]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_extfree_item.c
Merge tag 'for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_extfree_item.h"
28 #include "xfs_log.h"
29
30
31 kmem_zone_t *xfs_efi_zone;
32 kmem_zone_t *xfs_efd_zone;
33
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 void
40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48
49 /*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56 STATIC void
57 __xfs_efi_release(
58 struct xfs_efi_log_item *efip)
59 {
60 struct xfs_ail *ailp = efip->efi_item.li_ailp;
61
62 if (atomic_dec_and_test(&efip->efi_refcount)) {
63 spin_lock(&ailp->xa_lock);
64 /* xfs_trans_ail_delete() drops the AIL lock. */
65 xfs_trans_ail_delete(ailp, &efip->efi_item,
66 SHUTDOWN_LOG_IO_ERROR);
67 xfs_efi_item_free(efip);
68 }
69 }
70
71 /*
72 * This returns the number of iovecs needed to log the given efi item.
73 * We only need 1 iovec for an efi item. It just logs the efi_log_format
74 * structure.
75 */
76 static inline int
77 xfs_efi_item_sizeof(
78 struct xfs_efi_log_item *efip)
79 {
80 return sizeof(struct xfs_efi_log_format) +
81 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
82 }
83
84 STATIC void
85 xfs_efi_item_size(
86 struct xfs_log_item *lip,
87 int *nvecs,
88 int *nbytes)
89 {
90 *nvecs += 1;
91 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
92 }
93
94 /*
95 * This is called to fill in the vector of log iovecs for the
96 * given efi log item. We use only 1 iovec, and we point that
97 * at the efi_log_format structure embedded in the efi item.
98 * It is at this point that we assert that all of the extent
99 * slots in the efi item have been filled.
100 */
101 STATIC void
102 xfs_efi_item_format(
103 struct xfs_log_item *lip,
104 struct xfs_log_vec *lv)
105 {
106 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
107 struct xfs_log_iovec *vecp = NULL;
108
109 ASSERT(atomic_read(&efip->efi_next_extent) ==
110 efip->efi_format.efi_nextents);
111
112 efip->efi_format.efi_type = XFS_LI_EFI;
113 efip->efi_format.efi_size = 1;
114
115 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
116 &efip->efi_format,
117 xfs_efi_item_sizeof(efip));
118 }
119
120
121 /*
122 * Pinning has no meaning for an efi item, so just return.
123 */
124 STATIC void
125 xfs_efi_item_pin(
126 struct xfs_log_item *lip)
127 {
128 }
129
130 /*
131 * While EFIs cannot really be pinned, the unpin operation is the last place at
132 * which the EFI is manipulated during a transaction. If we are being asked to
133 * remove the EFI it's because the transaction has been cancelled and by
134 * definition that means the EFI cannot be in the AIL so remove it from the
135 * transaction and free it. Otherwise coordinate with xfs_efi_release()
136 * to determine who gets to free the EFI.
137 */
138 STATIC void
139 xfs_efi_item_unpin(
140 struct xfs_log_item *lip,
141 int remove)
142 {
143 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
144
145 if (remove) {
146 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
147 if (lip->li_desc)
148 xfs_trans_del_item(lip);
149 xfs_efi_item_free(efip);
150 return;
151 }
152 __xfs_efi_release(efip);
153 }
154
155 /*
156 * Efi items have no locking or pushing. However, since EFIs are pulled from
157 * the AIL when their corresponding EFDs are committed to disk, their situation
158 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
159 * will eventually flush the log. This should help in getting the EFI out of
160 * the AIL.
161 */
162 STATIC uint
163 xfs_efi_item_push(
164 struct xfs_log_item *lip,
165 struct list_head *buffer_list)
166 {
167 return XFS_ITEM_PINNED;
168 }
169
170 STATIC void
171 xfs_efi_item_unlock(
172 struct xfs_log_item *lip)
173 {
174 if (lip->li_flags & XFS_LI_ABORTED)
175 xfs_efi_item_free(EFI_ITEM(lip));
176 }
177
178 /*
179 * The EFI is logged only once and cannot be moved in the log, so simply return
180 * the lsn at which it's been logged.
181 */
182 STATIC xfs_lsn_t
183 xfs_efi_item_committed(
184 struct xfs_log_item *lip,
185 xfs_lsn_t lsn)
186 {
187 return lsn;
188 }
189
190 /*
191 * The EFI dependency tracking op doesn't do squat. It can't because
192 * it doesn't know where the free extent is coming from. The dependency
193 * tracking has to be handled by the "enclosing" metadata object. For
194 * example, for inodes, the inode is locked throughout the extent freeing
195 * so the dependency should be recorded there.
196 */
197 STATIC void
198 xfs_efi_item_committing(
199 struct xfs_log_item *lip,
200 xfs_lsn_t lsn)
201 {
202 }
203
204 /*
205 * This is the ops vector shared by all efi log items.
206 */
207 static const struct xfs_item_ops xfs_efi_item_ops = {
208 .iop_size = xfs_efi_item_size,
209 .iop_format = xfs_efi_item_format,
210 .iop_pin = xfs_efi_item_pin,
211 .iop_unpin = xfs_efi_item_unpin,
212 .iop_unlock = xfs_efi_item_unlock,
213 .iop_committed = xfs_efi_item_committed,
214 .iop_push = xfs_efi_item_push,
215 .iop_committing = xfs_efi_item_committing
216 };
217
218
219 /*
220 * Allocate and initialize an efi item with the given number of extents.
221 */
222 struct xfs_efi_log_item *
223 xfs_efi_init(
224 struct xfs_mount *mp,
225 uint nextents)
226
227 {
228 struct xfs_efi_log_item *efip;
229 uint size;
230
231 ASSERT(nextents > 0);
232 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233 size = (uint)(sizeof(xfs_efi_log_item_t) +
234 ((nextents - 1) * sizeof(xfs_extent_t)));
235 efip = kmem_zalloc(size, KM_SLEEP);
236 } else {
237 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
238 }
239
240 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
241 efip->efi_format.efi_nextents = nextents;
242 efip->efi_format.efi_id = (__psint_t)(void*)efip;
243 atomic_set(&efip->efi_next_extent, 0);
244 atomic_set(&efip->efi_refcount, 2);
245
246 return efip;
247 }
248
249 /*
250 * Copy an EFI format buffer from the given buf, and into the destination
251 * EFI format structure.
252 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
253 * one of which will be the native format for this kernel.
254 * It will handle the conversion of formats if necessary.
255 */
256 int
257 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
258 {
259 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
260 uint i;
261 uint len = sizeof(xfs_efi_log_format_t) +
262 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
263 uint len32 = sizeof(xfs_efi_log_format_32_t) +
264 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
265 uint len64 = sizeof(xfs_efi_log_format_64_t) +
266 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
267
268 if (buf->i_len == len) {
269 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
270 return 0;
271 } else if (buf->i_len == len32) {
272 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
273
274 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
275 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
276 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
277 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
278 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
279 dst_efi_fmt->efi_extents[i].ext_start =
280 src_efi_fmt_32->efi_extents[i].ext_start;
281 dst_efi_fmt->efi_extents[i].ext_len =
282 src_efi_fmt_32->efi_extents[i].ext_len;
283 }
284 return 0;
285 } else if (buf->i_len == len64) {
286 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
287
288 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
289 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
290 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
291 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
292 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
293 dst_efi_fmt->efi_extents[i].ext_start =
294 src_efi_fmt_64->efi_extents[i].ext_start;
295 dst_efi_fmt->efi_extents[i].ext_len =
296 src_efi_fmt_64->efi_extents[i].ext_len;
297 }
298 return 0;
299 }
300 return -EFSCORRUPTED;
301 }
302
303 /*
304 * This is called by the efd item code below to release references to the given
305 * efi item. Each efd calls this with the number of extents that it has
306 * logged, and when the sum of these reaches the total number of extents logged
307 * by this efi item we can free the efi item.
308 */
309 void
310 xfs_efi_release(xfs_efi_log_item_t *efip,
311 uint nextents)
312 {
313 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
314 if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) {
315 /* recovery needs us to drop the EFI reference, too */
316 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
317 __xfs_efi_release(efip);
318
319 __xfs_efi_release(efip);
320 /* efip may now have been freed, do not reference it again. */
321 }
322 }
323
324 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
325 {
326 return container_of(lip, struct xfs_efd_log_item, efd_item);
327 }
328
329 STATIC void
330 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
331 {
332 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
333 kmem_free(efdp);
334 else
335 kmem_zone_free(xfs_efd_zone, efdp);
336 }
337
338 /*
339 * This returns the number of iovecs needed to log the given efd item.
340 * We only need 1 iovec for an efd item. It just logs the efd_log_format
341 * structure.
342 */
343 static inline int
344 xfs_efd_item_sizeof(
345 struct xfs_efd_log_item *efdp)
346 {
347 return sizeof(xfs_efd_log_format_t) +
348 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
349 }
350
351 STATIC void
352 xfs_efd_item_size(
353 struct xfs_log_item *lip,
354 int *nvecs,
355 int *nbytes)
356 {
357 *nvecs += 1;
358 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
359 }
360
361 /*
362 * This is called to fill in the vector of log iovecs for the
363 * given efd log item. We use only 1 iovec, and we point that
364 * at the efd_log_format structure embedded in the efd item.
365 * It is at this point that we assert that all of the extent
366 * slots in the efd item have been filled.
367 */
368 STATIC void
369 xfs_efd_item_format(
370 struct xfs_log_item *lip,
371 struct xfs_log_vec *lv)
372 {
373 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
374 struct xfs_log_iovec *vecp = NULL;
375
376 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
377
378 efdp->efd_format.efd_type = XFS_LI_EFD;
379 efdp->efd_format.efd_size = 1;
380
381 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
382 &efdp->efd_format,
383 xfs_efd_item_sizeof(efdp));
384 }
385
386 /*
387 * Pinning has no meaning for an efd item, so just return.
388 */
389 STATIC void
390 xfs_efd_item_pin(
391 struct xfs_log_item *lip)
392 {
393 }
394
395 /*
396 * Since pinning has no meaning for an efd item, unpinning does
397 * not either.
398 */
399 STATIC void
400 xfs_efd_item_unpin(
401 struct xfs_log_item *lip,
402 int remove)
403 {
404 }
405
406 /*
407 * There isn't much you can do to push on an efd item. It is simply stuck
408 * waiting for the log to be flushed to disk.
409 */
410 STATIC uint
411 xfs_efd_item_push(
412 struct xfs_log_item *lip,
413 struct list_head *buffer_list)
414 {
415 return XFS_ITEM_PINNED;
416 }
417
418 STATIC void
419 xfs_efd_item_unlock(
420 struct xfs_log_item *lip)
421 {
422 if (lip->li_flags & XFS_LI_ABORTED)
423 xfs_efd_item_free(EFD_ITEM(lip));
424 }
425
426 /*
427 * When the efd item is committed to disk, all we need to do
428 * is delete our reference to our partner efi item and then
429 * free ourselves. Since we're freeing ourselves we must
430 * return -1 to keep the transaction code from further referencing
431 * this item.
432 */
433 STATIC xfs_lsn_t
434 xfs_efd_item_committed(
435 struct xfs_log_item *lip,
436 xfs_lsn_t lsn)
437 {
438 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
439
440 /*
441 * If we got a log I/O error, it's always the case that the LR with the
442 * EFI got unpinned and freed before the EFD got aborted.
443 */
444 if (!(lip->li_flags & XFS_LI_ABORTED))
445 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
446
447 xfs_efd_item_free(efdp);
448 return (xfs_lsn_t)-1;
449 }
450
451 /*
452 * The EFD dependency tracking op doesn't do squat. It can't because
453 * it doesn't know where the free extent is coming from. The dependency
454 * tracking has to be handled by the "enclosing" metadata object. For
455 * example, for inodes, the inode is locked throughout the extent freeing
456 * so the dependency should be recorded there.
457 */
458 STATIC void
459 xfs_efd_item_committing(
460 struct xfs_log_item *lip,
461 xfs_lsn_t lsn)
462 {
463 }
464
465 /*
466 * This is the ops vector shared by all efd log items.
467 */
468 static const struct xfs_item_ops xfs_efd_item_ops = {
469 .iop_size = xfs_efd_item_size,
470 .iop_format = xfs_efd_item_format,
471 .iop_pin = xfs_efd_item_pin,
472 .iop_unpin = xfs_efd_item_unpin,
473 .iop_unlock = xfs_efd_item_unlock,
474 .iop_committed = xfs_efd_item_committed,
475 .iop_push = xfs_efd_item_push,
476 .iop_committing = xfs_efd_item_committing
477 };
478
479 /*
480 * Allocate and initialize an efd item with the given number of extents.
481 */
482 struct xfs_efd_log_item *
483 xfs_efd_init(
484 struct xfs_mount *mp,
485 struct xfs_efi_log_item *efip,
486 uint nextents)
487
488 {
489 struct xfs_efd_log_item *efdp;
490 uint size;
491
492 ASSERT(nextents > 0);
493 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
494 size = (uint)(sizeof(xfs_efd_log_item_t) +
495 ((nextents - 1) * sizeof(xfs_extent_t)));
496 efdp = kmem_zalloc(size, KM_SLEEP);
497 } else {
498 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
499 }
500
501 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
502 efdp->efd_efip = efip;
503 efdp->efd_format.efd_nextents = nextents;
504 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
505
506 return efdp;
507 }