]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_extfree_item.c
Merge branch 'nvmf-4.8-rc' of git://git.infradead.org/nvme-fabrics into for-linus
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_extfree_item.h"
29 #include "xfs_log.h"
30 #include "xfs_btree.h"
31 #include "xfs_rmap.h"
32
33
34 kmem_zone_t *xfs_efi_zone;
35 kmem_zone_t *xfs_efd_zone;
36
37 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
38 {
39 return container_of(lip, struct xfs_efi_log_item, efi_item);
40 }
41
42 void
43 xfs_efi_item_free(
44 struct xfs_efi_log_item *efip)
45 {
46 kmem_free(efip->efi_item.li_lv_shadow);
47 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
48 kmem_free(efip);
49 else
50 kmem_zone_free(xfs_efi_zone, efip);
51 }
52
53 /*
54 * This returns the number of iovecs needed to log the given efi item.
55 * We only need 1 iovec for an efi item. It just logs the efi_log_format
56 * structure.
57 */
58 static inline int
59 xfs_efi_item_sizeof(
60 struct xfs_efi_log_item *efip)
61 {
62 return sizeof(struct xfs_efi_log_format) +
63 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
64 }
65
66 STATIC void
67 xfs_efi_item_size(
68 struct xfs_log_item *lip,
69 int *nvecs,
70 int *nbytes)
71 {
72 *nvecs += 1;
73 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
74 }
75
76 /*
77 * This is called to fill in the vector of log iovecs for the
78 * given efi log item. We use only 1 iovec, and we point that
79 * at the efi_log_format structure embedded in the efi item.
80 * It is at this point that we assert that all of the extent
81 * slots in the efi item have been filled.
82 */
83 STATIC void
84 xfs_efi_item_format(
85 struct xfs_log_item *lip,
86 struct xfs_log_vec *lv)
87 {
88 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
89 struct xfs_log_iovec *vecp = NULL;
90
91 ASSERT(atomic_read(&efip->efi_next_extent) ==
92 efip->efi_format.efi_nextents);
93
94 efip->efi_format.efi_type = XFS_LI_EFI;
95 efip->efi_format.efi_size = 1;
96
97 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
98 &efip->efi_format,
99 xfs_efi_item_sizeof(efip));
100 }
101
102
103 /*
104 * Pinning has no meaning for an efi item, so just return.
105 */
106 STATIC void
107 xfs_efi_item_pin(
108 struct xfs_log_item *lip)
109 {
110 }
111
112 /*
113 * The unpin operation is the last place an EFI is manipulated in the log. It is
114 * either inserted in the AIL or aborted in the event of a log I/O error. In
115 * either case, the EFI transaction has been successfully committed to make it
116 * this far. Therefore, we expect whoever committed the EFI to either construct
117 * and commit the EFD or drop the EFD's reference in the event of error. Simply
118 * drop the log's EFI reference now that the log is done with it.
119 */
120 STATIC void
121 xfs_efi_item_unpin(
122 struct xfs_log_item *lip,
123 int remove)
124 {
125 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
126 xfs_efi_release(efip);
127 }
128
129 /*
130 * Efi items have no locking or pushing. However, since EFIs are pulled from
131 * the AIL when their corresponding EFDs are committed to disk, their situation
132 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
133 * will eventually flush the log. This should help in getting the EFI out of
134 * the AIL.
135 */
136 STATIC uint
137 xfs_efi_item_push(
138 struct xfs_log_item *lip,
139 struct list_head *buffer_list)
140 {
141 return XFS_ITEM_PINNED;
142 }
143
144 /*
145 * The EFI has been either committed or aborted if the transaction has been
146 * cancelled. If the transaction was cancelled, an EFD isn't going to be
147 * constructed and thus we free the EFI here directly.
148 */
149 STATIC void
150 xfs_efi_item_unlock(
151 struct xfs_log_item *lip)
152 {
153 if (lip->li_flags & XFS_LI_ABORTED)
154 xfs_efi_item_free(EFI_ITEM(lip));
155 }
156
157 /*
158 * The EFI is logged only once and cannot be moved in the log, so simply return
159 * the lsn at which it's been logged.
160 */
161 STATIC xfs_lsn_t
162 xfs_efi_item_committed(
163 struct xfs_log_item *lip,
164 xfs_lsn_t lsn)
165 {
166 return lsn;
167 }
168
169 /*
170 * The EFI dependency tracking op doesn't do squat. It can't because
171 * it doesn't know where the free extent is coming from. The dependency
172 * tracking has to be handled by the "enclosing" metadata object. For
173 * example, for inodes, the inode is locked throughout the extent freeing
174 * so the dependency should be recorded there.
175 */
176 STATIC void
177 xfs_efi_item_committing(
178 struct xfs_log_item *lip,
179 xfs_lsn_t lsn)
180 {
181 }
182
183 /*
184 * This is the ops vector shared by all efi log items.
185 */
186 static const struct xfs_item_ops xfs_efi_item_ops = {
187 .iop_size = xfs_efi_item_size,
188 .iop_format = xfs_efi_item_format,
189 .iop_pin = xfs_efi_item_pin,
190 .iop_unpin = xfs_efi_item_unpin,
191 .iop_unlock = xfs_efi_item_unlock,
192 .iop_committed = xfs_efi_item_committed,
193 .iop_push = xfs_efi_item_push,
194 .iop_committing = xfs_efi_item_committing
195 };
196
197
198 /*
199 * Allocate and initialize an efi item with the given number of extents.
200 */
201 struct xfs_efi_log_item *
202 xfs_efi_init(
203 struct xfs_mount *mp,
204 uint nextents)
205
206 {
207 struct xfs_efi_log_item *efip;
208 uint size;
209
210 ASSERT(nextents > 0);
211 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
212 size = (uint)(sizeof(xfs_efi_log_item_t) +
213 ((nextents - 1) * sizeof(xfs_extent_t)));
214 efip = kmem_zalloc(size, KM_SLEEP);
215 } else {
216 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
217 }
218
219 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
220 efip->efi_format.efi_nextents = nextents;
221 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
222 atomic_set(&efip->efi_next_extent, 0);
223 atomic_set(&efip->efi_refcount, 2);
224
225 return efip;
226 }
227
228 /*
229 * Copy an EFI format buffer from the given buf, and into the destination
230 * EFI format structure.
231 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
232 * one of which will be the native format for this kernel.
233 * It will handle the conversion of formats if necessary.
234 */
235 int
236 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
237 {
238 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
239 uint i;
240 uint len = sizeof(xfs_efi_log_format_t) +
241 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
242 uint len32 = sizeof(xfs_efi_log_format_32_t) +
243 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
244 uint len64 = sizeof(xfs_efi_log_format_64_t) +
245 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
246
247 if (buf->i_len == len) {
248 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
249 return 0;
250 } else if (buf->i_len == len32) {
251 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
252
253 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
254 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
255 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
256 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
257 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
258 dst_efi_fmt->efi_extents[i].ext_start =
259 src_efi_fmt_32->efi_extents[i].ext_start;
260 dst_efi_fmt->efi_extents[i].ext_len =
261 src_efi_fmt_32->efi_extents[i].ext_len;
262 }
263 return 0;
264 } else if (buf->i_len == len64) {
265 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
266
267 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
268 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
269 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
270 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
271 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
272 dst_efi_fmt->efi_extents[i].ext_start =
273 src_efi_fmt_64->efi_extents[i].ext_start;
274 dst_efi_fmt->efi_extents[i].ext_len =
275 src_efi_fmt_64->efi_extents[i].ext_len;
276 }
277 return 0;
278 }
279 return -EFSCORRUPTED;
280 }
281
282 /*
283 * Freeing the efi requires that we remove it from the AIL if it has already
284 * been placed there. However, the EFI may not yet have been placed in the AIL
285 * when called by xfs_efi_release() from EFD processing due to the ordering of
286 * committed vs unpin operations in bulk insert operations. Hence the reference
287 * count to ensure only the last caller frees the EFI.
288 */
289 void
290 xfs_efi_release(
291 struct xfs_efi_log_item *efip)
292 {
293 if (atomic_dec_and_test(&efip->efi_refcount)) {
294 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
295 xfs_efi_item_free(efip);
296 }
297 }
298
299 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
300 {
301 return container_of(lip, struct xfs_efd_log_item, efd_item);
302 }
303
304 STATIC void
305 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
306 {
307 kmem_free(efdp->efd_item.li_lv_shadow);
308 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
309 kmem_free(efdp);
310 else
311 kmem_zone_free(xfs_efd_zone, efdp);
312 }
313
314 /*
315 * This returns the number of iovecs needed to log the given efd item.
316 * We only need 1 iovec for an efd item. It just logs the efd_log_format
317 * structure.
318 */
319 static inline int
320 xfs_efd_item_sizeof(
321 struct xfs_efd_log_item *efdp)
322 {
323 return sizeof(xfs_efd_log_format_t) +
324 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
325 }
326
327 STATIC void
328 xfs_efd_item_size(
329 struct xfs_log_item *lip,
330 int *nvecs,
331 int *nbytes)
332 {
333 *nvecs += 1;
334 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
335 }
336
337 /*
338 * This is called to fill in the vector of log iovecs for the
339 * given efd log item. We use only 1 iovec, and we point that
340 * at the efd_log_format structure embedded in the efd item.
341 * It is at this point that we assert that all of the extent
342 * slots in the efd item have been filled.
343 */
344 STATIC void
345 xfs_efd_item_format(
346 struct xfs_log_item *lip,
347 struct xfs_log_vec *lv)
348 {
349 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
350 struct xfs_log_iovec *vecp = NULL;
351
352 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
353
354 efdp->efd_format.efd_type = XFS_LI_EFD;
355 efdp->efd_format.efd_size = 1;
356
357 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
358 &efdp->efd_format,
359 xfs_efd_item_sizeof(efdp));
360 }
361
362 /*
363 * Pinning has no meaning for an efd item, so just return.
364 */
365 STATIC void
366 xfs_efd_item_pin(
367 struct xfs_log_item *lip)
368 {
369 }
370
371 /*
372 * Since pinning has no meaning for an efd item, unpinning does
373 * not either.
374 */
375 STATIC void
376 xfs_efd_item_unpin(
377 struct xfs_log_item *lip,
378 int remove)
379 {
380 }
381
382 /*
383 * There isn't much you can do to push on an efd item. It is simply stuck
384 * waiting for the log to be flushed to disk.
385 */
386 STATIC uint
387 xfs_efd_item_push(
388 struct xfs_log_item *lip,
389 struct list_head *buffer_list)
390 {
391 return XFS_ITEM_PINNED;
392 }
393
394 /*
395 * The EFD is either committed or aborted if the transaction is cancelled. If
396 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
397 */
398 STATIC void
399 xfs_efd_item_unlock(
400 struct xfs_log_item *lip)
401 {
402 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
403
404 if (lip->li_flags & XFS_LI_ABORTED) {
405 xfs_efi_release(efdp->efd_efip);
406 xfs_efd_item_free(efdp);
407 }
408 }
409
410 /*
411 * When the efd item is committed to disk, all we need to do is delete our
412 * reference to our partner efi item and then free ourselves. Since we're
413 * freeing ourselves we must return -1 to keep the transaction code from further
414 * referencing this item.
415 */
416 STATIC xfs_lsn_t
417 xfs_efd_item_committed(
418 struct xfs_log_item *lip,
419 xfs_lsn_t lsn)
420 {
421 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
422
423 /*
424 * Drop the EFI reference regardless of whether the EFD has been
425 * aborted. Once the EFD transaction is constructed, it is the sole
426 * responsibility of the EFD to release the EFI (even if the EFI is
427 * aborted due to log I/O error).
428 */
429 xfs_efi_release(efdp->efd_efip);
430 xfs_efd_item_free(efdp);
431
432 return (xfs_lsn_t)-1;
433 }
434
435 /*
436 * The EFD dependency tracking op doesn't do squat. It can't because
437 * it doesn't know where the free extent is coming from. The dependency
438 * tracking has to be handled by the "enclosing" metadata object. For
439 * example, for inodes, the inode is locked throughout the extent freeing
440 * so the dependency should be recorded there.
441 */
442 STATIC void
443 xfs_efd_item_committing(
444 struct xfs_log_item *lip,
445 xfs_lsn_t lsn)
446 {
447 }
448
449 /*
450 * This is the ops vector shared by all efd log items.
451 */
452 static const struct xfs_item_ops xfs_efd_item_ops = {
453 .iop_size = xfs_efd_item_size,
454 .iop_format = xfs_efd_item_format,
455 .iop_pin = xfs_efd_item_pin,
456 .iop_unpin = xfs_efd_item_unpin,
457 .iop_unlock = xfs_efd_item_unlock,
458 .iop_committed = xfs_efd_item_committed,
459 .iop_push = xfs_efd_item_push,
460 .iop_committing = xfs_efd_item_committing
461 };
462
463 /*
464 * Allocate and initialize an efd item with the given number of extents.
465 */
466 struct xfs_efd_log_item *
467 xfs_efd_init(
468 struct xfs_mount *mp,
469 struct xfs_efi_log_item *efip,
470 uint nextents)
471
472 {
473 struct xfs_efd_log_item *efdp;
474 uint size;
475
476 ASSERT(nextents > 0);
477 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
478 size = (uint)(sizeof(xfs_efd_log_item_t) +
479 ((nextents - 1) * sizeof(xfs_extent_t)));
480 efdp = kmem_zalloc(size, KM_SLEEP);
481 } else {
482 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
483 }
484
485 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
486 efdp->efd_efip = efip;
487 efdp->efd_format.efd_nextents = nextents;
488 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
489
490 return efdp;
491 }
492
493 /*
494 * Process an extent free intent item that was recovered from
495 * the log. We need to free the extents that it describes.
496 */
497 int
498 xfs_efi_recover(
499 struct xfs_mount *mp,
500 struct xfs_efi_log_item *efip)
501 {
502 struct xfs_efd_log_item *efdp;
503 struct xfs_trans *tp;
504 int i;
505 int error = 0;
506 xfs_extent_t *extp;
507 xfs_fsblock_t startblock_fsb;
508 struct xfs_owner_info oinfo;
509
510 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
511
512 /*
513 * First check the validity of the extents described by the
514 * EFI. If any are bad, then assume that all are bad and
515 * just toss the EFI.
516 */
517 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
518 extp = &efip->efi_format.efi_extents[i];
519 startblock_fsb = XFS_BB_TO_FSB(mp,
520 XFS_FSB_TO_DADDR(mp, extp->ext_start));
521 if (startblock_fsb == 0 ||
522 extp->ext_len == 0 ||
523 startblock_fsb >= mp->m_sb.sb_dblocks ||
524 extp->ext_len >= mp->m_sb.sb_agblocks) {
525 /*
526 * This will pull the EFI from the AIL and
527 * free the memory associated with it.
528 */
529 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
530 xfs_efi_release(efip);
531 return -EIO;
532 }
533 }
534
535 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
536 if (error)
537 return error;
538 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
539
540 xfs_rmap_skip_owner_update(&oinfo);
541 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
542 extp = &efip->efi_format.efi_extents[i];
543 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
544 extp->ext_len, &oinfo);
545 if (error)
546 goto abort_error;
547
548 }
549
550 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
551 error = xfs_trans_commit(tp);
552 return error;
553
554 abort_error:
555 xfs_trans_cancel(tp);
556 return error;
557 }