
353 struct xfs_mount *mp = tp->t_mountp;
354 struct xfs_da3_icnode_hdr ichdr = {0};
355 struct xfs_buf *bp;
356 int error;
357
358 trace_xfs_da_node_create(args);
359 ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
360
361 error = xfs_da_get_buf(tp, args->dp, blkno, -1, &bp, whichfork);
362 if (error)
363 return(error);
364 bp->b_ops = &xfs_da3_node_buf_ops;
365 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
366 node = bp->b_addr;
367
368 if (xfs_sb_version_hascrc(&mp->m_sb)) {
369 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
370
371 ichdr.magic = XFS_DA3_NODE_MAGIC;
372 hdr3->info.blkno = cpu_to_be64(bp->b_bn);
373 hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
374 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_uuid);
375 } else {
376 ichdr.magic = XFS_DA_NODE_MAGIC;
377 }
378 ichdr.level = level;
379
380 xfs_da3_node_hdr_to_disk(node, &ichdr);
381 xfs_trans_log_buf(tp, bp,
382 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
383
384 *bpp = bp;
385 return(0);
386 }
387
388 /*
389 * Split a leaf node, rebalance, then possibly split
390 * intermediate nodes, rebalance, etc.
391 */
392 int /* error */
393 xfs_da3_split(
394 struct xfs_da_state *state)
395 {
396 struct xfs_da_state_blk *oldblk;
397 struct xfs_da_state_blk *newblk;
398 struct xfs_da_state_blk *addblk;
399 struct xfs_da_intnode *node;
400 struct xfs_buf *bp;
401 int max;
402 int action = 0;
403 int error;
404 int i;
405
406 trace_xfs_da_split(state->args);
407
408 /*
409 * Walk back up the tree splitting/inserting/adjusting as necessary.
410 * If we need to insert and there isn't room, split the node, then
411 * decide which fragment to insert the new block from below into.
412 * Note that we may split the root this way, but we need more fixup.
413 */
414 max = state->path.active - 1;
415 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
416 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
417 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
418
419 addblk = &state->path.blk[max]; /* initial dummy value */
420 for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
421 oldblk = &state->path.blk[i];
422 newblk = &state->altpath.blk[i];
423
424 /*
425 * If a leaf node then
426 * Allocate a new leaf node, then rebalance across them.
427 * else if an intermediate node then
428 * We split on the last layer, must we split the node?
429 */
430 switch (oldblk->magic) {
431 case XFS_ATTR_LEAF_MAGIC:
432 error = xfs_attr3_leaf_split(state, oldblk, newblk);
433 if ((error != 0) && (error != ENOSPC)) {
434 return(error); /* GROT: attr is inconsistent */
435 }
436 if (!error) {
437 addblk = newblk;
438 break;
439 }
440 /*
441 * Entry wouldn't fit, split the leaf again.
442 */
443 state->extravalid = 1;
444 if (state->inleaf) {
445 state->extraafter = 0; /* before newblk */
446 trace_xfs_attr_leaf_split_before(state->args);
447 error = xfs_attr3_leaf_split(state, oldblk,
448 &state->extrablk);
449 } else {
450 state->extraafter = 1; /* after newblk */
451 trace_xfs_attr_leaf_split_after(state->args);
452 error = xfs_attr3_leaf_split(state, newblk,
453 &state->extrablk);
454 }
455 if (error)
456 return(error); /* GROT: attr inconsistent */
457 addblk = newblk;
458 break;
459 case XFS_DIR2_LEAFN_MAGIC:
460 error = xfs_dir2_leafn_split(state, oldblk, newblk);
461 if (error)
462 return error;
463 addblk = newblk;
464 break;
465 case XFS_DA_NODE_MAGIC:
466 error = xfs_da3_node_split(state, oldblk, newblk, addblk,
467 max - i, &action);
468 addblk->bp = NULL;
469 if (error)
470 return(error); /* GROT: dir is inconsistent */
471 /*
472 * Record the newly split block for the next time thru?
473 */
474 if (action)
475 addblk = newblk;
476 else
477 addblk = NULL;
478 break;
479 }
480
481 /*
482 * Update the btree to show the new hashval for this child.
483 */
484 xfs_da3_fixhashpath(state, &state->path);
485 }
486 if (!addblk)
487 return(0);
488
489 /*
490 * Split the root node.
491 */
492 ASSERT(state->path.active == 0);
493 oldblk = &state->path.blk[0];
494 error = xfs_da3_root_split(state, oldblk, addblk);
495 if (error) {
496 addblk->bp = NULL;
497 return(error); /* GROT: dir is inconsistent */
498 }
499
500 /*
501 * Update pointers to the node which used to be block 0 and
502 * just got bumped because of the addition of a new root node.
503 * There might be three blocks involved if a double split occurred,
504 * and the original block 0 could be at any position in the list.
505 *
506 * Note: the magic numbers and sibling pointers are in the same
507 * physical place for both v2 and v3 headers (by design). Hence it
508 * doesn't matter which version of the xfs_da_intnode structure we use
509 * here as the result will be the same using either structure.
510 */
511 node = oldblk->bp->b_addr;
512 if (node->hdr.info.forw) {
513 if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) {
514 bp = addblk->bp;
515 } else {
516 ASSERT(state->extravalid);
517 bp = state->extrablk.bp;
518 }
519 node = bp->b_addr;
520 node->hdr.info.back = cpu_to_be32(oldblk->blkno);
521 xfs_trans_log_buf(state->args->trans, bp,
522 XFS_DA_LOGRANGE(node, &node->hdr.info,
523 sizeof(node->hdr.info)));
524 }
525 node = oldblk->bp->b_addr;
526 if (node->hdr.info.back) {
527 if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) {
528 bp = addblk->bp;
529 } else {
530 ASSERT(state->extravalid);
531 bp = state->extrablk.bp;
532 }
533 node = bp->b_addr;
534 node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
535 xfs_trans_log_buf(state->args->trans, bp,
536 XFS_DA_LOGRANGE(node, &node->hdr.info,
537 sizeof(node->hdr.info)));
538 }
539 addblk->bp = NULL;
540 return(0);
541 }
542
543 /*
544 * Split the root. We have to create a new root and point to the two
545 * parts (the split old root) that we just created. Copy block zero to
546 * the EOF, extending the inode in process.
547 */
548 STATIC int /* error */
549 xfs_da3_root_split(
550 struct xfs_da_state *state,
551 struct xfs_da_state_blk *blk1,
552 struct xfs_da_state_blk *blk2)
553 {
554 struct xfs_da_intnode *node;
555 struct xfs_da_intnode *oldroot;
556 struct xfs_da_node_entry *btree;
557 struct xfs_da3_icnode_hdr nodehdr;
558 struct xfs_da_args *args;
559 struct xfs_buf *bp;
560 struct xfs_inode *dp;
561 struct xfs_trans *tp;
562 struct xfs_mount *mp;
563 struct xfs_dir2_leaf *leaf;
564 xfs_dablk_t blkno;
565 int level;
566 int error;
567 int size;
568
569 trace_xfs_da_root_split(state->args);
570
571 /*
572 * Copy the existing (incorrect) block from the root node position
573 * to a free space somewhere.
574 */
575 args = state->args;
576 error = xfs_da_grow_inode(args, &blkno);
577 if (error)
578 return error;
579
580 dp = args->dp;
581 tp = args->trans;
582 mp = state->mp;
583 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
584 if (error)
585 return error;
586 node = bp->b_addr;
587 oldroot = blk1->bp->b_addr;
588 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
589 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
590 struct xfs_da3_icnode_hdr nodehdr;
591
592 xfs_da3_node_hdr_from_disk(&nodehdr, oldroot);
593 btree = xfs_da3_node_tree_p(oldroot);
594 size = (int)((char *)&btree[nodehdr.count] - (char *)oldroot);
595 level = nodehdr.level;
596
597 /*
598 * we are about to copy oldroot to bp, so set up the type
599 * of bp while we know exactly what it will be.
600 */
601 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
602 } else {
603 struct xfs_dir3_icleaf_hdr leafhdr;
604 struct xfs_dir2_leaf_entry *ents;
605
606 leaf = (xfs_dir2_leaf_t *)oldroot;
607 xfs_dir3_leaf_hdr_from_disk(&leafhdr, leaf);
608 ents = xfs_dir3_leaf_ents_p(leaf);
609
610 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
611 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
612 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
613 level = 0;
614
615 /*
616 * we are about to copy oldroot to bp, so set up the type
617 * of bp while we know exactly what it will be.
618 */
619 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
620 }
621
622 /*
623 * we can copy most of the information in the node from one block to
624 * another, but for CRC enabled headers we have to make sure that the
625 * block specific identifiers are kept intact. We update the buffer
626 * directly for this.
627 */
628 memcpy(node, oldroot, size);
629 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
630 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
631 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
632
633 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
634 }
635 xfs_trans_log_buf(tp, bp, 0, size - 1);
636
637 bp->b_ops = blk1->bp->b_ops;
638 xfs_trans_buf_copy_type(bp, blk1->bp);
639 blk1->bp = bp;
640 blk1->blkno = blkno;
641
642 /*
643 * Set up the new root node.
644 */
645 error = xfs_da3_node_create(args,
646 (args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0,
647 level + 1, &bp, args->whichfork);
648 if (error)
649 return error;
650
651 node = bp->b_addr;
652 xfs_da3_node_hdr_from_disk(&nodehdr, node);
653 btree = xfs_da3_node_tree_p(node);
654 btree[0].hashval = cpu_to_be32(blk1->hashval);
655 btree[0].before = cpu_to_be32(blk1->blkno);
656 btree[1].hashval = cpu_to_be32(blk2->hashval);
657 btree[1].before = cpu_to_be32(blk2->blkno);
658 nodehdr.count = 2;
659 xfs_da3_node_hdr_to_disk(node, &nodehdr);
660
661 #ifdef DEBUG
662 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
663 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
664 ASSERT(blk1->blkno >= mp->m_dirleafblk &&
665 blk1->blkno < mp->m_dirfreeblk);
666 ASSERT(blk2->blkno >= mp->m_dirleafblk &&
667 blk2->blkno < mp->m_dirfreeblk);
668 }
669 #endif
670
671 /* Header is already logged by xfs_da_node_create */
672 xfs_trans_log_buf(tp, bp,
673 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
674
675 return 0;
676 }
677
678 /*
679 * Split the node, rebalance, then add the new entry.
680 */
681 STATIC int /* error */
682 xfs_da3_node_split(
683 struct xfs_da_state *state,
684 struct xfs_da_state_blk *oldblk,
685 struct xfs_da_state_blk *newblk,
686 struct xfs_da_state_blk *addblk,
687 int treelevel,
688 int *result)
689 {
690 struct xfs_da_intnode *node;
691 struct xfs_da3_icnode_hdr nodehdr;
692 xfs_dablk_t blkno;
693 int newcount;
694 int error;
695 int useextra;
696
697 trace_xfs_da_node_split(state->args);
698
699 node = oldblk->bp->b_addr;
700 xfs_da3_node_hdr_from_disk(&nodehdr, node);
701
702 /*
703 * With V2 dirs the extra block is data or freespace.
704 */
705 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
706 newcount = 1 + useextra;
707 /*
708 * Do we have to split the node?
709 */
710 if (nodehdr.count + newcount > state->node_ents) {
711 /*
712 * Allocate a new node, add to the doubly linked chain of
713 * nodes, then move some of our excess entries into it.
714 */
715 error = xfs_da_grow_inode(state->args, &blkno);
716 if (error)
717 return(error); /* GROT: dir is inconsistent */
718
719 error = xfs_da3_node_create(state->args, blkno, treelevel,
720 &newblk->bp, state->args->whichfork);
721 if (error)
722 return(error); /* GROT: dir is inconsistent */
723 newblk->blkno = blkno;
724 newblk->magic = XFS_DA_NODE_MAGIC;
725 xfs_da3_node_rebalance(state, oldblk, newblk);
726 error = xfs_da3_blk_link(state, oldblk, newblk);
727 if (error)
728 return(error);
729 *result = 1;
730 } else {
731 *result = 0;
732 }
733
734 /*
735 * Insert the new entry(s) into the correct block
736 * (updating last hashval in the process).
737 *
738 * xfs_da3_node_add() inserts BEFORE the given index,
739 * and as a result of using node_lookup_int() we always
740 * point to a valid entry (not after one), but a split
741 * operation always results in a new block whose hashvals
742 * FOLLOW the current block.
743 *
744 * If we had double-split op below us, then add the extra block too.
745 */
746 node = oldblk->bp->b_addr;
747 xfs_da3_node_hdr_from_disk(&nodehdr, node);
748 if (oldblk->index <= nodehdr.count) {
749 oldblk->index++;
750 xfs_da3_node_add(state, oldblk, addblk);
751 if (useextra) {
752 if (state->extraafter)
753 oldblk->index++;
754 xfs_da3_node_add(state, oldblk, &state->extrablk);
755 state->extravalid = 0;
756 }
757 } else {
758 newblk->index++;
759 xfs_da3_node_add(state, newblk, addblk);
760 if (useextra) {
761 if (state->extraafter)
762 newblk->index++;
763 xfs_da3_node_add(state, newblk, &state->extrablk);
764 state->extravalid = 0;
765 }
766 }
767
768 return(0);
769 }
770
771 /*
772 * Balance the btree elements between two intermediate nodes,
773 * usually one full and one empty.
774 *
775 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
776 */
777 STATIC void
778 xfs_da3_node_rebalance(
779 struct xfs_da_state *state,
780 struct xfs_da_state_blk *blk1,
781 struct xfs_da_state_blk *blk2)
782 {
783 struct xfs_da_intnode *node1;
784 struct xfs_da_intnode *node2;
785 struct xfs_da_intnode *tmpnode;
786 struct xfs_da_node_entry *btree1;
787 struct xfs_da_node_entry *btree2;
788 struct xfs_da_node_entry *btree_s;
789 struct xfs_da_node_entry *btree_d;
790 struct xfs_da3_icnode_hdr nodehdr1;
791 struct xfs_da3_icnode_hdr nodehdr2;
792 struct xfs_trans *tp;
793 int count;
794 int tmp;
795 int swap = 0;
796
797 trace_xfs_da_node_rebalance(state->args);
798
799 node1 = blk1->bp->b_addr;
800 node2 = blk2->bp->b_addr;
801 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
802 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
803 btree1 = xfs_da3_node_tree_p(node1);
804 btree2 = xfs_da3_node_tree_p(node2);
805
806 /*
807 * Figure out how many entries need to move, and in which direction.
808 * Swap the nodes around if that makes it simpler.
809 */
810 if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
811 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
812 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
813 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
814 tmpnode = node1;
815 node1 = node2;
816 node2 = tmpnode;
817 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
818 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
819 btree1 = xfs_da3_node_tree_p(node1);
820 btree2 = xfs_da3_node_tree_p(node2);
821 swap = 1;
822 }
823
824 count = (nodehdr1.count - nodehdr2.count) / 2;
825 if (count == 0)
826 return;
827 tp = state->args->trans;
828 /*
829 * Two cases: high-to-low and low-to-high.
830 */
831 if (count > 0) {
832 /*
833 * Move elements in node2 up to make a hole.
834 */
835 tmp = nodehdr2.count;
836 if (tmp > 0) {
837 tmp *= (uint)sizeof(xfs_da_node_entry_t);
838 btree_s = &btree2[0];
839 btree_d = &btree2[count];
840 memmove(btree_d, btree_s, tmp);
841 }
842
843 /*
844 * Move the req'd B-tree elements from high in node1 to
845 * low in node2.
846 */
847 nodehdr2.count += count;
848 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
849 btree_s = &btree1[nodehdr1.count - count];
850 btree_d = &btree2[0];
851 memcpy(btree_d, btree_s, tmp);
852 nodehdr1.count -= count;
853 } else {
854 /*
855 * Move the req'd B-tree elements from low in node2 to
856 * high in node1.
857 */
858 count = -count;
859 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
860 btree_s = &btree2[0];
861 btree_d = &btree1[nodehdr1.count];
862 memcpy(btree_d, btree_s, tmp);
863 nodehdr1.count += count;
864
865 xfs_trans_log_buf(tp, blk1->bp,
866 XFS_DA_LOGRANGE(node1, btree_d, tmp));
867
868 /*
869 * Move elements in node2 down to fill the hole.
870 */
871 tmp = nodehdr2.count - count;
872 tmp *= (uint)sizeof(xfs_da_node_entry_t);
873 btree_s = &btree2[count];
874 btree_d = &btree2[0];
875 memmove(btree_d, btree_s, tmp);
876 nodehdr2.count -= count;
877 }
878
879 /*
880 * Log header of node 1 and all current bits of node 2.
881 */
882 xfs_da3_node_hdr_to_disk(node1, &nodehdr1);
883 xfs_trans_log_buf(tp, blk1->bp,
884 XFS_DA_LOGRANGE(node1, &node1->hdr,
885 xfs_da3_node_hdr_size(node1)));
886
887 xfs_da3_node_hdr_to_disk(node2, &nodehdr2);
888 xfs_trans_log_buf(tp, blk2->bp,
889 XFS_DA_LOGRANGE(node2, &node2->hdr,
890 xfs_da3_node_hdr_size(node2) +
891 (sizeof(btree2[0]) * nodehdr2.count)));
892
893 /*
894 * Record the last hashval from each block for upward propagation.
895 * (note: don't use the swapped node pointers)
896 */
897 if (swap) {
898 node1 = blk1->bp->b_addr;
899 node2 = blk2->bp->b_addr;
900 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
901 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
902 btree1 = xfs_da3_node_tree_p(node1);
903 btree2 = xfs_da3_node_tree_p(node2);
904 }
905 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
906 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
907
908 /*
909 * Adjust the expected index for insertion.
910 */
911 if (blk1->index >= nodehdr1.count) {
912 blk2->index = blk1->index - nodehdr1.count;
913 blk1->index = nodehdr1.count + 1; /* make it invalid */
914 }
915 }
916
917 /*
918 * Add a new entry to an intermediate node.
919 */
920 STATIC void
921 xfs_da3_node_add(
922 struct xfs_da_state *state,
923 struct xfs_da_state_blk *oldblk,
924 struct xfs_da_state_blk *newblk)
925 {
926 struct xfs_da_intnode *node;
927 struct xfs_da3_icnode_hdr nodehdr;
928 struct xfs_da_node_entry *btree;
929 int tmp;
930
931 trace_xfs_da_node_add(state->args);
932
933 node = oldblk->bp->b_addr;
934 xfs_da3_node_hdr_from_disk(&nodehdr, node);
935 btree = xfs_da3_node_tree_p(node);
936
937 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
938 ASSERT(newblk->blkno != 0);
939 if (state->args->whichfork == XFS_DATA_FORK)
940 ASSERT(newblk->blkno >= state->mp->m_dirleafblk &&
941 newblk->blkno < state->mp->m_dirfreeblk);
942
943 /*
944 * We may need to make some room before we insert the new node.
945 */
946 tmp = 0;
947 if (oldblk->index < nodehdr.count) {
948 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
949 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
950 }
951 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
952 btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
953 xfs_trans_log_buf(state->args->trans, oldblk->bp,
954 XFS_DA_LOGRANGE(node, &btree[oldblk->index],
955 tmp + sizeof(*btree)));
956
957 nodehdr.count += 1;
958 xfs_da3_node_hdr_to_disk(node, &nodehdr);
959 xfs_trans_log_buf(state->args->trans, oldblk->bp,
960 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
961
962 /*
963 * Copy the last hash value from the oldblk to propagate upwards.
964 */
965 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
966 }
967
968 /*========================================================================
969 * Routines used for shrinking the Btree.
970 *========================================================================*/
971
972 /*
973 * Deallocate an empty leaf node, remove it from its parent,
974 * possibly deallocating that block, etc...
975 */
976 int
977 xfs_da3_join(
978 struct xfs_da_state *state)
979 {
980 struct xfs_da_state_blk *drop_blk;
981 struct xfs_da_state_blk *save_blk;
982 int action = 0;
983 int error;
984
985 trace_xfs_da_join(state->args);
986
987 drop_blk = &state->path.blk[ state->path.active-1 ];
988 save_blk = &state->altpath.blk[ state->path.active-1 ];
989 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
990 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
991 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
992
993 /*
994 * Walk back up the tree joining/deallocating as necessary.
995 * When we stop dropping blocks, break out.
996 */
997 for ( ; state->path.active >= 2; drop_blk--, save_blk--,
998 state->path.active--) {
999 /*
1000 * See if we can combine the block with a neighbor.
1001 * (action == 0) => no options, just leave
1002 * (action == 1) => coalesce, then unlink
1003 * (action == 2) => block empty, unlink it
1004 */
1005 switch (drop_blk->magic) {
1006 case XFS_ATTR_LEAF_MAGIC:
1007 error = xfs_attr3_leaf_toosmall(state, &action);
1008 if (error)
1009 return(error);
1010 if (action == 0)
1011 return(0);
1012 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
1013 break;
1014 case XFS_DIR2_LEAFN_MAGIC:
1015 error = xfs_dir2_leafn_toosmall(state, &action);
1016 if (error)
1017 return error;
1018 if (action == 0)
1019 return 0;
1020 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
1021 break;
1022 case XFS_DA_NODE_MAGIC:
1023 /*
1024 * Remove the offending node, fixup hashvals,
1025 * check for a toosmall neighbor.
1026 */
1027 xfs_da3_node_remove(state, drop_blk);
1028 xfs_da3_fixhashpath(state, &state->path);
1029 error = xfs_da3_node_toosmall(state, &action);
1030 if (error)
1031 return(error);
1032 if (action == 0)
1033 return 0;
1034 xfs_da3_node_unbalance(state, drop_blk, save_blk);
1035 break;
1036 }
1037 xfs_da3_fixhashpath(state, &state->altpath);
1038 error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
1039 xfs_da_state_kill_altpath(state);
1040 if (error)
1041 return(error);
1042 error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1043 drop_blk->bp);
1044 drop_blk->bp = NULL;
1045 if (error)
1046 return(error);
1047 }
1048 /*
1049 * We joined all the way to the top. If it turns out that
1050 * we only have one entry in the root, make the child block
1051 * the new root.
1052 */
1053 xfs_da3_node_remove(state, drop_blk);
1054 xfs_da3_fixhashpath(state, &state->path);
1055 error = xfs_da3_root_join(state, &state->path.blk[0]);
1056 return(error);
1057 }
1058
1059 #ifdef DEBUG
1060 static void
1061 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1062 {
1063 __be16 magic = blkinfo->magic;
1064
1065 if (level == 1) {
1066 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1067 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1068 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1069 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1070 } else {
1071 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1072 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1073 }
1074 ASSERT(!blkinfo->forw);
1075 ASSERT(!blkinfo->back);
1076 }
1077 #else /* !DEBUG */
1078 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1079 #endif /* !DEBUG */
1080
1081 /*
1082 * We have only one entry in the root. Copy the only remaining child of
1083 * the old root to block 0 as the new root node.
1084 */
1085 STATIC int
1086 xfs_da3_root_join(
1087 struct xfs_da_state *state,
1088 struct xfs_da_state_blk *root_blk)
1089 {
1090 struct xfs_da_intnode *oldroot;
1091 struct xfs_da_args *args;
1092 xfs_dablk_t child;
1093 struct xfs_buf *bp;
1094 struct xfs_da3_icnode_hdr oldroothdr;
1095 struct xfs_da_node_entry *btree;
1096 int error;
1097
1098 trace_xfs_da_root_join(state->args);
1099
1100 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1101
1102 args = state->args;
1103 oldroot = root_blk->bp->b_addr;
1104 xfs_da3_node_hdr_from_disk(&oldroothdr, oldroot);
1105 ASSERT(oldroothdr.forw == 0);
1106 ASSERT(oldroothdr.back == 0);
1107
1108 /*
1109 * If the root has more than one child, then don't do anything.
1110 */
1111 if (oldroothdr.count > 1)
1112 return 0;
1113
1114 /*
1115 * Read in the (only) child block, then copy those bytes into
1116 * the root block's buffer and free the original child block.
1117 */
1118 btree = xfs_da3_node_tree_p(oldroot);
1119 child = be32_to_cpu(btree[0].before);
1120 ASSERT(child != 0);
1121 error = xfs_da3_node_read(args->trans, args->dp, child, -1, &bp,
1122 args->whichfork);
1123 if (error)
1124 return error;
1125 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1126
1127 /*
1128 * This could be copying a leaf back into the root block in the case of
1129 * there only being a single leaf block left in the tree. Hence we have
1130 * to update the b_ops pointer as well to match the buffer type change
1131 * that could occur. For dir3 blocks we also need to update the block
1132 * number in the buffer header.
1133 */
1134 memcpy(root_blk->bp->b_addr, bp->b_addr, state->blocksize);
1135 root_blk->bp->b_ops = bp->b_ops;
1136 xfs_trans_buf_copy_type(root_blk->bp, bp);
1137 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1138 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1139 da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1140 }
1141 xfs_trans_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1);
1142 error = xfs_da_shrink_inode(args, child, bp);
1143 return(error);
1144 }
1145
1146 /*
1147 * Check a node block and its neighbors to see if the block should be
1148 * collapsed into one or the other neighbor. Always keep the block
1149 * with the smaller block number.
1150 * If the current block is over 50% full, don't try to join it, return 0.
1151 * If the block is empty, fill in the state structure and return 2.
1152 * If it can be collapsed, fill in the state structure and return 1.
1153 * If nothing can be done, return 0.
1154 */
1155 STATIC int
1156 xfs_da3_node_toosmall(
1157 struct xfs_da_state *state,
1158 int *action)
1159 {
1160 struct xfs_da_intnode *node;
1161 struct xfs_da_state_blk *blk;
1162 struct xfs_da_blkinfo *info;
1163 xfs_dablk_t blkno;
1164 struct xfs_buf *bp;
1165 struct xfs_da3_icnode_hdr nodehdr;
1166 int count;
1167 int forward;
1168 int error;
1169 int retval;
1170 int i;
1171
1172 trace_xfs_da_node_toosmall(state->args);
1173
1174 /*
1175 * Check for the degenerate case of the block being over 50% full.
1176 * If so, it's not worth even looking to see if we might be able
1177 * to coalesce with a sibling.
1178 */
1179 blk = &state->path.blk[ state->path.active-1 ];
1180 info = blk->bp->b_addr;
1181 node = (xfs_da_intnode_t *)info;
1182 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1183 if (nodehdr.count > (state->node_ents >> 1)) {
1184 *action = 0; /* blk over 50%, don't try to join */
1185 return(0); /* blk over 50%, don't try to join */
1186 }
1187
1188 /*
1189 * Check for the degenerate case of the block being empty.
1190 * If the block is empty, we'll simply delete it, no need to
1191 * coalesce it with a sibling block. We choose (arbitrarily)
1192 * to merge with the forward block unless it is NULL.
1193 */
1194 if (nodehdr.count == 0) {
1195 /*
1196 * Make altpath point to the block we want to keep and
1197 * path point to the block we want to drop (this one).
1198 */
1199 forward = (info->forw != 0);
1200 memcpy(&state->altpath, &state->path, sizeof(state->path));
1201 error = xfs_da3_path_shift(state, &state->altpath, forward,
1202 0, &retval);
1203 if (error)
1204 return(error);
1205 if (retval) {
1206 *action = 0;
1207 } else {
1208 *action = 2;
1209 }
1210 return(0);
1211 }
1212
1213 /*
1214 * Examine each sibling block to see if we can coalesce with
1215 * at least 25% free space to spare. We need to figure out
1216 * whether to merge with the forward or the backward block.
1217 * We prefer coalescing with the lower numbered sibling so as
1218 * to shrink a directory over time.
1219 */
1220 count = state->node_ents;
1221 count -= state->node_ents >> 2;
1222 count -= nodehdr.count;
1223
1224 /* start with smaller blk num */
1225 forward = nodehdr.forw < nodehdr.back;
1226 for (i = 0; i < 2; forward = !forward, i++) {
1227 struct xfs_da3_icnode_hdr thdr;
1228 if (forward)
1229 blkno = nodehdr.forw;
1230 else
1231 blkno = nodehdr.back;
1232 if (blkno == 0)
1233 continue;
1234 error = xfs_da3_node_read(state->args->trans, state->args->dp,
1235 blkno, -1, &bp, state->args->whichfork);
1236 if (error)
1237 return(error);
1238
1239 node = bp->b_addr;
1240 xfs_da3_node_hdr_from_disk(&thdr, node);
1241 xfs_trans_brelse(state->args->trans, bp);
1242
1243 if (count - thdr.count >= 0)
1244 break; /* fits with at least 25% to spare */
1245 }
1246 if (i >= 2) {
1247 *action = 0;
1248 return 0;
1249 }
1250
1251 /*
1252 * Make altpath point to the block we want to keep (the lower
1253 * numbered block) and path point to the block we want to drop.
1254 */
1255 memcpy(&state->altpath, &state->path, sizeof(state->path));
1256 if (blkno < blk->blkno) {
1257 error = xfs_da3_path_shift(state, &state->altpath, forward,
1258 0, &retval);
1259 } else {
1260 error = xfs_da3_path_shift(state, &state->path, forward,
1261 0, &retval);
1262 }
1263 if (error)
1264 return error;
1265 if (retval) {
1266 *action = 0;
1267 return 0;
1268 }
1269 *action = 1;
1270 return 0;
1271 }
1272
1273 /*
1274 * Pick up the last hashvalue from an intermediate node.
1275 */
1276 STATIC uint
1277 xfs_da3_node_lasthash(
1278 struct xfs_buf *bp,
1279 int *count)
1280 {
1281 struct xfs_da_intnode *node;
1282 struct xfs_da_node_entry *btree;
1283 struct xfs_da3_icnode_hdr nodehdr;
1284
1285 node = bp->b_addr;
1286 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1287 if (count)
1288 *count = nodehdr.count;
1289 if (!nodehdr.count)
1290 return 0;
1291 btree = xfs_da3_node_tree_p(node);
1292 return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1293 }
1294
1295 /*
1296 * Walk back up the tree adjusting hash values as necessary,
1297 * when we stop making changes, return.
1298 */
1299 void
1300 xfs_da3_fixhashpath(
1301 struct xfs_da_state *state,
1302 struct xfs_da_state_path *path)
1303 {
1304 struct xfs_da_state_blk *blk;
1305 struct xfs_da_intnode *node;
1306 struct xfs_da_node_entry *btree;
1307 xfs_dahash_t lasthash=0;
1308 int level;
1309 int count;
1310
1311 trace_xfs_da_fixhashpath(state->args);
1312
1313 level = path->active-1;
1314 blk = &path->blk[ level ];
1315 switch (blk->magic) {
1316 case XFS_ATTR_LEAF_MAGIC:
1317 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1318 if (count == 0)
1319 return;
1320 break;
1321 case XFS_DIR2_LEAFN_MAGIC:
1322 lasthash = xfs_dir2_leafn_lasthash(blk->bp, &count);
1323 if (count == 0)
1324 return;
1325 break;
1326 case XFS_DA_NODE_MAGIC:
1327 lasthash = xfs_da3_node_lasthash(blk->bp, &count);
1328 if (count == 0)
1329 return;
1330 break;
1331 }
1332 for (blk--, level--; level >= 0; blk--, level--) {
1333 struct xfs_da3_icnode_hdr nodehdr;
1334
1335 node = blk->bp->b_addr;
1336 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1337 btree = xfs_da3_node_tree_p(node);
1338 if (be32_to_cpu(btree->hashval) == lasthash)
1339 break;
1340 blk->hashval = lasthash;
1341 btree[blk->index].hashval = cpu_to_be32(lasthash);
1342 xfs_trans_log_buf(state->args->trans, blk->bp,
1343 XFS_DA_LOGRANGE(node, &btree[blk->index],
1344 sizeof(*btree)));
1345
1346 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1347 }
1348 }
1349
1350 /*
1351 * Remove an entry from an intermediate node.
1352 */
1353 STATIC void
1354 xfs_da3_node_remove(
1355 struct xfs_da_state *state,
1356 struct xfs_da_state_blk *drop_blk)
1357 {
1358 struct xfs_da_intnode *node;
1359 struct xfs_da3_icnode_hdr nodehdr;
1360 struct xfs_da_node_entry *btree;
1361 int index;
1362 int tmp;
1363
1364 trace_xfs_da_node_remove(state->args);
1365
1366 node = drop_blk->bp->b_addr;
1367 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1368 ASSERT(drop_blk->index < nodehdr.count);
1369 ASSERT(drop_blk->index >= 0);
1370
1371 /*
1372 * Copy over the offending entry, or just zero it out.
1373 */
1374 index = drop_blk->index;
1375 btree = xfs_da3_node_tree_p(node);
1376 if (index < nodehdr.count - 1) {
1377 tmp = nodehdr.count - index - 1;
1378 tmp *= (uint)sizeof(xfs_da_node_entry_t);
1379 memmove(&btree[index], &btree[index + 1], tmp);
1380 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1381 XFS_DA_LOGRANGE(node, &btree[index], tmp));
1382 index = nodehdr.count - 1;
1383 }
1384 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1385 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1386 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1387 nodehdr.count -= 1;
1388 xfs_da3_node_hdr_to_disk(node, &nodehdr);
1389 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1390 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
1391
1392 /*
1393 * Copy the last hash value from the block to propagate upwards.
1394 */
1395 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1396 }
1397
1398 /*
1399 * Unbalance the elements between two intermediate nodes,
1400 * move all Btree elements from one node into another.
1401 */
1402 STATIC void
1403 xfs_da3_node_unbalance(
1404 struct xfs_da_state *state,
1405 struct xfs_da_state_blk *drop_blk,
1406 struct xfs_da_state_blk *save_blk)
1407 {
1408 struct xfs_da_intnode *drop_node;
1409 struct xfs_da_intnode *save_node;
1410 struct xfs_da_node_entry *drop_btree;
1411 struct xfs_da_node_entry *save_btree;
1412 struct xfs_da3_icnode_hdr drop_hdr;
1413 struct xfs_da3_icnode_hdr save_hdr;
1414 struct xfs_trans *tp;
1415 int sindex;
1416 int tmp;
1417
1418 trace_xfs_da_node_unbalance(state->args);
1419
1420 drop_node = drop_blk->bp->b_addr;
1421 save_node = save_blk->bp->b_addr;
1422 xfs_da3_node_hdr_from_disk(&drop_hdr, drop_node);
1423 xfs_da3_node_hdr_from_disk(&save_hdr, save_node);
1424 drop_btree = xfs_da3_node_tree_p(drop_node);
1425 save_btree = xfs_da3_node_tree_p(save_node);
1426 tp = state->args->trans;
1427
1428 /*
1429 * If the dying block has lower hashvals, then move all the
1430 * elements in the remaining block up to make a hole.
1431 */
1432 if ((be32_to_cpu(drop_btree[0].hashval) <
1433 be32_to_cpu(save_btree[0].hashval)) ||
1434 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1435 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1436 /* XXX: check this - is memmove dst correct? */
1437 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1438 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1439
1440 sindex = 0;
1441 xfs_trans_log_buf(tp, save_blk->bp,
1442 XFS_DA_LOGRANGE(save_node, &save_btree[0],
1443 (save_hdr.count + drop_hdr.count) *
1444 sizeof(xfs_da_node_entry_t)));
1445 } else {
1446 sindex = save_hdr.count;
1447 xfs_trans_log_buf(tp, save_blk->bp,
1448 XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1449 drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1450 }
1451
1452 /*
1453 * Move all the B-tree elements from drop_blk to save_blk.
1454 */
1455 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1456 memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1457 save_hdr.count += drop_hdr.count;
1458
1459 xfs_da3_node_hdr_to_disk(save_node, &save_hdr);
1460 xfs_trans_log_buf(tp, save_blk->bp,
1461 XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1462 xfs_da3_node_hdr_size(save_node)));
1463
1464 /*
1465 * Save the last hashval in the remaining block for upward propagation.
1466 */
1467 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1468 }
1469
1470 /*========================================================================
1471 * Routines used for finding things in the Btree.
1472 *========================================================================*/
1473
1474 /*
1475 * Walk down the Btree looking for a particular filename, filling
1476 * in the state structure as we go.
1477 *
1478 * We will set the state structure to point to each of the elements
1479 * in each of the nodes where either the hashval is or should be.
1480 *
1481 * We support duplicate hashval's so for each entry in the current
1482 * node that could contain the desired hashval, descend. This is a
1483 * pruned depth-first tree search.
1484 */
1485 int /* error */
1486 xfs_da3_node_lookup_int(
1487 struct xfs_da_state *state,
1488 int *result)
1489 {
1490 struct xfs_da_state_blk *blk;
1491 struct xfs_da_blkinfo *curr;
1492 struct xfs_da_intnode *node;
1493 struct xfs_da_node_entry *btree;
1494 struct xfs_da3_icnode_hdr nodehdr;
1495 struct xfs_da_args *args;
1496 xfs_dablk_t blkno;
1497 xfs_dahash_t hashval;
1498 xfs_dahash_t btreehashval;
1499 int probe;
1500 int span;
1501 int max;
1502 int error;
1503 int retval;
1504
1505 args = state->args;
1506
1507 /*
1508 * Descend thru the B-tree searching each level for the right
1509 * node to use, until the right hashval is found.
1510 */
1511 blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0;
1512 for (blk = &state->path.blk[0], state->path.active = 1;
1513 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1514 blk++, state->path.active++) {
1515 /*
1516 * Read the next node down in the tree.
1517 */
1518 blk->blkno = blkno;
1519 error = xfs_da3_node_read(args->trans, args->dp, blkno,
1520 -1, &blk->bp, args->whichfork);
1521 if (error) {
1522 blk->blkno = 0;
1523 state->path.active--;
1524 return(error);
1525 }
1526 curr = blk->bp->b_addr;
1527 blk->magic = be16_to_cpu(curr->magic);
1528
1529 if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1530 blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1531 blk->magic = XFS_ATTR_LEAF_MAGIC;
1532 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1533 break;
1534 }
1535
1536 if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1537 blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1538 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1539 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp, NULL);
1540 break;
1541 }
1542
1543 blk->magic = XFS_DA_NODE_MAGIC;
1544
1545
1546 /*
1547 * Search an intermediate node for a match.
1548 */
1549 node = blk->bp->b_addr;
1550 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1551 btree = xfs_da3_node_tree_p(node);
1552
1553 max = nodehdr.count;
1554 blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1555
1556 /*
1557 * Binary search. (note: small blocks will skip loop)
1558 */
1559 probe = span = max / 2;
1560 hashval = args->hashval;
1561 while (span > 4) {
1562 span /= 2;
1563 btreehashval = be32_to_cpu(btree[probe].hashval);
1564 if (btreehashval < hashval)
1565 probe += span;
1566 else if (btreehashval > hashval)
1567 probe -= span;
1568 else
1569 break;
1570 }
1571 ASSERT((probe >= 0) && (probe < max));
1572 ASSERT((span <= 4) ||
1573 (be32_to_cpu(btree[probe].hashval) == hashval));
1574
1575 /*
1576 * Since we may have duplicate hashval's, find the first
1577 * matching hashval in the node.
1578 */
1579 while (probe > 0 &&
1580 be32_to_cpu(btree[probe].hashval) >= hashval) {
1581 probe--;
1582 }
1583 while (probe < max &&
1584 be32_to_cpu(btree[probe].hashval) < hashval) {
1585 probe++;
1586 }
1587
1588 /*
1589 * Pick the right block to descend on.
1590 */
1591 if (probe == max) {
1592 blk->index = max - 1;
1593 blkno = be32_to_cpu(btree[max - 1].before);
1594 } else {
1595 blk->index = probe;
1596 blkno = be32_to_cpu(btree[probe].before);
1597 }
1598 }
1599
1600 /*
1601 * A leaf block that ends in the hashval that we are interested in
1602 * (final hashval == search hashval) means that the next block may
1603 * contain more entries with the same hashval, shift upward to the
1604 * next leaf and keep searching.
1605 */
1606 for (;;) {
1607 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1608 retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1609 &blk->index, state);
1610 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1611 retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1612 blk->index = args->index;
1613 args->blkno = blk->blkno;
1614 } else {
1615 ASSERT(0);
1616 return XFS_ERROR(EFSCORRUPTED);
1617 }
1618 if (((retval == ENOENT) || (retval == ENOATTR)) &&
1619 (blk->hashval == args->hashval)) {
1620 error = xfs_da3_path_shift(state, &state->path, 1, 1,
1621 &retval);
1622 if (error)
1623 return(error);
1624 if (retval == 0) {
1625 continue;
1626 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1627 /* path_shift() gives ENOENT */
1628 retval = XFS_ERROR(ENOATTR);
1629 }
1630 }
1631 break;
1632 }
1633 *result = retval;
1634 return(0);
1635 }
1636
1637 /*========================================================================
1638 * Utility routines.
1639 *========================================================================*/
1640
1641 /*
1642 * Compare two intermediate nodes for "order".
1643 */
1644 STATIC int
1645 xfs_da3_node_order(
1646 struct xfs_buf *node1_bp,
1647 struct xfs_buf *node2_bp)
1648 {
1649 struct xfs_da_intnode *node1;
1650 struct xfs_da_intnode *node2;
1651 struct xfs_da_node_entry *btree1;
1652 struct xfs_da_node_entry *btree2;
1653 struct xfs_da3_icnode_hdr node1hdr;
1654 struct xfs_da3_icnode_hdr node2hdr;
1655
1656 node1 = node1_bp->b_addr;
1657 node2 = node2_bp->b_addr;
1658 xfs_da3_node_hdr_from_disk(&node1hdr, node1);
1659 xfs_da3_node_hdr_from_disk(&node2hdr, node2);
1660 btree1 = xfs_da3_node_tree_p(node1);
1661 btree2 = xfs_da3_node_tree_p(node2);
1662
1663 if (node1hdr.count > 0 && node2hdr.count > 0 &&
1664 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1665 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1666 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1667 return 1;
1668 }
1669 return 0;
1670 }
1671
1672 /*
1673 * Link a new block into a doubly linked list of blocks (of whatever type).
1674 */
1675 int /* error */
1676 xfs_da3_blk_link(
1677 struct xfs_da_state *state,
1678 struct xfs_da_state_blk *old_blk,
1679 struct xfs_da_state_blk *new_blk)
1680 {
1681 struct xfs_da_blkinfo *old_info;
1682 struct xfs_da_blkinfo *new_info;
1683 struct xfs_da_blkinfo *tmp_info;
1684 struct xfs_da_args *args;
1685 struct xfs_buf *bp;
1686 int before = 0;
1687 int error;
1688
1689 /*
1690 * Set up environment.
1691 */
1692 args = state->args;
1693 ASSERT(args != NULL);
1694 old_info = old_blk->bp->b_addr;
1695 new_info = new_blk->bp->b_addr;
1696 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1697 old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1698 old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1699
1700 switch (old_blk->magic) {
1701 case XFS_ATTR_LEAF_MAGIC:
1702 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1703 break;
1704 case XFS_DIR2_LEAFN_MAGIC:
1705 before = xfs_dir2_leafn_order(old_blk->bp, new_blk->bp);
1706 break;
1707 case XFS_DA_NODE_MAGIC:
1708 before = xfs_da3_node_order(old_blk->bp, new_blk->bp);
1709 break;
1710 }
1711
1712 /*
1713 * Link blocks in appropriate order.
1714 */
1715 if (before) {
1716 /*
1717 * Link new block in before existing block.
1718 */
1719 trace_xfs_da_link_before(args);
1720 new_info->forw = cpu_to_be32(old_blk->blkno);
1721 new_info->back = old_info->back;
1722 if (old_info->back) {
1723 error = xfs_da3_node_read(args->trans, args->dp,
1724 be32_to_cpu(old_info->back),
1725 -1, &bp, args->whichfork);
1726 if (error)
1727 return(error);
1728 ASSERT(bp != NULL);
1729 tmp_info = bp->b_addr;
1730 ASSERT(tmp_info->magic == old_info->magic);
1731 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1732 tmp_info->forw = cpu_to_be32(new_blk->blkno);
1733 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1734 }
1735 old_info->back = cpu_to_be32(new_blk->blkno);
1736 } else {
1737 /*
1738 * Link new block in after existing block.
1739 */
1740 trace_xfs_da_link_after(args);
1741 new_info->forw = old_info->forw;
1742 new_info->back = cpu_to_be32(old_blk->blkno);
1743 if (old_info->forw) {
1744 error = xfs_da3_node_read(args->trans, args->dp,
1745 be32_to_cpu(old_info->forw),
1746 -1, &bp, args->whichfork);
1747 if (error)
1748 return(error);
1749 ASSERT(bp != NULL);
1750 tmp_info = bp->b_addr;
1751 ASSERT(tmp_info->magic == old_info->magic);
1752 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1753 tmp_info->back = cpu_to_be32(new_blk->blkno);
1754 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1755 }
1756 old_info->forw = cpu_to_be32(new_blk->blkno);
1757 }
1758
1759 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1760 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1761 return(0);
1762 }
1763
1764 /*
1765 * Unlink a block from a doubly linked list of blocks.
1766 */
1767 STATIC int /* error */
1768 xfs_da3_blk_unlink(
1769 struct xfs_da_state *state,
1770 struct xfs_da_state_blk *drop_blk,
1771 struct xfs_da_state_blk *save_blk)
1772 {
1773 struct xfs_da_blkinfo *drop_info;
1774 struct xfs_da_blkinfo *save_info;
1775 struct xfs_da_blkinfo *tmp_info;
1776 struct xfs_da_args *args;
1777 struct xfs_buf *bp;
1778 int error;
1779
1780 /*
1781 * Set up environment.
1782 */
1783 args = state->args;
1784 ASSERT(args != NULL);
1785 save_info = save_blk->bp->b_addr;
1786 drop_info = drop_blk->bp->b_addr;
1787 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1788 save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1789 save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1790 ASSERT(save_blk->magic == drop_blk->magic);
1791 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1792 (be32_to_cpu(save_info->back) == drop_blk->blkno));
1793 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1794 (be32_to_cpu(drop_info->back) == save_blk->blkno));
1795
1796 /*
1797 * Unlink the leaf block from the doubly linked chain of leaves.
1798 */
1799 if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1800 trace_xfs_da_unlink_back(args);
1801 save_info->back = drop_info->back;
1802 if (drop_info->back) {
1803 error = xfs_da3_node_read(args->trans, args->dp,
1804 be32_to_cpu(drop_info->back),
1805 -1, &bp, args->whichfork);
1806 if (error)
1807 return(error);
1808 ASSERT(bp != NULL);
1809 tmp_info = bp->b_addr;
1810 ASSERT(tmp_info->magic == save_info->magic);
1811 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1812 tmp_info->forw = cpu_to_be32(save_blk->blkno);
1813 xfs_trans_log_buf(args->trans, bp, 0,
1814 sizeof(*tmp_info) - 1);
1815 }
1816 } else {
1817 trace_xfs_da_unlink_forward(args);
1818 save_info->forw = drop_info->forw;
1819 if (drop_info->forw) {
1820 error = xfs_da3_node_read(args->trans, args->dp,
1821 be32_to_cpu(drop_info->forw),
1822 -1, &bp, args->whichfork);
1823 if (error)
1824 return(error);
1825 ASSERT(bp != NULL);
1826 tmp_info = bp->b_addr;
1827 ASSERT(tmp_info->magic == save_info->magic);
1828 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1829 tmp_info->back = cpu_to_be32(save_blk->blkno);
1830 xfs_trans_log_buf(args->trans, bp, 0,
1831 sizeof(*tmp_info) - 1);
1832 }
1833 }
1834
1835 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1836 return(0);
1837 }
1838
1839 /*
1840 * Move a path "forward" or "!forward" one block at the current level.
1841 *
1842 * This routine will adjust a "path" to point to the next block
1843 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1844 * Btree, including updating pointers to the intermediate nodes between
1845 * the new bottom and the root.
1846 */
1847 int /* error */
1848 xfs_da3_path_shift(
1849 struct xfs_da_state *state,
1850 struct xfs_da_state_path *path,
1851 int forward,
1852 int release,
1853 int *result)
1854 {
1855 struct xfs_da_state_blk *blk;
1856 struct xfs_da_blkinfo *info;
1857 struct xfs_da_intnode *node;
1858 struct xfs_da_args *args;
1859 struct xfs_da_node_entry *btree;
1860 struct xfs_da3_icnode_hdr nodehdr;
1861 xfs_dablk_t blkno = 0;
1862 int level;
1863 int error;
1864
1865 trace_xfs_da_path_shift(state->args);
1866
1867 /*
1868 * Roll up the Btree looking for the first block where our
1869 * current index is not at the edge of the block. Note that
1870 * we skip the bottom layer because we want the sibling block.
1871 */
1872 args = state->args;
1873 ASSERT(args != NULL);
1874 ASSERT(path != NULL);
1875 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1876 level = (path->active-1) - 1; /* skip bottom layer in path */
1877 for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1878 node = blk->bp->b_addr;
1879 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1880 btree = xfs_da3_node_tree_p(node);
1881
1882 if (forward && (blk->index < nodehdr.count - 1)) {
1883 blk->index++;
1884 blkno = be32_to_cpu(btree[blk->index].before);
1885 break;
1886 } else if (!forward && (blk->index > 0)) {
1887 blk->index--;
1888 blkno = be32_to_cpu(btree[blk->index].before);
1889 break;
1890 }
1891 }
1892 if (level < 0) {
1893 *result = XFS_ERROR(ENOENT); /* we're out of our tree */
1894 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1895 return(0);
1896 }
1897
1898 /*
1899 * Roll down the edge of the subtree until we reach the
1900 * same depth we were at originally.
1901 */
1902 for (blk++, level++; level < path->active; blk++, level++) {
1903 /*
1904 * Release the old block.
1905 * (if it's dirty, trans won't actually let go)
1906 */
1907 if (release)
1908 xfs_trans_brelse(args->trans, blk->bp);
1909
1910 /*
1911 * Read the next child block.
1912 */
1913 blk->blkno = blkno;
1914 error = xfs_da3_node_read(args->trans, args->dp, blkno, -1,
1915 &blk->bp, args->whichfork);
1916 if (error)
1917 return(error);
1918 info = blk->bp->b_addr;
1919 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1920 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1921 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1922 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1923 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1924 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1925
1926
1927 /*
1928 * Note: we flatten the magic number to a single type so we
1929 * don't have to compare against crc/non-crc types elsewhere.
1930 */
1931 switch (be16_to_cpu(info->magic)) {
1932 case XFS_DA_NODE_MAGIC:
1933 case XFS_DA3_NODE_MAGIC:
1934 blk->magic = XFS_DA_NODE_MAGIC;
1935 node = (xfs_da_intnode_t *)info;
1936 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1937 btree = xfs_da3_node_tree_p(node);
1938 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1939 if (forward)
1940 blk->index = 0;
1941 else
1942 blk->index = nodehdr.count - 1;
1943 blkno = be32_to_cpu(btree[blk->index].before);
1944 break;
1945 case XFS_ATTR_LEAF_MAGIC:
1946 case XFS_ATTR3_LEAF_MAGIC:
1947 blk->magic = XFS_ATTR_LEAF_MAGIC;
1948 ASSERT(level == path->active-1);
1949 blk->index = 0;
1950 blk->hashval = xfs_attr_leaf_lasthash(blk->bp,
1951 NULL);
1952 break;
1953 case XFS_DIR2_LEAFN_MAGIC:
1954 case XFS_DIR3_LEAFN_MAGIC:
1955 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1956 ASSERT(level == path->active-1);
1957 blk->index = 0;
1958 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp,
1959 NULL);
1960 break;
1961 default:
1962 ASSERT(0);
1963 break;
1964 }
1965 }
1966 *result = 0;
1967 return 0;
1968 }
1969
1970
1971 /*========================================================================
1972 * Utility routines.
1973 *========================================================================*/
1974
1975 /*
1976 * Implement a simple hash on a character string.
1977 * Rotate the hash value by 7 bits, then XOR each character in.
1978 * This is implemented with some source-level loop unrolling.
1979 */
1980 xfs_dahash_t
1981 xfs_da_hashname(const __uint8_t *name, int namelen)
1982 {
1983 xfs_dahash_t hash;
1984
1985 /*
1986 * Do four characters at a time as long as we can.
1987 */
1988 for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1989 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1990 (name[3] << 0) ^ rol32(hash, 7 * 4);
1991
1992 /*
1993 * Now do the rest of the characters.
1994 */
1995 switch (namelen) {
1996 case 3:
1997 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1998 rol32(hash, 7 * 3);
1999 case 2:
2000 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
2001 case 1:
2002 return (name[0] << 0) ^ rol32(hash, 7 * 1);
2003 default: /* case 0: */
2004 return hash;
2005 }
2006 }
2007
2008 enum xfs_dacmp
2009 xfs_da_compname(
2010 struct xfs_da_args *args,
2011 const unsigned char *name,
2012 int len)
2013 {
2014 return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
2015 XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
2016 }
2017
2018 static xfs_dahash_t
2019 xfs_default_hashname(
2020 struct xfs_name *name)
2021 {
2022 return xfs_da_hashname(name->name, name->len);
2023 }
2024
2025 const struct xfs_nameops xfs_default_nameops = {
2026 .hashname = xfs_default_hashname,
2027 .compname = xfs_da_compname
2028 };
2029
2030 int
2031 xfs_da_grow_inode_int(
2032 struct xfs_da_args *args,
2033 xfs_fileoff_t *bno,
2034 int count)
2035 {
2036 struct xfs_trans *tp = args->trans;
2037 struct xfs_inode *dp = args->dp;
2038 int w = args->whichfork;
2039 xfs_drfsbno_t nblks = dp->i_d.di_nblocks;
2040 struct xfs_bmbt_irec map, *mapp;
2041 int nmap, error, got, i, mapi;
2042
2043 /*
2044 * Find a spot in the file space to put the new block.
2045 */
2046 error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2047 if (error)
2048 return error;
2049
2050 /*
2051 * Try mapping it in one filesystem block.
2052 */
2053 nmap = 1;
2054 ASSERT(args->firstblock != NULL);
2055 error = xfs_bmapi_write(tp, dp, *bno, count,
2056 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2057 args->firstblock, args->total, &map, &nmap,
2058 args->flist);
2059 if (error)
2060 return error;
2061
2062 ASSERT(nmap <= 1);
2063 if (nmap == 1) {
2064 mapp = &map;
2065 mapi = 1;
2066 } else if (nmap == 0 && count > 1) {
2067 xfs_fileoff_t b;
2068 int c;
2069
2070 /*
2071 * If we didn't get it and the block might work if fragmented,
2072 * try without the CONTIG flag. Loop until we get it all.
2073 */
2074 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2075 for (b = *bno, mapi = 0; b < *bno + count; ) {
2076 nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2077 c = (int)(*bno + count - b);
2078 error = xfs_bmapi_write(tp, dp, b, c,
2079 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2080 args->firstblock, args->total,
2081 &mapp[mapi], &nmap, args->flist);
2082 if (error)
2083 goto out_free_map;
2084 if (nmap < 1)
2085 break;
2086 mapi += nmap;
2087 b = mapp[mapi - 1].br_startoff +
2088 mapp[mapi - 1].br_blockcount;
2089 }
2090 } else {
2091 mapi = 0;
2092 mapp = NULL;
2093 }
2094
2095 /*
2096 * Count the blocks we got, make sure it matches the total.
2097 */
2098 for (i = 0, got = 0; i < mapi; i++)
2099 got += mapp[i].br_blockcount;
2100 if (got != count || mapp[0].br_startoff != *bno ||
2101 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2102 *bno + count) {
2103 error = XFS_ERROR(ENOSPC);
2104 goto out_free_map;
2105 }
2106
2107 /* account for newly allocated blocks in reserved blocks total */
2108 args->total -= dp->i_d.di_nblocks - nblks;
2109
2110 out_free_map:
2111 if (mapp != &map)
2112 kmem_free(mapp);
2113 return error;
2114 }
2115
2116 /*
2117 * Add a block to the btree ahead of the file.
2118 * Return the new block number to the caller.
2119 */
2120 int
2121 xfs_da_grow_inode(
2122 struct xfs_da_args *args,
2123 xfs_dablk_t *new_blkno)
2124 {
2125 xfs_fileoff_t bno;
2126 int count;
2127 int error;
2128
2129 trace_xfs_da_grow_inode(args);
2130
2131 if (args->whichfork == XFS_DATA_FORK) {
2132 bno = args->dp->i_mount->m_dirleafblk;
2133 count = args->dp->i_mount->m_dirblkfsbs;
2134 } else {
2135 bno = 0;
2136 count = 1;
2137 }
2138
2139 error = xfs_da_grow_inode_int(args, &bno, count);
2140 if (!error)
2141 *new_blkno = (xfs_dablk_t)bno;
2142 return error;
2143 }
2144
2145 /*
2146 * Ick. We need to always be able to remove a btree block, even
2147 * if there's no space reservation because the filesystem is full.
2148 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2149 * It swaps the target block with the last block in the file. The
2150 * last block in the file can always be removed since it can't cause
2151 * a bmap btree split to do that.
2152 */
2153 STATIC int
2154 xfs_da3_swap_lastblock(
2155 struct xfs_da_args *args,
2156 xfs_dablk_t *dead_blknop,
2157 struct xfs_buf **dead_bufp)
2158 {
2159 struct xfs_da_blkinfo *dead_info;
2160 struct xfs_da_blkinfo *sib_info;
2161 struct xfs_da_intnode *par_node;
2162 struct xfs_da_intnode *dead_node;
2163 struct xfs_dir2_leaf *dead_leaf2;
2164 struct xfs_da_node_entry *btree;
2165 struct xfs_da3_icnode_hdr par_hdr;
2166 struct xfs_inode *ip;
2167 struct xfs_trans *tp;
2168 struct xfs_mount *mp;
2169 struct xfs_buf *dead_buf;
2170 struct xfs_buf *last_buf;
2171 struct xfs_buf *sib_buf;
2172 struct xfs_buf *par_buf;
2173 xfs_dahash_t dead_hash;
2174 xfs_fileoff_t lastoff;
2175 xfs_dablk_t dead_blkno;
2176 xfs_dablk_t last_blkno;
2177 xfs_dablk_t sib_blkno;
2178 xfs_dablk_t par_blkno;
2179 int error;
2180 int w;
2181 int entno;
2182 int level;
2183 int dead_level;
2184
2185 trace_xfs_da_swap_lastblock(args);
2186
2187 dead_buf = *dead_bufp;
2188 dead_blkno = *dead_blknop;
2189 tp = args->trans;
2190 ip = args->dp;
2191 w = args->whichfork;
2192 ASSERT(w == XFS_DATA_FORK);
2193 mp = ip->i_mount;
2194 lastoff = mp->m_dirfreeblk;
2195 error = xfs_bmap_last_before(tp, ip, &lastoff, w);
2196 if (error)
2197 return error;
2198 if (unlikely(lastoff == 0)) {
2199 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2200 mp);
2201 return XFS_ERROR(EFSCORRUPTED);
2202 }
2203 /*
2204 * Read the last block in the btree space.
2205 */
2206 last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs;
2207 error = xfs_da3_node_read(tp, ip, last_blkno, -1, &last_buf, w);
2208 if (error)
2209 return error;
2210 /*
2211 * Copy the last block into the dead buffer and log it.
2212 */
2213 memcpy(dead_buf->b_addr, last_buf->b_addr, mp->m_dirblksize);
2214 xfs_trans_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1);
2215 dead_info = dead_buf->b_addr;
2216 /*
2217 * Get values from the moved block.
2218 */
2219 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2220 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2221 struct xfs_dir3_icleaf_hdr leafhdr;
2222 struct xfs_dir2_leaf_entry *ents;
2223
2224 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2225 xfs_dir3_leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2226 ents = xfs_dir3_leaf_ents_p(dead_leaf2);
2227 dead_level = 0;
2228 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2229 } else {
2230 struct xfs_da3_icnode_hdr deadhdr;
2231
2232 dead_node = (xfs_da_intnode_t *)dead_info;
2233 xfs_da3_node_hdr_from_disk(&deadhdr, dead_node);
2234 btree = xfs_da3_node_tree_p(dead_node);
2235 dead_level = deadhdr.level;
2236 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2237 }
2238 sib_buf = par_buf = NULL;
2239 /*
2240 * If the moved block has a left sibling, fix up the pointers.
2241 */
2242 if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2243 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2244 if (error)
2245 goto done;
2246 sib_info = sib_buf->b_addr;
2247 if (unlikely(
2248 be32_to_cpu(sib_info->forw) != last_blkno ||
2249 sib_info->magic != dead_info->magic)) {
2250 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2251 XFS_ERRLEVEL_LOW, mp);
2252 error = XFS_ERROR(EFSCORRUPTED);
2253 goto done;
2254 }
2255 sib_info->forw = cpu_to_be32(dead_blkno);
2256 xfs_trans_log_buf(tp, sib_buf,
2257 XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2258 sizeof(sib_info->forw)));
2259 sib_buf = NULL;
2260 }
2261 /*
2262 * If the moved block has a right sibling, fix up the pointers.
2263 */
2264 if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2265 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2266 if (error)
2267 goto done;
2268 sib_info = sib_buf->b_addr;
2269 if (unlikely(
2270 be32_to_cpu(sib_info->back) != last_blkno ||
2271 sib_info->magic != dead_info->magic)) {
2272 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2273 XFS_ERRLEVEL_LOW, mp);
2274 error = XFS_ERROR(EFSCORRUPTED);
2275 goto done;
2276 }
2277 sib_info->back = cpu_to_be32(dead_blkno);
2278 xfs_trans_log_buf(tp, sib_buf,
2279 XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2280 sizeof(sib_info->back)));
2281 sib_buf = NULL;
2282 }
2283 par_blkno = mp->m_dirleafblk;
2284 level = -1;
2285 /*
2286 * Walk down the tree looking for the parent of the moved block.
2287 */
2288 for (;;) {
2289 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2290 if (error)
2291 goto done;
2292 par_node = par_buf->b_addr;
2293 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2294 if (level >= 0 && level != par_hdr.level + 1) {
2295 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2296 XFS_ERRLEVEL_LOW, mp);
2297 error = XFS_ERROR(EFSCORRUPTED);
2298 goto done;
2299 }
2300 level = par_hdr.level;
2301 btree = xfs_da3_node_tree_p(par_node);
2302 for (entno = 0;
2303 entno < par_hdr.count &&
2304 be32_to_cpu(btree[entno].hashval) < dead_hash;
2305 entno++)
2306 continue;
2307 if (entno == par_hdr.count) {
2308 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2309 XFS_ERRLEVEL_LOW, mp);
2310 error = XFS_ERROR(EFSCORRUPTED);
2311 goto done;
2312 }
2313 par_blkno = be32_to_cpu(btree[entno].before);
2314 if (level == dead_level + 1)
2315 break;
2316 xfs_trans_brelse(tp, par_buf);
2317 par_buf = NULL;
2318 }
2319 /*
2320 * We're in the right parent block.
2321 * Look for the right entry.
2322 */
2323 for (;;) {
2324 for (;
2325 entno < par_hdr.count &&
2326 be32_to_cpu(btree[entno].before) != last_blkno;
2327 entno++)
2328 continue;
2329 if (entno < par_hdr.count)
2330 break;
2331 par_blkno = par_hdr.forw;
2332 xfs_trans_brelse(tp, par_buf);
2333 par_buf = NULL;
2334 if (unlikely(par_blkno == 0)) {
2335 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2336 XFS_ERRLEVEL_LOW, mp);
2337 error = XFS_ERROR(EFSCORRUPTED);
2338 goto done;
2339 }
2340 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2341 if (error)
2342 goto done;
2343 par_node = par_buf->b_addr;
2344 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2345 if (par_hdr.level != level) {
2346 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2347 XFS_ERRLEVEL_LOW, mp);
2348 error = XFS_ERROR(EFSCORRUPTED);
2349 goto done;
2350 }
2351 btree = xfs_da3_node_tree_p(par_node);
2352 entno = 0;
2353 }
2354 /*
2355 * Update the parent entry pointing to the moved block.
2356 */
2357 btree[entno].before = cpu_to_be32(dead_blkno);
2358 xfs_trans_log_buf(tp, par_buf,
2359 XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2360 sizeof(btree[entno].before)));
2361 *dead_blknop = last_blkno;
2362 *dead_bufp = last_buf;
2363 return 0;
2364 done:
2365 if (par_buf)
2366 xfs_trans_brelse(tp, par_buf);
2367 if (sib_buf)
2368 xfs_trans_brelse(tp, sib_buf);
2369 xfs_trans_brelse(tp, last_buf);
2370 return error;
2371 }
2372
2373 /*
2374 * Remove a btree block from a directory or attribute.
2375 */
2376 int
2377 xfs_da_shrink_inode(
2378 xfs_da_args_t *args,
2379 xfs_dablk_t dead_blkno,
2380 struct xfs_buf *dead_buf)
2381 {
2382 xfs_inode_t *dp;
2383 int done, error, w, count;
2384 xfs_trans_t *tp;
2385 xfs_mount_t *mp;
2386
2387 trace_xfs_da_shrink_inode(args);
2388
2389 dp = args->dp;
2390 w = args->whichfork;
2391 tp = args->trans;
2392 mp = dp->i_mount;
2393 if (w == XFS_DATA_FORK)
2394 count = mp->m_dirblkfsbs;
2395 else
2396 count = 1;
2397 for (;;) {
2398 /*
2399 * Remove extents. If we get ENOSPC for a dir we have to move
2400 * the last block to the place we want to kill.
2401 */
2402 error = xfs_bunmapi(tp, dp, dead_blkno, count,
2403 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2404 0, args->firstblock, args->flist, &done);
2405 if (error == ENOSPC) {
2406 if (w != XFS_DATA_FORK)
2407 break;
2408 error = xfs_da3_swap_lastblock(args, &dead_blkno,
2409 &dead_buf);
2410 if (error)
2411 break;
2412 } else {
2413 break;
2414 }
2415 }
2416 xfs_trans_binval(tp, dead_buf);
2417 return error;
2418 }
2419
2420 /*
2421 * See if the mapping(s) for this btree block are valid, i.e.
2422 * don't contain holes, are logically contiguous, and cover the whole range.
2423 */
2424 STATIC int
2425 xfs_da_map_covers_blocks(
2426 int nmap,
2427 xfs_bmbt_irec_t *mapp,
2428 xfs_dablk_t bno,
2429 int count)
2430 {
2431 int i;
2432 xfs_fileoff_t off;
2433
2434 for (i = 0, off = bno; i < nmap; i++) {
2435 if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2436 mapp[i].br_startblock == DELAYSTARTBLOCK) {
2437 return 0;
2438 }
2439 if (off != mapp[i].br_startoff) {
2440 return 0;
2441 }
2442 off += mapp[i].br_blockcount;
2443 }
2444 return off == bno + count;
2445 }
2446
2447 /*
2448 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2449 *
2450 * For the single map case, it is assumed that the caller has provided a pointer
2451 * to a valid xfs_buf_map. For the multiple map case, this function will
2452 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2453 * map pointer with the allocated map.
2454 */
2455 static int
2456 xfs_buf_map_from_irec(
2457 struct xfs_mount *mp,
2458 struct xfs_buf_map **mapp,
2459 int *nmaps,
2460 struct xfs_bmbt_irec *irecs,
2461 int nirecs)
2462 {
2463 struct xfs_buf_map *map;
2464 int i;
2465
2466 ASSERT(*nmaps == 1);
2467 ASSERT(nirecs >= 1);
2468
2469 if (nirecs > 1) {
2470 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2471 KM_SLEEP | KM_NOFS);
2472 if (!map)
2473 return ENOMEM;
2474 *mapp = map;
2475 }
2476
2477 *nmaps = nirecs;
2478 map = *mapp;
2479 for (i = 0; i < *nmaps; i++) {
2480 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2481 irecs[i].br_startblock != HOLESTARTBLOCK);
2482 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2483 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2484 }
2485 return 0;
2486 }
2487
2488 /*
2489 * Map the block we are given ready for reading. There are three possible return
2490 * values:
2491 * -1 - will be returned if we land in a hole and mappedbno == -2 so the
2492 * caller knows not to execute a subsequent read.
2493 * 0 - if we mapped the block successfully
2494 * >0 - positive error number if there was an error.
2495 */
2496 static int
2497 xfs_dabuf_map(
2498 struct xfs_trans *trans,
2499 struct xfs_inode *dp,
2500 xfs_dablk_t bno,
2501 xfs_daddr_t mappedbno,
2502 int whichfork,
2503 struct xfs_buf_map **map,
2504 int *nmaps)
2505 {
2506 struct xfs_mount *mp = dp->i_mount;
2507 int nfsb;
2508 int error = 0;
2509 struct xfs_bmbt_irec irec;
2510 struct xfs_bmbt_irec *irecs = &irec;
2511 int nirecs;
2512
2513 ASSERT(map && *map);
2514 ASSERT(*nmaps == 1);
2515
2516 nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1;
2517
2518 /*
2519 * Caller doesn't have a mapping. -2 means don't complain
2520 * if we land in a hole.
2521 */
2522 if (mappedbno == -1 || mappedbno == -2) {
2523 /*
2524 * Optimize the one-block case.
2525 */
2526 if (nfsb != 1)
2527 irecs = kmem_zalloc(sizeof(irec) * nfsb,
2528 KM_SLEEP | KM_NOFS);
2529
2530 nirecs = nfsb;
2531 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2532 &nirecs, xfs_bmapi_aflag(whichfork));
2533 if (error)
2534 goto out;
2535 } else {
2536 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2537 irecs->br_startoff = (xfs_fileoff_t)bno;
2538 irecs->br_blockcount = nfsb;
2539 irecs->br_state = 0;
2540 nirecs = 1;
2541 }
2542
2543 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2544 error = mappedbno == -2 ? -1 : XFS_ERROR(EFSCORRUPTED);
2545 if (unlikely(error == EFSCORRUPTED)) {
2546 if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2547 int i;
2548 xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2549 __func__, (long long)bno,
2550 (long long)dp->i_ino);
2551 for (i = 0; i < *nmaps; i++) {
2552 xfs_alert(mp,
2553 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2554 i,
2555 (long long)irecs[i].br_startoff,
2556 (long long)irecs[i].br_startblock,
2557 (long long)irecs[i].br_blockcount,
2558 irecs[i].br_state);
2559 }
2560 }
2561 XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2562 XFS_ERRLEVEL_LOW, mp);
2563 }
2564 goto out;
2565 }
2566 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2567 out:
2568 if (irecs != &irec)
2569 kmem_free(irecs);
2570 return error;
2571 }
2572
2573 /*
2574 * Get a buffer for the dir/attr block.
2575 */
2576 int
2577 xfs_da_get_buf(
2578 struct xfs_trans *trans,
2579 struct xfs_inode *dp,
2580 xfs_dablk_t bno,
2581 xfs_daddr_t mappedbno,
2582 struct xfs_buf **bpp,
2583 int whichfork)
2584 {
2585 struct xfs_buf *bp;
2586 struct xfs_buf_map map;
2587 struct xfs_buf_map *mapp;
2588 int nmap;
2589 int error;
2590
2591 *bpp = NULL;
2592 mapp = &map;
2593 nmap = 1;
2594 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2595 &mapp, &nmap);
2596 if (error) {
2597 /* mapping a hole is not an error, but we don't continue */
2598 if (error == -1)
2599 error = 0;
2600 goto out_free;
2601 }
2602
2603 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2604 mapp, nmap, 0);
2605 error = bp ? bp->b_error : XFS_ERROR(EIO);
2606 if (error) {
2607 xfs_trans_brelse(trans, bp);
2608 goto out_free;
2609 }
2610
2611 *bpp = bp;
2612
2613 out_free:
2614 if (mapp != &map)
2615 kmem_free(mapp);
2616
2617 return error;
2618 }
2619
2620 /*
2621 * Get a buffer for the dir/attr block, fill in the contents.
2622 */
2623 int
2624 xfs_da_read_buf(
2625 struct xfs_trans *trans,
2626 struct xfs_inode *dp,
2627 xfs_dablk_t bno,
2628 xfs_daddr_t mappedbno,
2629 struct xfs_buf **bpp,
2630 int whichfork,
2631 const struct xfs_buf_ops *ops)
2632 {
2633 struct xfs_buf *bp;
2634 struct xfs_buf_map map;
2635 struct xfs_buf_map *mapp;
2636 int nmap;
2637 int error;
2638
2639 *bpp = NULL;
2640 mapp = &map;
2641 nmap = 1;
2642 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2643 &mapp, &nmap);
2644 if (error) {
2645 /* mapping a hole is not an error, but we don't continue */
2646 if (error == -1)
2647 error = 0;
2648 goto out_free;
2649 }
2650
2651 error = xfs_trans_read_buf_map(dp->i_mount, trans,
2652 dp->i_mount->m_ddev_targp,
2653 mapp, nmap, 0, &bp, ops);
2654 if (error)
2655 goto out_free;
2656
2657 if (whichfork == XFS_ATTR_FORK)
2658 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2659 else
2660 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2661
2662 /*
2663 * This verification code will be moved to a CRC verification callback
2664 * function so just leave it here unchanged until then.
2665 */
2666 {
2667 xfs_dir2_data_hdr_t *hdr = bp->b_addr;
2668 xfs_dir2_free_t *free = bp->b_addr;
2669 xfs_da_blkinfo_t *info = bp->b_addr;
2670 uint magic, magic1;
2671 struct xfs_mount *mp = dp->i_mount;
2672
2673 magic = be16_to_cpu(info->magic);
2674 magic1 = be32_to_cpu(hdr->magic);
2675 if (unlikely(
2676 XFS_TEST_ERROR((magic != XFS_DA_NODE_MAGIC) &&
2677 (magic != XFS_DA3_NODE_MAGIC) &&
2678 (magic != XFS_ATTR_LEAF_MAGIC) &&
2679 (magic != XFS_ATTR3_LEAF_MAGIC) &&
2680 (magic != XFS_DIR2_LEAF1_MAGIC) &&
2681 (magic != XFS_DIR3_LEAF1_MAGIC) &&
2682 (magic != XFS_DIR2_LEAFN_MAGIC) &&
2683 (magic != XFS_DIR3_LEAFN_MAGIC) &&
2684 (magic1 != XFS_DIR2_BLOCK_MAGIC) &&
2685 (magic1 != XFS_DIR3_BLOCK_MAGIC) &&
2686 (magic1 != XFS_DIR2_DATA_MAGIC) &&
2687 (magic1 != XFS_DIR3_DATA_MAGIC) &&
2688 (free->hdr.magic !=
2689 cpu_to_be32(XFS_DIR2_FREE_MAGIC)) &&
2690 (free->hdr.magic !=
2691 cpu_to_be32(XFS_DIR3_FREE_MAGIC)),
2692 mp, XFS_ERRTAG_DA_READ_BUF,
2693 XFS_RANDOM_DA_READ_BUF))) {
2694 trace_xfs_da_btree_corrupt(bp, _RET_IP_);
2695 XFS_CORRUPTION_ERROR("xfs_da_do_buf(2)",
2696 XFS_ERRLEVEL_LOW, mp, info);
2697 error = XFS_ERROR(EFSCORRUPTED);
2698 xfs_trans_brelse(trans, bp);
2699 goto out_free;
2700 }
2701 }
2702 *bpp = bp;
2703 out_free:
2704 if (mapp != &map)
2705 kmem_free(mapp);
2706
2707 return error;
2708 }
2709
2710 /*
2711 * Readahead the dir/attr block.
2712 */
2713 xfs_daddr_t
2714 xfs_da_reada_buf(
2715 struct xfs_trans *trans,
2716 struct xfs_inode *dp,
2717 xfs_dablk_t bno,
2718 xfs_daddr_t mappedbno,
2719 int whichfork,
2720 const struct xfs_buf_ops *ops)
2721 {
2722 struct xfs_buf_map map;
2723 struct xfs_buf_map *mapp;
2724 int nmap;
2725 int error;
2726
2727 mapp = &map;
2728 nmap = 1;
2729 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2730 &mapp, &nmap);
2731 if (error) {
2732 /* mapping a hole is not an error, but we don't continue */
2733 if (error == -1)
2734 error = 0;
2735 goto out_free;
2736 }
2737
2738 mappedbno = mapp[0].bm_bn;
2739 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2740
2741 out_free:
2742 if (mapp != &map)
2743 kmem_free(mapp);
2744
2745 if (error)
2746 return -1;
2747 return mappedbno;
2748 }