]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_extfree_item.c
Merge tag 'imx-drm-fixes-2017-08-18' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_extfree_item.h"
29 #include "xfs_log.h"
30 #include "xfs_btree.h"
31 #include "xfs_rmap.h"
32
33
34 kmem_zone_t *xfs_efi_zone;
35 kmem_zone_t *xfs_efd_zone;
36
37 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
38 {
39 return container_of(lip, struct xfs_efi_log_item, efi_item);
40 }
41
42 void
43 xfs_efi_item_free(
44 struct xfs_efi_log_item *efip)
45 {
46 kmem_free(efip->efi_item.li_lv_shadow);
47 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
48 kmem_free(efip);
49 else
50 kmem_zone_free(xfs_efi_zone, efip);
51 }
52
53 /*
54 * This returns the number of iovecs needed to log the given efi item.
55 * We only need 1 iovec for an efi item. It just logs the efi_log_format
56 * structure.
57 */
58 static inline int
59 xfs_efi_item_sizeof(
60 struct xfs_efi_log_item *efip)
61 {
62 return sizeof(struct xfs_efi_log_format) +
63 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
64 }
65
66 STATIC void
67 xfs_efi_item_size(
68 struct xfs_log_item *lip,
69 int *nvecs,
70 int *nbytes)
71 {
72 *nvecs += 1;
73 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
74 }
75
76 /*
77 * This is called to fill in the vector of log iovecs for the
78 * given efi log item. We use only 1 iovec, and we point that
79 * at the efi_log_format structure embedded in the efi item.
80 * It is at this point that we assert that all of the extent
81 * slots in the efi item have been filled.
82 */
83 STATIC void
84 xfs_efi_item_format(
85 struct xfs_log_item *lip,
86 struct xfs_log_vec *lv)
87 {
88 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
89 struct xfs_log_iovec *vecp = NULL;
90
91 ASSERT(atomic_read(&efip->efi_next_extent) ==
92 efip->efi_format.efi_nextents);
93
94 efip->efi_format.efi_type = XFS_LI_EFI;
95 efip->efi_format.efi_size = 1;
96
97 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
98 &efip->efi_format,
99 xfs_efi_item_sizeof(efip));
100 }
101
102
103 /*
104 * Pinning has no meaning for an efi item, so just return.
105 */
106 STATIC void
107 xfs_efi_item_pin(
108 struct xfs_log_item *lip)
109 {
110 }
111
112 /*
113 * The unpin operation is the last place an EFI is manipulated in the log. It is
114 * either inserted in the AIL or aborted in the event of a log I/O error. In
115 * either case, the EFI transaction has been successfully committed to make it
116 * this far. Therefore, we expect whoever committed the EFI to either construct
117 * and commit the EFD or drop the EFD's reference in the event of error. Simply
118 * drop the log's EFI reference now that the log is done with it.
119 */
120 STATIC void
121 xfs_efi_item_unpin(
122 struct xfs_log_item *lip,
123 int remove)
124 {
125 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
126 xfs_efi_release(efip);
127 }
128
129 /*
130 * Efi items have no locking or pushing. However, since EFIs are pulled from
131 * the AIL when their corresponding EFDs are committed to disk, their situation
132 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
133 * will eventually flush the log. This should help in getting the EFI out of
134 * the AIL.
135 */
136 STATIC uint
137 xfs_efi_item_push(
138 struct xfs_log_item *lip,
139 struct list_head *buffer_list)
140 {
141 return XFS_ITEM_PINNED;
142 }
143
144 /*
145 * The EFI has been either committed or aborted if the transaction has been
146 * cancelled. If the transaction was cancelled, an EFD isn't going to be
147 * constructed and thus we free the EFI here directly.
148 */
149 STATIC void
150 xfs_efi_item_unlock(
151 struct xfs_log_item *lip)
152 {
153 if (lip->li_flags & XFS_LI_ABORTED)
154 xfs_efi_item_free(EFI_ITEM(lip));
155 }
156
157 /*
158 * The EFI is logged only once and cannot be moved in the log, so simply return
159 * the lsn at which it's been logged.
160 */
161 STATIC xfs_lsn_t
162 xfs_efi_item_committed(
163 struct xfs_log_item *lip,
164 xfs_lsn_t lsn)
165 {
166 return lsn;
167 }
168
169 /*
170 * The EFI dependency tracking op doesn't do squat. It can't because
171 * it doesn't know where the free extent is coming from. The dependency
172 * tracking has to be handled by the "enclosing" metadata object. For
173 * example, for inodes, the inode is locked throughout the extent freeing
174 * so the dependency should be recorded there.
175 */
176 STATIC void
177 xfs_efi_item_committing(
178 struct xfs_log_item *lip,
179 xfs_lsn_t lsn)
180 {
181 }
182
183 /*
184 * This is the ops vector shared by all efi log items.
185 */
186 static const struct xfs_item_ops xfs_efi_item_ops = {
187 .iop_size = xfs_efi_item_size,
188 .iop_format = xfs_efi_item_format,
189 .iop_pin = xfs_efi_item_pin,
190 .iop_unpin = xfs_efi_item_unpin,
191 .iop_unlock = xfs_efi_item_unlock,
192 .iop_committed = xfs_efi_item_committed,
193 .iop_push = xfs_efi_item_push,
194 .iop_committing = xfs_efi_item_committing
195 };
196
197
198 /*
199 * Allocate and initialize an efi item with the given number of extents.
200 */
201 struct xfs_efi_log_item *
202 xfs_efi_init(
203 struct xfs_mount *mp,
204 uint nextents)
205
206 {
207 struct xfs_efi_log_item *efip;
208 uint size;
209
210 ASSERT(nextents > 0);
211 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
212 size = (uint)(sizeof(xfs_efi_log_item_t) +
213 ((nextents - 1) * sizeof(xfs_extent_t)));
214 efip = kmem_zalloc(size, KM_SLEEP);
215 } else {
216 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
217 }
218
219 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
220 efip->efi_format.efi_nextents = nextents;
221 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
222 atomic_set(&efip->efi_next_extent, 0);
223 atomic_set(&efip->efi_refcount, 2);
224
225 return efip;
226 }
227
228 /*
229 * Copy an EFI format buffer from the given buf, and into the destination
230 * EFI format structure.
231 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
232 * one of which will be the native format for this kernel.
233 * It will handle the conversion of formats if necessary.
234 */
235 int
236 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
237 {
238 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
239 uint i;
240 uint len = sizeof(xfs_efi_log_format_t) +
241 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
242 uint len32 = sizeof(xfs_efi_log_format_32_t) +
243 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
244 uint len64 = sizeof(xfs_efi_log_format_64_t) +
245 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
246
247 if (buf->i_len == len) {
248 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
249 return 0;
250 } else if (buf->i_len == len32) {
251 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
252
253 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
254 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
255 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
256 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
257 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
258 dst_efi_fmt->efi_extents[i].ext_start =
259 src_efi_fmt_32->efi_extents[i].ext_start;
260 dst_efi_fmt->efi_extents[i].ext_len =
261 src_efi_fmt_32->efi_extents[i].ext_len;
262 }
263 return 0;
264 } else if (buf->i_len == len64) {
265 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
266
267 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
268 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
269 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
270 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
271 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
272 dst_efi_fmt->efi_extents[i].ext_start =
273 src_efi_fmt_64->efi_extents[i].ext_start;
274 dst_efi_fmt->efi_extents[i].ext_len =
275 src_efi_fmt_64->efi_extents[i].ext_len;
276 }
277 return 0;
278 }
279 return -EFSCORRUPTED;
280 }
281
282 /*
283 * Freeing the efi requires that we remove it from the AIL if it has already
284 * been placed there. However, the EFI may not yet have been placed in the AIL
285 * when called by xfs_efi_release() from EFD processing due to the ordering of
286 * committed vs unpin operations in bulk insert operations. Hence the reference
287 * count to ensure only the last caller frees the EFI.
288 */
289 void
290 xfs_efi_release(
291 struct xfs_efi_log_item *efip)
292 {
293 ASSERT(atomic_read(&efip->efi_refcount) > 0);
294 if (atomic_dec_and_test(&efip->efi_refcount)) {
295 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
296 xfs_efi_item_free(efip);
297 }
298 }
299
300 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
301 {
302 return container_of(lip, struct xfs_efd_log_item, efd_item);
303 }
304
305 STATIC void
306 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
307 {
308 kmem_free(efdp->efd_item.li_lv_shadow);
309 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
310 kmem_free(efdp);
311 else
312 kmem_zone_free(xfs_efd_zone, efdp);
313 }
314
315 /*
316 * This returns the number of iovecs needed to log the given efd item.
317 * We only need 1 iovec for an efd item. It just logs the efd_log_format
318 * structure.
319 */
320 static inline int
321 xfs_efd_item_sizeof(
322 struct xfs_efd_log_item *efdp)
323 {
324 return sizeof(xfs_efd_log_format_t) +
325 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
326 }
327
328 STATIC void
329 xfs_efd_item_size(
330 struct xfs_log_item *lip,
331 int *nvecs,
332 int *nbytes)
333 {
334 *nvecs += 1;
335 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
336 }
337
338 /*
339 * This is called to fill in the vector of log iovecs for the
340 * given efd log item. We use only 1 iovec, and we point that
341 * at the efd_log_format structure embedded in the efd item.
342 * It is at this point that we assert that all of the extent
343 * slots in the efd item have been filled.
344 */
345 STATIC void
346 xfs_efd_item_format(
347 struct xfs_log_item *lip,
348 struct xfs_log_vec *lv)
349 {
350 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
351 struct xfs_log_iovec *vecp = NULL;
352
353 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
354
355 efdp->efd_format.efd_type = XFS_LI_EFD;
356 efdp->efd_format.efd_size = 1;
357
358 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
359 &efdp->efd_format,
360 xfs_efd_item_sizeof(efdp));
361 }
362
363 /*
364 * Pinning has no meaning for an efd item, so just return.
365 */
366 STATIC void
367 xfs_efd_item_pin(
368 struct xfs_log_item *lip)
369 {
370 }
371
372 /*
373 * Since pinning has no meaning for an efd item, unpinning does
374 * not either.
375 */
376 STATIC void
377 xfs_efd_item_unpin(
378 struct xfs_log_item *lip,
379 int remove)
380 {
381 }
382
383 /*
384 * There isn't much you can do to push on an efd item. It is simply stuck
385 * waiting for the log to be flushed to disk.
386 */
387 STATIC uint
388 xfs_efd_item_push(
389 struct xfs_log_item *lip,
390 struct list_head *buffer_list)
391 {
392 return XFS_ITEM_PINNED;
393 }
394
395 /*
396 * The EFD is either committed or aborted if the transaction is cancelled. If
397 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
398 */
399 STATIC void
400 xfs_efd_item_unlock(
401 struct xfs_log_item *lip)
402 {
403 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
404
405 if (lip->li_flags & XFS_LI_ABORTED) {
406 xfs_efi_release(efdp->efd_efip);
407 xfs_efd_item_free(efdp);
408 }
409 }
410
411 /*
412 * When the efd item is committed to disk, all we need to do is delete our
413 * reference to our partner efi item and then free ourselves. Since we're
414 * freeing ourselves we must return -1 to keep the transaction code from further
415 * referencing this item.
416 */
417 STATIC xfs_lsn_t
418 xfs_efd_item_committed(
419 struct xfs_log_item *lip,
420 xfs_lsn_t lsn)
421 {
422 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
423
424 /*
425 * Drop the EFI reference regardless of whether the EFD has been
426 * aborted. Once the EFD transaction is constructed, it is the sole
427 * responsibility of the EFD to release the EFI (even if the EFI is
428 * aborted due to log I/O error).
429 */
430 xfs_efi_release(efdp->efd_efip);
431 xfs_efd_item_free(efdp);
432
433 return (xfs_lsn_t)-1;
434 }
435
436 /*
437 * The EFD dependency tracking op doesn't do squat. It can't because
438 * it doesn't know where the free extent is coming from. The dependency
439 * tracking has to be handled by the "enclosing" metadata object. For
440 * example, for inodes, the inode is locked throughout the extent freeing
441 * so the dependency should be recorded there.
442 */
443 STATIC void
444 xfs_efd_item_committing(
445 struct xfs_log_item *lip,
446 xfs_lsn_t lsn)
447 {
448 }
449
450 /*
451 * This is the ops vector shared by all efd log items.
452 */
453 static const struct xfs_item_ops xfs_efd_item_ops = {
454 .iop_size = xfs_efd_item_size,
455 .iop_format = xfs_efd_item_format,
456 .iop_pin = xfs_efd_item_pin,
457 .iop_unpin = xfs_efd_item_unpin,
458 .iop_unlock = xfs_efd_item_unlock,
459 .iop_committed = xfs_efd_item_committed,
460 .iop_push = xfs_efd_item_push,
461 .iop_committing = xfs_efd_item_committing
462 };
463
464 /*
465 * Allocate and initialize an efd item with the given number of extents.
466 */
467 struct xfs_efd_log_item *
468 xfs_efd_init(
469 struct xfs_mount *mp,
470 struct xfs_efi_log_item *efip,
471 uint nextents)
472
473 {
474 struct xfs_efd_log_item *efdp;
475 uint size;
476
477 ASSERT(nextents > 0);
478 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
479 size = (uint)(sizeof(xfs_efd_log_item_t) +
480 ((nextents - 1) * sizeof(xfs_extent_t)));
481 efdp = kmem_zalloc(size, KM_SLEEP);
482 } else {
483 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
484 }
485
486 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
487 efdp->efd_efip = efip;
488 efdp->efd_format.efd_nextents = nextents;
489 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
490
491 return efdp;
492 }
493
494 /*
495 * Process an extent free intent item that was recovered from
496 * the log. We need to free the extents that it describes.
497 */
498 int
499 xfs_efi_recover(
500 struct xfs_mount *mp,
501 struct xfs_efi_log_item *efip)
502 {
503 struct xfs_efd_log_item *efdp;
504 struct xfs_trans *tp;
505 int i;
506 int error = 0;
507 xfs_extent_t *extp;
508 xfs_fsblock_t startblock_fsb;
509 struct xfs_owner_info oinfo;
510
511 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
512
513 /*
514 * First check the validity of the extents described by the
515 * EFI. If any are bad, then assume that all are bad and
516 * just toss the EFI.
517 */
518 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
519 extp = &efip->efi_format.efi_extents[i];
520 startblock_fsb = XFS_BB_TO_FSB(mp,
521 XFS_FSB_TO_DADDR(mp, extp->ext_start));
522 if (startblock_fsb == 0 ||
523 extp->ext_len == 0 ||
524 startblock_fsb >= mp->m_sb.sb_dblocks ||
525 extp->ext_len >= mp->m_sb.sb_agblocks) {
526 /*
527 * This will pull the EFI from the AIL and
528 * free the memory associated with it.
529 */
530 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
531 xfs_efi_release(efip);
532 return -EIO;
533 }
534 }
535
536 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
537 if (error)
538 return error;
539 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
540
541 xfs_rmap_skip_owner_update(&oinfo);
542 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
543 extp = &efip->efi_format.efi_extents[i];
544 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
545 extp->ext_len, &oinfo);
546 if (error)
547 goto abort_error;
548
549 }
550
551 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
552 error = xfs_trans_commit(tp);
553 return error;
554
555 abort_error:
556 xfs_trans_cancel(tp);
557 return error;
558 }