]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_extfree_item.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_extfree_item.h"
28 #include "xfs_log.h"
29
30
31 kmem_zone_t *xfs_efi_zone;
32 kmem_zone_t *xfs_efd_zone;
33
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 void
40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 kmem_free(efip->efi_item.li_lv_shadow);
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kmem_free(efip);
46 else
47 kmem_zone_free(xfs_efi_zone, efip);
48 }
49
50 /*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55 static inline int
56 xfs_efi_item_sizeof(
57 struct xfs_efi_log_item *efip)
58 {
59 return sizeof(struct xfs_efi_log_format) +
60 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
61 }
62
63 STATIC void
64 xfs_efi_item_size(
65 struct xfs_log_item *lip,
66 int *nvecs,
67 int *nbytes)
68 {
69 *nvecs += 1;
70 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
71 }
72
73 /*
74 * This is called to fill in the vector of log iovecs for the
75 * given efi log item. We use only 1 iovec, and we point that
76 * at the efi_log_format structure embedded in the efi item.
77 * It is at this point that we assert that all of the extent
78 * slots in the efi item have been filled.
79 */
80 STATIC void
81 xfs_efi_item_format(
82 struct xfs_log_item *lip,
83 struct xfs_log_vec *lv)
84 {
85 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
86 struct xfs_log_iovec *vecp = NULL;
87
88 ASSERT(atomic_read(&efip->efi_next_extent) ==
89 efip->efi_format.efi_nextents);
90
91 efip->efi_format.efi_type = XFS_LI_EFI;
92 efip->efi_format.efi_size = 1;
93
94 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
95 &efip->efi_format,
96 xfs_efi_item_sizeof(efip));
97 }
98
99
100 /*
101 * Pinning has no meaning for an efi item, so just return.
102 */
103 STATIC void
104 xfs_efi_item_pin(
105 struct xfs_log_item *lip)
106 {
107 }
108
109 /*
110 * The unpin operation is the last place an EFI is manipulated in the log. It is
111 * either inserted in the AIL or aborted in the event of a log I/O error. In
112 * either case, the EFI transaction has been successfully committed to make it
113 * this far. Therefore, we expect whoever committed the EFI to either construct
114 * and commit the EFD or drop the EFD's reference in the event of error. Simply
115 * drop the log's EFI reference now that the log is done with it.
116 */
117 STATIC void
118 xfs_efi_item_unpin(
119 struct xfs_log_item *lip,
120 int remove)
121 {
122 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
123 xfs_efi_release(efip);
124 }
125
126 /*
127 * Efi items have no locking or pushing. However, since EFIs are pulled from
128 * the AIL when their corresponding EFDs are committed to disk, their situation
129 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
130 * will eventually flush the log. This should help in getting the EFI out of
131 * the AIL.
132 */
133 STATIC uint
134 xfs_efi_item_push(
135 struct xfs_log_item *lip,
136 struct list_head *buffer_list)
137 {
138 return XFS_ITEM_PINNED;
139 }
140
141 /*
142 * The EFI has been either committed or aborted if the transaction has been
143 * cancelled. If the transaction was cancelled, an EFD isn't going to be
144 * constructed and thus we free the EFI here directly.
145 */
146 STATIC void
147 xfs_efi_item_unlock(
148 struct xfs_log_item *lip)
149 {
150 if (lip->li_flags & XFS_LI_ABORTED)
151 xfs_efi_item_free(EFI_ITEM(lip));
152 }
153
154 /*
155 * The EFI is logged only once and cannot be moved in the log, so simply return
156 * the lsn at which it's been logged.
157 */
158 STATIC xfs_lsn_t
159 xfs_efi_item_committed(
160 struct xfs_log_item *lip,
161 xfs_lsn_t lsn)
162 {
163 return lsn;
164 }
165
166 /*
167 * The EFI dependency tracking op doesn't do squat. It can't because
168 * it doesn't know where the free extent is coming from. The dependency
169 * tracking has to be handled by the "enclosing" metadata object. For
170 * example, for inodes, the inode is locked throughout the extent freeing
171 * so the dependency should be recorded there.
172 */
173 STATIC void
174 xfs_efi_item_committing(
175 struct xfs_log_item *lip,
176 xfs_lsn_t lsn)
177 {
178 }
179
180 /*
181 * This is the ops vector shared by all efi log items.
182 */
183 static const struct xfs_item_ops xfs_efi_item_ops = {
184 .iop_size = xfs_efi_item_size,
185 .iop_format = xfs_efi_item_format,
186 .iop_pin = xfs_efi_item_pin,
187 .iop_unpin = xfs_efi_item_unpin,
188 .iop_unlock = xfs_efi_item_unlock,
189 .iop_committed = xfs_efi_item_committed,
190 .iop_push = xfs_efi_item_push,
191 .iop_committing = xfs_efi_item_committing
192 };
193
194
195 /*
196 * Allocate and initialize an efi item with the given number of extents.
197 */
198 struct xfs_efi_log_item *
199 xfs_efi_init(
200 struct xfs_mount *mp,
201 uint nextents)
202
203 {
204 struct xfs_efi_log_item *efip;
205 uint size;
206
207 ASSERT(nextents > 0);
208 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
209 size = (uint)(sizeof(xfs_efi_log_item_t) +
210 ((nextents - 1) * sizeof(xfs_extent_t)));
211 efip = kmem_zalloc(size, KM_SLEEP);
212 } else {
213 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
214 }
215
216 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
217 efip->efi_format.efi_nextents = nextents;
218 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
219 atomic_set(&efip->efi_next_extent, 0);
220 atomic_set(&efip->efi_refcount, 2);
221
222 return efip;
223 }
224
225 /*
226 * Copy an EFI format buffer from the given buf, and into the destination
227 * EFI format structure.
228 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
229 * one of which will be the native format for this kernel.
230 * It will handle the conversion of formats if necessary.
231 */
232 int
233 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
234 {
235 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
236 uint i;
237 uint len = sizeof(xfs_efi_log_format_t) +
238 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
239 uint len32 = sizeof(xfs_efi_log_format_32_t) +
240 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
241 uint len64 = sizeof(xfs_efi_log_format_64_t) +
242 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
243
244 if (buf->i_len == len) {
245 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
246 return 0;
247 } else if (buf->i_len == len32) {
248 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
249
250 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
251 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
252 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
253 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
254 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
255 dst_efi_fmt->efi_extents[i].ext_start =
256 src_efi_fmt_32->efi_extents[i].ext_start;
257 dst_efi_fmt->efi_extents[i].ext_len =
258 src_efi_fmt_32->efi_extents[i].ext_len;
259 }
260 return 0;
261 } else if (buf->i_len == len64) {
262 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
263
264 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
265 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
266 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
267 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
268 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
269 dst_efi_fmt->efi_extents[i].ext_start =
270 src_efi_fmt_64->efi_extents[i].ext_start;
271 dst_efi_fmt->efi_extents[i].ext_len =
272 src_efi_fmt_64->efi_extents[i].ext_len;
273 }
274 return 0;
275 }
276 return -EFSCORRUPTED;
277 }
278
279 /*
280 * Freeing the efi requires that we remove it from the AIL if it has already
281 * been placed there. However, the EFI may not yet have been placed in the AIL
282 * when called by xfs_efi_release() from EFD processing due to the ordering of
283 * committed vs unpin operations in bulk insert operations. Hence the reference
284 * count to ensure only the last caller frees the EFI.
285 */
286 void
287 xfs_efi_release(
288 struct xfs_efi_log_item *efip)
289 {
290 if (atomic_dec_and_test(&efip->efi_refcount)) {
291 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
292 xfs_efi_item_free(efip);
293 }
294 }
295
296 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
297 {
298 return container_of(lip, struct xfs_efd_log_item, efd_item);
299 }
300
301 STATIC void
302 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
303 {
304 kmem_free(efdp->efd_item.li_lv_shadow);
305 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
306 kmem_free(efdp);
307 else
308 kmem_zone_free(xfs_efd_zone, efdp);
309 }
310
311 /*
312 * This returns the number of iovecs needed to log the given efd item.
313 * We only need 1 iovec for an efd item. It just logs the efd_log_format
314 * structure.
315 */
316 static inline int
317 xfs_efd_item_sizeof(
318 struct xfs_efd_log_item *efdp)
319 {
320 return sizeof(xfs_efd_log_format_t) +
321 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
322 }
323
324 STATIC void
325 xfs_efd_item_size(
326 struct xfs_log_item *lip,
327 int *nvecs,
328 int *nbytes)
329 {
330 *nvecs += 1;
331 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
332 }
333
334 /*
335 * This is called to fill in the vector of log iovecs for the
336 * given efd log item. We use only 1 iovec, and we point that
337 * at the efd_log_format structure embedded in the efd item.
338 * It is at this point that we assert that all of the extent
339 * slots in the efd item have been filled.
340 */
341 STATIC void
342 xfs_efd_item_format(
343 struct xfs_log_item *lip,
344 struct xfs_log_vec *lv)
345 {
346 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
347 struct xfs_log_iovec *vecp = NULL;
348
349 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
350
351 efdp->efd_format.efd_type = XFS_LI_EFD;
352 efdp->efd_format.efd_size = 1;
353
354 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
355 &efdp->efd_format,
356 xfs_efd_item_sizeof(efdp));
357 }
358
359 /*
360 * Pinning has no meaning for an efd item, so just return.
361 */
362 STATIC void
363 xfs_efd_item_pin(
364 struct xfs_log_item *lip)
365 {
366 }
367
368 /*
369 * Since pinning has no meaning for an efd item, unpinning does
370 * not either.
371 */
372 STATIC void
373 xfs_efd_item_unpin(
374 struct xfs_log_item *lip,
375 int remove)
376 {
377 }
378
379 /*
380 * There isn't much you can do to push on an efd item. It is simply stuck
381 * waiting for the log to be flushed to disk.
382 */
383 STATIC uint
384 xfs_efd_item_push(
385 struct xfs_log_item *lip,
386 struct list_head *buffer_list)
387 {
388 return XFS_ITEM_PINNED;
389 }
390
391 /*
392 * The EFD is either committed or aborted if the transaction is cancelled. If
393 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
394 */
395 STATIC void
396 xfs_efd_item_unlock(
397 struct xfs_log_item *lip)
398 {
399 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
400
401 if (lip->li_flags & XFS_LI_ABORTED) {
402 xfs_efi_release(efdp->efd_efip);
403 xfs_efd_item_free(efdp);
404 }
405 }
406
407 /*
408 * When the efd item is committed to disk, all we need to do is delete our
409 * reference to our partner efi item and then free ourselves. Since we're
410 * freeing ourselves we must return -1 to keep the transaction code from further
411 * referencing this item.
412 */
413 STATIC xfs_lsn_t
414 xfs_efd_item_committed(
415 struct xfs_log_item *lip,
416 xfs_lsn_t lsn)
417 {
418 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
419
420 /*
421 * Drop the EFI reference regardless of whether the EFD has been
422 * aborted. Once the EFD transaction is constructed, it is the sole
423 * responsibility of the EFD to release the EFI (even if the EFI is
424 * aborted due to log I/O error).
425 */
426 xfs_efi_release(efdp->efd_efip);
427 xfs_efd_item_free(efdp);
428
429 return (xfs_lsn_t)-1;
430 }
431
432 /*
433 * The EFD dependency tracking op doesn't do squat. It can't because
434 * it doesn't know where the free extent is coming from. The dependency
435 * tracking has to be handled by the "enclosing" metadata object. For
436 * example, for inodes, the inode is locked throughout the extent freeing
437 * so the dependency should be recorded there.
438 */
439 STATIC void
440 xfs_efd_item_committing(
441 struct xfs_log_item *lip,
442 xfs_lsn_t lsn)
443 {
444 }
445
446 /*
447 * This is the ops vector shared by all efd log items.
448 */
449 static const struct xfs_item_ops xfs_efd_item_ops = {
450 .iop_size = xfs_efd_item_size,
451 .iop_format = xfs_efd_item_format,
452 .iop_pin = xfs_efd_item_pin,
453 .iop_unpin = xfs_efd_item_unpin,
454 .iop_unlock = xfs_efd_item_unlock,
455 .iop_committed = xfs_efd_item_committed,
456 .iop_push = xfs_efd_item_push,
457 .iop_committing = xfs_efd_item_committing
458 };
459
460 /*
461 * Allocate and initialize an efd item with the given number of extents.
462 */
463 struct xfs_efd_log_item *
464 xfs_efd_init(
465 struct xfs_mount *mp,
466 struct xfs_efi_log_item *efip,
467 uint nextents)
468
469 {
470 struct xfs_efd_log_item *efdp;
471 uint size;
472
473 ASSERT(nextents > 0);
474 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
475 size = (uint)(sizeof(xfs_efd_log_item_t) +
476 ((nextents - 1) * sizeof(xfs_extent_t)));
477 efdp = kmem_zalloc(size, KM_SLEEP);
478 } else {
479 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
480 }
481
482 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
483 efdp->efd_efip = efip;
484 efdp->efd_format.efd_nextents = nextents;
485 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
486
487 return efdp;
488 }