]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
Merge branch 'for-3.20/bdi' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39
40 #include <linux/aio.h>
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44
45 static const struct vm_operations_struct xfs_file_vm_ops;
46
47 /*
48 * Locking primitives for read and write IO paths to ensure we consistently use
49 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
50 */
51 static inline void
52 xfs_rw_ilock(
53 struct xfs_inode *ip,
54 int type)
55 {
56 if (type & XFS_IOLOCK_EXCL)
57 mutex_lock(&VFS_I(ip)->i_mutex);
58 xfs_ilock(ip, type);
59 }
60
61 static inline void
62 xfs_rw_iunlock(
63 struct xfs_inode *ip,
64 int type)
65 {
66 xfs_iunlock(ip, type);
67 if (type & XFS_IOLOCK_EXCL)
68 mutex_unlock(&VFS_I(ip)->i_mutex);
69 }
70
71 static inline void
72 xfs_rw_ilock_demote(
73 struct xfs_inode *ip,
74 int type)
75 {
76 xfs_ilock_demote(ip, type);
77 if (type & XFS_IOLOCK_EXCL)
78 mutex_unlock(&VFS_I(ip)->i_mutex);
79 }
80
81 /*
82 * xfs_iozero
83 *
84 * xfs_iozero clears the specified range of buffer supplied,
85 * and marks all the affected blocks as valid and modified. If
86 * an affected block is not allocated, it will be allocated. If
87 * an affected block is not completely overwritten, and is not
88 * valid before the operation, it will be read from disk before
89 * being partially zeroed.
90 */
91 int
92 xfs_iozero(
93 struct xfs_inode *ip, /* inode */
94 loff_t pos, /* offset in file */
95 size_t count) /* size of data to zero */
96 {
97 struct page *page;
98 struct address_space *mapping;
99 int status;
100
101 mapping = VFS_I(ip)->i_mapping;
102 do {
103 unsigned offset, bytes;
104 void *fsdata;
105
106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
107 bytes = PAGE_CACHE_SIZE - offset;
108 if (bytes > count)
109 bytes = count;
110
111 status = pagecache_write_begin(NULL, mapping, pos, bytes,
112 AOP_FLAG_UNINTERRUPTIBLE,
113 &page, &fsdata);
114 if (status)
115 break;
116
117 zero_user(page, offset, bytes);
118
119 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
120 page, fsdata);
121 WARN_ON(status <= 0); /* can't return less than zero! */
122 pos += bytes;
123 count -= bytes;
124 status = 0;
125 } while (count);
126
127 return (-status);
128 }
129
130 int
131 xfs_update_prealloc_flags(
132 struct xfs_inode *ip,
133 enum xfs_prealloc_flags flags)
134 {
135 struct xfs_trans *tp;
136 int error;
137
138 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
139 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
140 if (error) {
141 xfs_trans_cancel(tp, 0);
142 return error;
143 }
144
145 xfs_ilock(ip, XFS_ILOCK_EXCL);
146 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
147
148 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
149 ip->i_d.di_mode &= ~S_ISUID;
150 if (ip->i_d.di_mode & S_IXGRP)
151 ip->i_d.di_mode &= ~S_ISGID;
152 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
153 }
154
155 if (flags & XFS_PREALLOC_SET)
156 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
157 if (flags & XFS_PREALLOC_CLEAR)
158 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
159
160 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
161 if (flags & XFS_PREALLOC_SYNC)
162 xfs_trans_set_sync(tp);
163 return xfs_trans_commit(tp, 0);
164 }
165
166 /*
167 * Fsync operations on directories are much simpler than on regular files,
168 * as there is no file data to flush, and thus also no need for explicit
169 * cache flush operations, and there are no non-transaction metadata updates
170 * on directories either.
171 */
172 STATIC int
173 xfs_dir_fsync(
174 struct file *file,
175 loff_t start,
176 loff_t end,
177 int datasync)
178 {
179 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
180 struct xfs_mount *mp = ip->i_mount;
181 xfs_lsn_t lsn = 0;
182
183 trace_xfs_dir_fsync(ip);
184
185 xfs_ilock(ip, XFS_ILOCK_SHARED);
186 if (xfs_ipincount(ip))
187 lsn = ip->i_itemp->ili_last_lsn;
188 xfs_iunlock(ip, XFS_ILOCK_SHARED);
189
190 if (!lsn)
191 return 0;
192 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193 }
194
195 STATIC int
196 xfs_file_fsync(
197 struct file *file,
198 loff_t start,
199 loff_t end,
200 int datasync)
201 {
202 struct inode *inode = file->f_mapping->host;
203 struct xfs_inode *ip = XFS_I(inode);
204 struct xfs_mount *mp = ip->i_mount;
205 int error = 0;
206 int log_flushed = 0;
207 xfs_lsn_t lsn = 0;
208
209 trace_xfs_file_fsync(ip);
210
211 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
212 if (error)
213 return error;
214
215 if (XFS_FORCED_SHUTDOWN(mp))
216 return -EIO;
217
218 xfs_iflags_clear(ip, XFS_ITRUNCATED);
219
220 if (mp->m_flags & XFS_MOUNT_BARRIER) {
221 /*
222 * If we have an RT and/or log subvolume we need to make sure
223 * to flush the write cache the device used for file data
224 * first. This is to ensure newly written file data make
225 * it to disk before logging the new inode size in case of
226 * an extending write.
227 */
228 if (XFS_IS_REALTIME_INODE(ip))
229 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
230 else if (mp->m_logdev_targp != mp->m_ddev_targp)
231 xfs_blkdev_issue_flush(mp->m_ddev_targp);
232 }
233
234 /*
235 * All metadata updates are logged, which means that we just have
236 * to flush the log up to the latest LSN that touched the inode.
237 */
238 xfs_ilock(ip, XFS_ILOCK_SHARED);
239 if (xfs_ipincount(ip)) {
240 if (!datasync ||
241 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
242 lsn = ip->i_itemp->ili_last_lsn;
243 }
244 xfs_iunlock(ip, XFS_ILOCK_SHARED);
245
246 if (lsn)
247 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
248
249 /*
250 * If we only have a single device, and the log force about was
251 * a no-op we might have to flush the data device cache here.
252 * This can only happen for fdatasync/O_DSYNC if we were overwriting
253 * an already allocated file and thus do not have any metadata to
254 * commit.
255 */
256 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
257 mp->m_logdev_targp == mp->m_ddev_targp &&
258 !XFS_IS_REALTIME_INODE(ip) &&
259 !log_flushed)
260 xfs_blkdev_issue_flush(mp->m_ddev_targp);
261
262 return error;
263 }
264
265 STATIC ssize_t
266 xfs_file_read_iter(
267 struct kiocb *iocb,
268 struct iov_iter *to)
269 {
270 struct file *file = iocb->ki_filp;
271 struct inode *inode = file->f_mapping->host;
272 struct xfs_inode *ip = XFS_I(inode);
273 struct xfs_mount *mp = ip->i_mount;
274 size_t size = iov_iter_count(to);
275 ssize_t ret = 0;
276 int ioflags = 0;
277 xfs_fsize_t n;
278 loff_t pos = iocb->ki_pos;
279
280 XFS_STATS_INC(xs_read_calls);
281
282 if (unlikely(file->f_flags & O_DIRECT))
283 ioflags |= XFS_IO_ISDIRECT;
284 if (file->f_mode & FMODE_NOCMTIME)
285 ioflags |= XFS_IO_INVIS;
286
287 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288 xfs_buftarg_t *target =
289 XFS_IS_REALTIME_INODE(ip) ?
290 mp->m_rtdev_targp : mp->m_ddev_targp;
291 /* DIO must be aligned to device logical sector size */
292 if ((pos | size) & target->bt_logical_sectormask) {
293 if (pos == i_size_read(inode))
294 return 0;
295 return -EINVAL;
296 }
297 }
298
299 n = mp->m_super->s_maxbytes - pos;
300 if (n <= 0 || size == 0)
301 return 0;
302
303 if (n < size)
304 size = n;
305
306 if (XFS_FORCED_SHUTDOWN(mp))
307 return -EIO;
308
309 /*
310 * Locking is a bit tricky here. If we take an exclusive lock
311 * for direct IO, we effectively serialise all new concurrent
312 * read IO to this file and block it behind IO that is currently in
313 * progress because IO in progress holds the IO lock shared. We only
314 * need to hold the lock exclusive to blow away the page cache, so
315 * only take lock exclusively if the page cache needs invalidation.
316 * This allows the normal direct IO case of no page cache pages to
317 * proceeed concurrently without serialisation.
318 */
319 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
320 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323
324 if (inode->i_mapping->nrpages) {
325 ret = filemap_write_and_wait_range(
326 VFS_I(ip)->i_mapping,
327 pos, pos + size - 1);
328 if (ret) {
329 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
330 return ret;
331 }
332
333 /*
334 * Invalidate whole pages. This can return an error if
335 * we fail to invalidate a page, but this should never
336 * happen on XFS. Warn if it does fail.
337 */
338 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339 pos >> PAGE_CACHE_SHIFT,
340 (pos + size - 1) >> PAGE_CACHE_SHIFT);
341 WARN_ON_ONCE(ret);
342 ret = 0;
343 }
344 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345 }
346
347 trace_xfs_file_read(ip, size, pos, ioflags);
348
349 ret = generic_file_read_iter(iocb, to);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
352
353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 return ret;
355 }
356
357 STATIC ssize_t
358 xfs_file_splice_read(
359 struct file *infilp,
360 loff_t *ppos,
361 struct pipe_inode_info *pipe,
362 size_t count,
363 unsigned int flags)
364 {
365 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
366 int ioflags = 0;
367 ssize_t ret;
368
369 XFS_STATS_INC(xs_read_calls);
370
371 if (infilp->f_mode & FMODE_NOCMTIME)
372 ioflags |= XFS_IO_INVIS;
373
374 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
375 return -EIO;
376
377 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378
379 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
380
381 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
382 if (ret > 0)
383 XFS_STATS_ADD(xs_read_bytes, ret);
384
385 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 return ret;
387 }
388
389 /*
390 * This routine is called to handle zeroing any space in the last block of the
391 * file that is beyond the EOF. We do this since the size is being increased
392 * without writing anything to that block and we don't want to read the
393 * garbage on the disk.
394 */
395 STATIC int /* error (positive) */
396 xfs_zero_last_block(
397 struct xfs_inode *ip,
398 xfs_fsize_t offset,
399 xfs_fsize_t isize)
400 {
401 struct xfs_mount *mp = ip->i_mount;
402 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
403 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
404 int zero_len;
405 int nimaps = 1;
406 int error = 0;
407 struct xfs_bmbt_irec imap;
408
409 xfs_ilock(ip, XFS_ILOCK_EXCL);
410 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
411 xfs_iunlock(ip, XFS_ILOCK_EXCL);
412 if (error)
413 return error;
414
415 ASSERT(nimaps > 0);
416
417 /*
418 * If the block underlying isize is just a hole, then there
419 * is nothing to zero.
420 */
421 if (imap.br_startblock == HOLESTARTBLOCK)
422 return 0;
423
424 zero_len = mp->m_sb.sb_blocksize - zero_offset;
425 if (isize + zero_len > offset)
426 zero_len = offset - isize;
427 return xfs_iozero(ip, isize, zero_len);
428 }
429
430 /*
431 * Zero any on disk space between the current EOF and the new, larger EOF.
432 *
433 * This handles the normal case of zeroing the remainder of the last block in
434 * the file and the unusual case of zeroing blocks out beyond the size of the
435 * file. This second case only happens with fixed size extents and when the
436 * system crashes before the inode size was updated but after blocks were
437 * allocated.
438 *
439 * Expects the iolock to be held exclusive, and will take the ilock internally.
440 */
441 int /* error (positive) */
442 xfs_zero_eof(
443 struct xfs_inode *ip,
444 xfs_off_t offset, /* starting I/O offset */
445 xfs_fsize_t isize) /* current inode size */
446 {
447 struct xfs_mount *mp = ip->i_mount;
448 xfs_fileoff_t start_zero_fsb;
449 xfs_fileoff_t end_zero_fsb;
450 xfs_fileoff_t zero_count_fsb;
451 xfs_fileoff_t last_fsb;
452 xfs_fileoff_t zero_off;
453 xfs_fsize_t zero_len;
454 int nimaps;
455 int error = 0;
456 struct xfs_bmbt_irec imap;
457
458 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
459 ASSERT(offset > isize);
460
461 /*
462 * First handle zeroing the block on which isize resides.
463 *
464 * We only zero a part of that block so it is handled specially.
465 */
466 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
467 error = xfs_zero_last_block(ip, offset, isize);
468 if (error)
469 return error;
470 }
471
472 /*
473 * Calculate the range between the new size and the old where blocks
474 * needing to be zeroed may exist.
475 *
476 * To get the block where the last byte in the file currently resides,
477 * we need to subtract one from the size and truncate back to a block
478 * boundary. We subtract 1 in case the size is exactly on a block
479 * boundary.
480 */
481 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
482 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
483 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
484 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
485 if (last_fsb == end_zero_fsb) {
486 /*
487 * The size was only incremented on its last block.
488 * We took care of that above, so just return.
489 */
490 return 0;
491 }
492
493 ASSERT(start_zero_fsb <= end_zero_fsb);
494 while (start_zero_fsb <= end_zero_fsb) {
495 nimaps = 1;
496 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
497
498 xfs_ilock(ip, XFS_ILOCK_EXCL);
499 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
500 &imap, &nimaps, 0);
501 xfs_iunlock(ip, XFS_ILOCK_EXCL);
502 if (error)
503 return error;
504
505 ASSERT(nimaps > 0);
506
507 if (imap.br_state == XFS_EXT_UNWRITTEN ||
508 imap.br_startblock == HOLESTARTBLOCK) {
509 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
510 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
511 continue;
512 }
513
514 /*
515 * There are blocks we need to zero.
516 */
517 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
518 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
519
520 if ((zero_off + zero_len) > offset)
521 zero_len = offset - zero_off;
522
523 error = xfs_iozero(ip, zero_off, zero_len);
524 if (error)
525 return error;
526
527 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
528 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
529 }
530
531 return 0;
532 }
533
534 /*
535 * Common pre-write limit and setup checks.
536 *
537 * Called with the iolocked held either shared and exclusive according to
538 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
539 * if called for a direct write beyond i_size.
540 */
541 STATIC ssize_t
542 xfs_file_aio_write_checks(
543 struct file *file,
544 loff_t *pos,
545 size_t *count,
546 int *iolock)
547 {
548 struct inode *inode = file->f_mapping->host;
549 struct xfs_inode *ip = XFS_I(inode);
550 int error = 0;
551
552 restart:
553 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
554 if (error)
555 return error;
556
557 /*
558 * If the offset is beyond the size of the file, we need to zero any
559 * blocks that fall between the existing EOF and the start of this
560 * write. If zeroing is needed and we are currently holding the
561 * iolock shared, we need to update it to exclusive which implies
562 * having to redo all checks before.
563 */
564 if (*pos > i_size_read(inode)) {
565 if (*iolock == XFS_IOLOCK_SHARED) {
566 xfs_rw_iunlock(ip, *iolock);
567 *iolock = XFS_IOLOCK_EXCL;
568 xfs_rw_ilock(ip, *iolock);
569 goto restart;
570 }
571 error = xfs_zero_eof(ip, *pos, i_size_read(inode));
572 if (error)
573 return error;
574 }
575
576 /*
577 * Updating the timestamps will grab the ilock again from
578 * xfs_fs_dirty_inode, so we have to call it after dropping the
579 * lock above. Eventually we should look into a way to avoid
580 * the pointless lock roundtrip.
581 */
582 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
583 error = file_update_time(file);
584 if (error)
585 return error;
586 }
587
588 /*
589 * If we're writing the file then make sure to clear the setuid and
590 * setgid bits if the process is not being run by root. This keeps
591 * people from modifying setuid and setgid binaries.
592 */
593 return file_remove_suid(file);
594 }
595
596 /*
597 * xfs_file_dio_aio_write - handle direct IO writes
598 *
599 * Lock the inode appropriately to prepare for and issue a direct IO write.
600 * By separating it from the buffered write path we remove all the tricky to
601 * follow locking changes and looping.
602 *
603 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
604 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
605 * pages are flushed out.
606 *
607 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
608 * allowing them to be done in parallel with reads and other direct IO writes.
609 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
610 * needs to do sub-block zeroing and that requires serialisation against other
611 * direct IOs to the same block. In this case we need to serialise the
612 * submission of the unaligned IOs so that we don't get racing block zeroing in
613 * the dio layer. To avoid the problem with aio, we also need to wait for
614 * outstanding IOs to complete so that unwritten extent conversion is completed
615 * before we try to map the overlapping block. This is currently implemented by
616 * hitting it with a big hammer (i.e. inode_dio_wait()).
617 *
618 * Returns with locks held indicated by @iolock and errors indicated by
619 * negative return values.
620 */
621 STATIC ssize_t
622 xfs_file_dio_aio_write(
623 struct kiocb *iocb,
624 struct iov_iter *from)
625 {
626 struct file *file = iocb->ki_filp;
627 struct address_space *mapping = file->f_mapping;
628 struct inode *inode = mapping->host;
629 struct xfs_inode *ip = XFS_I(inode);
630 struct xfs_mount *mp = ip->i_mount;
631 ssize_t ret = 0;
632 int unaligned_io = 0;
633 int iolock;
634 size_t count = iov_iter_count(from);
635 loff_t pos = iocb->ki_pos;
636 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
637 mp->m_rtdev_targp : mp->m_ddev_targp;
638
639 /* DIO must be aligned to device logical sector size */
640 if ((pos | count) & target->bt_logical_sectormask)
641 return -EINVAL;
642
643 /* "unaligned" here means not aligned to a filesystem block */
644 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
645 unaligned_io = 1;
646
647 /*
648 * We don't need to take an exclusive lock unless there page cache needs
649 * to be invalidated or unaligned IO is being executed. We don't need to
650 * consider the EOF extension case here because
651 * xfs_file_aio_write_checks() will relock the inode as necessary for
652 * EOF zeroing cases and fill out the new inode size as appropriate.
653 */
654 if (unaligned_io || mapping->nrpages)
655 iolock = XFS_IOLOCK_EXCL;
656 else
657 iolock = XFS_IOLOCK_SHARED;
658 xfs_rw_ilock(ip, iolock);
659
660 /*
661 * Recheck if there are cached pages that need invalidate after we got
662 * the iolock to protect against other threads adding new pages while
663 * we were waiting for the iolock.
664 */
665 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
666 xfs_rw_iunlock(ip, iolock);
667 iolock = XFS_IOLOCK_EXCL;
668 xfs_rw_ilock(ip, iolock);
669 }
670
671 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
672 if (ret)
673 goto out;
674 iov_iter_truncate(from, count);
675
676 if (mapping->nrpages) {
677 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
678 pos, pos + count - 1);
679 if (ret)
680 goto out;
681 /*
682 * Invalidate whole pages. This can return an error if
683 * we fail to invalidate a page, but this should never
684 * happen on XFS. Warn if it does fail.
685 */
686 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
687 pos >> PAGE_CACHE_SHIFT,
688 (pos + count - 1) >> PAGE_CACHE_SHIFT);
689 WARN_ON_ONCE(ret);
690 ret = 0;
691 }
692
693 /*
694 * If we are doing unaligned IO, wait for all other IO to drain,
695 * otherwise demote the lock if we had to flush cached pages
696 */
697 if (unaligned_io)
698 inode_dio_wait(inode);
699 else if (iolock == XFS_IOLOCK_EXCL) {
700 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
701 iolock = XFS_IOLOCK_SHARED;
702 }
703
704 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
705 ret = generic_file_direct_write(iocb, from, pos);
706
707 out:
708 xfs_rw_iunlock(ip, iolock);
709
710 /* No fallback to buffered IO on errors for XFS. */
711 ASSERT(ret < 0 || ret == count);
712 return ret;
713 }
714
715 STATIC ssize_t
716 xfs_file_buffered_aio_write(
717 struct kiocb *iocb,
718 struct iov_iter *from)
719 {
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
723 struct xfs_inode *ip = XFS_I(inode);
724 ssize_t ret;
725 int enospc = 0;
726 int iolock = XFS_IOLOCK_EXCL;
727 loff_t pos = iocb->ki_pos;
728 size_t count = iov_iter_count(from);
729
730 xfs_rw_ilock(ip, iolock);
731
732 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
733 if (ret)
734 goto out;
735
736 iov_iter_truncate(from, count);
737 /* We can write back this queue in page reclaim */
738 current->backing_dev_info = inode_to_bdi(inode);
739
740 write_retry:
741 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
742 ret = generic_perform_write(file, from, pos);
743 if (likely(ret >= 0))
744 iocb->ki_pos = pos + ret;
745
746 /*
747 * If we hit a space limit, try to free up some lingering preallocated
748 * space before returning an error. In the case of ENOSPC, first try to
749 * write back all dirty inodes to free up some of the excess reserved
750 * metadata space. This reduces the chances that the eofblocks scan
751 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
752 * also behaves as a filter to prevent too many eofblocks scans from
753 * running at the same time.
754 */
755 if (ret == -EDQUOT && !enospc) {
756 enospc = xfs_inode_free_quota_eofblocks(ip);
757 if (enospc)
758 goto write_retry;
759 } else if (ret == -ENOSPC && !enospc) {
760 struct xfs_eofblocks eofb = {0};
761
762 enospc = 1;
763 xfs_flush_inodes(ip->i_mount);
764 eofb.eof_scan_owner = ip->i_ino; /* for locking */
765 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
766 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
767 goto write_retry;
768 }
769
770 current->backing_dev_info = NULL;
771 out:
772 xfs_rw_iunlock(ip, iolock);
773 return ret;
774 }
775
776 STATIC ssize_t
777 xfs_file_write_iter(
778 struct kiocb *iocb,
779 struct iov_iter *from)
780 {
781 struct file *file = iocb->ki_filp;
782 struct address_space *mapping = file->f_mapping;
783 struct inode *inode = mapping->host;
784 struct xfs_inode *ip = XFS_I(inode);
785 ssize_t ret;
786 size_t ocount = iov_iter_count(from);
787
788 XFS_STATS_INC(xs_write_calls);
789
790 if (ocount == 0)
791 return 0;
792
793 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
794 return -EIO;
795
796 if (unlikely(file->f_flags & O_DIRECT))
797 ret = xfs_file_dio_aio_write(iocb, from);
798 else
799 ret = xfs_file_buffered_aio_write(iocb, from);
800
801 if (ret > 0) {
802 ssize_t err;
803
804 XFS_STATS_ADD(xs_write_bytes, ret);
805
806 /* Handle various SYNC-type writes */
807 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
808 if (err < 0)
809 ret = err;
810 }
811 return ret;
812 }
813
814 STATIC long
815 xfs_file_fallocate(
816 struct file *file,
817 int mode,
818 loff_t offset,
819 loff_t len)
820 {
821 struct inode *inode = file_inode(file);
822 struct xfs_inode *ip = XFS_I(inode);
823 long error;
824 enum xfs_prealloc_flags flags = 0;
825 loff_t new_size = 0;
826
827 if (!S_ISREG(inode->i_mode))
828 return -EINVAL;
829 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
830 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
831 return -EOPNOTSUPP;
832
833 xfs_ilock(ip, XFS_IOLOCK_EXCL);
834 if (mode & FALLOC_FL_PUNCH_HOLE) {
835 error = xfs_free_file_space(ip, offset, len);
836 if (error)
837 goto out_unlock;
838 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
839 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
840
841 if (offset & blksize_mask || len & blksize_mask) {
842 error = -EINVAL;
843 goto out_unlock;
844 }
845
846 /*
847 * There is no need to overlap collapse range with EOF,
848 * in which case it is effectively a truncate operation
849 */
850 if (offset + len >= i_size_read(inode)) {
851 error = -EINVAL;
852 goto out_unlock;
853 }
854
855 new_size = i_size_read(inode) - len;
856
857 error = xfs_collapse_file_space(ip, offset, len);
858 if (error)
859 goto out_unlock;
860 } else {
861 flags |= XFS_PREALLOC_SET;
862
863 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
864 offset + len > i_size_read(inode)) {
865 new_size = offset + len;
866 error = inode_newsize_ok(inode, new_size);
867 if (error)
868 goto out_unlock;
869 }
870
871 if (mode & FALLOC_FL_ZERO_RANGE)
872 error = xfs_zero_file_space(ip, offset, len);
873 else
874 error = xfs_alloc_file_space(ip, offset, len,
875 XFS_BMAPI_PREALLOC);
876 if (error)
877 goto out_unlock;
878 }
879
880 if (file->f_flags & O_DSYNC)
881 flags |= XFS_PREALLOC_SYNC;
882
883 error = xfs_update_prealloc_flags(ip, flags);
884 if (error)
885 goto out_unlock;
886
887 /* Change file size if needed */
888 if (new_size) {
889 struct iattr iattr;
890
891 iattr.ia_valid = ATTR_SIZE;
892 iattr.ia_size = new_size;
893 error = xfs_setattr_size(ip, &iattr);
894 }
895
896 out_unlock:
897 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
898 return error;
899 }
900
901
902 STATIC int
903 xfs_file_open(
904 struct inode *inode,
905 struct file *file)
906 {
907 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
908 return -EFBIG;
909 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
910 return -EIO;
911 return 0;
912 }
913
914 STATIC int
915 xfs_dir_open(
916 struct inode *inode,
917 struct file *file)
918 {
919 struct xfs_inode *ip = XFS_I(inode);
920 int mode;
921 int error;
922
923 error = xfs_file_open(inode, file);
924 if (error)
925 return error;
926
927 /*
928 * If there are any blocks, read-ahead block 0 as we're almost
929 * certain to have the next operation be a read there.
930 */
931 mode = xfs_ilock_data_map_shared(ip);
932 if (ip->i_d.di_nextents > 0)
933 xfs_dir3_data_readahead(ip, 0, -1);
934 xfs_iunlock(ip, mode);
935 return 0;
936 }
937
938 STATIC int
939 xfs_file_release(
940 struct inode *inode,
941 struct file *filp)
942 {
943 return xfs_release(XFS_I(inode));
944 }
945
946 STATIC int
947 xfs_file_readdir(
948 struct file *file,
949 struct dir_context *ctx)
950 {
951 struct inode *inode = file_inode(file);
952 xfs_inode_t *ip = XFS_I(inode);
953 size_t bufsize;
954
955 /*
956 * The Linux API doesn't pass down the total size of the buffer
957 * we read into down to the filesystem. With the filldir concept
958 * it's not needed for correct information, but the XFS dir2 leaf
959 * code wants an estimate of the buffer size to calculate it's
960 * readahead window and size the buffers used for mapping to
961 * physical blocks.
962 *
963 * Try to give it an estimate that's good enough, maybe at some
964 * point we can change the ->readdir prototype to include the
965 * buffer size. For now we use the current glibc buffer size.
966 */
967 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
968
969 return xfs_readdir(ip, ctx, bufsize);
970 }
971
972 STATIC int
973 xfs_file_mmap(
974 struct file *filp,
975 struct vm_area_struct *vma)
976 {
977 vma->vm_ops = &xfs_file_vm_ops;
978
979 file_accessed(filp);
980 return 0;
981 }
982
983 /*
984 * mmap()d file has taken write protection fault and is being made
985 * writable. We can set the page state up correctly for a writable
986 * page, which means we can do correct delalloc accounting (ENOSPC
987 * checking!) and unwritten extent mapping.
988 */
989 STATIC int
990 xfs_vm_page_mkwrite(
991 struct vm_area_struct *vma,
992 struct vm_fault *vmf)
993 {
994 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
995 }
996
997 /*
998 * This type is designed to indicate the type of offset we would like
999 * to search from page cache for xfs_seek_hole_data().
1000 */
1001 enum {
1002 HOLE_OFF = 0,
1003 DATA_OFF,
1004 };
1005
1006 /*
1007 * Lookup the desired type of offset from the given page.
1008 *
1009 * On success, return true and the offset argument will point to the
1010 * start of the region that was found. Otherwise this function will
1011 * return false and keep the offset argument unchanged.
1012 */
1013 STATIC bool
1014 xfs_lookup_buffer_offset(
1015 struct page *page,
1016 loff_t *offset,
1017 unsigned int type)
1018 {
1019 loff_t lastoff = page_offset(page);
1020 bool found = false;
1021 struct buffer_head *bh, *head;
1022
1023 bh = head = page_buffers(page);
1024 do {
1025 /*
1026 * Unwritten extents that have data in the page
1027 * cache covering them can be identified by the
1028 * BH_Unwritten state flag. Pages with multiple
1029 * buffers might have a mix of holes, data and
1030 * unwritten extents - any buffer with valid
1031 * data in it should have BH_Uptodate flag set
1032 * on it.
1033 */
1034 if (buffer_unwritten(bh) ||
1035 buffer_uptodate(bh)) {
1036 if (type == DATA_OFF)
1037 found = true;
1038 } else {
1039 if (type == HOLE_OFF)
1040 found = true;
1041 }
1042
1043 if (found) {
1044 *offset = lastoff;
1045 break;
1046 }
1047 lastoff += bh->b_size;
1048 } while ((bh = bh->b_this_page) != head);
1049
1050 return found;
1051 }
1052
1053 /*
1054 * This routine is called to find out and return a data or hole offset
1055 * from the page cache for unwritten extents according to the desired
1056 * type for xfs_seek_hole_data().
1057 *
1058 * The argument offset is used to tell where we start to search from the
1059 * page cache. Map is used to figure out the end points of the range to
1060 * lookup pages.
1061 *
1062 * Return true if the desired type of offset was found, and the argument
1063 * offset is filled with that address. Otherwise, return false and keep
1064 * offset unchanged.
1065 */
1066 STATIC bool
1067 xfs_find_get_desired_pgoff(
1068 struct inode *inode,
1069 struct xfs_bmbt_irec *map,
1070 unsigned int type,
1071 loff_t *offset)
1072 {
1073 struct xfs_inode *ip = XFS_I(inode);
1074 struct xfs_mount *mp = ip->i_mount;
1075 struct pagevec pvec;
1076 pgoff_t index;
1077 pgoff_t end;
1078 loff_t endoff;
1079 loff_t startoff = *offset;
1080 loff_t lastoff = startoff;
1081 bool found = false;
1082
1083 pagevec_init(&pvec, 0);
1084
1085 index = startoff >> PAGE_CACHE_SHIFT;
1086 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1087 end = endoff >> PAGE_CACHE_SHIFT;
1088 do {
1089 int want;
1090 unsigned nr_pages;
1091 unsigned int i;
1092
1093 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1094 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1095 want);
1096 /*
1097 * No page mapped into given range. If we are searching holes
1098 * and if this is the first time we got into the loop, it means
1099 * that the given offset is landed in a hole, return it.
1100 *
1101 * If we have already stepped through some block buffers to find
1102 * holes but they all contains data. In this case, the last
1103 * offset is already updated and pointed to the end of the last
1104 * mapped page, if it does not reach the endpoint to search,
1105 * that means there should be a hole between them.
1106 */
1107 if (nr_pages == 0) {
1108 /* Data search found nothing */
1109 if (type == DATA_OFF)
1110 break;
1111
1112 ASSERT(type == HOLE_OFF);
1113 if (lastoff == startoff || lastoff < endoff) {
1114 found = true;
1115 *offset = lastoff;
1116 }
1117 break;
1118 }
1119
1120 /*
1121 * At lease we found one page. If this is the first time we
1122 * step into the loop, and if the first page index offset is
1123 * greater than the given search offset, a hole was found.
1124 */
1125 if (type == HOLE_OFF && lastoff == startoff &&
1126 lastoff < page_offset(pvec.pages[0])) {
1127 found = true;
1128 break;
1129 }
1130
1131 for (i = 0; i < nr_pages; i++) {
1132 struct page *page = pvec.pages[i];
1133 loff_t b_offset;
1134
1135 /*
1136 * At this point, the page may be truncated or
1137 * invalidated (changing page->mapping to NULL),
1138 * or even swizzled back from swapper_space to tmpfs
1139 * file mapping. However, page->index will not change
1140 * because we have a reference on the page.
1141 *
1142 * Searching done if the page index is out of range.
1143 * If the current offset is not reaches the end of
1144 * the specified search range, there should be a hole
1145 * between them.
1146 */
1147 if (page->index > end) {
1148 if (type == HOLE_OFF && lastoff < endoff) {
1149 *offset = lastoff;
1150 found = true;
1151 }
1152 goto out;
1153 }
1154
1155 lock_page(page);
1156 /*
1157 * Page truncated or invalidated(page->mapping == NULL).
1158 * We can freely skip it and proceed to check the next
1159 * page.
1160 */
1161 if (unlikely(page->mapping != inode->i_mapping)) {
1162 unlock_page(page);
1163 continue;
1164 }
1165
1166 if (!page_has_buffers(page)) {
1167 unlock_page(page);
1168 continue;
1169 }
1170
1171 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1172 if (found) {
1173 /*
1174 * The found offset may be less than the start
1175 * point to search if this is the first time to
1176 * come here.
1177 */
1178 *offset = max_t(loff_t, startoff, b_offset);
1179 unlock_page(page);
1180 goto out;
1181 }
1182
1183 /*
1184 * We either searching data but nothing was found, or
1185 * searching hole but found a data buffer. In either
1186 * case, probably the next page contains the desired
1187 * things, update the last offset to it so.
1188 */
1189 lastoff = page_offset(page) + PAGE_SIZE;
1190 unlock_page(page);
1191 }
1192
1193 /*
1194 * The number of returned pages less than our desired, search
1195 * done. In this case, nothing was found for searching data,
1196 * but we found a hole behind the last offset.
1197 */
1198 if (nr_pages < want) {
1199 if (type == HOLE_OFF) {
1200 *offset = lastoff;
1201 found = true;
1202 }
1203 break;
1204 }
1205
1206 index = pvec.pages[i - 1]->index + 1;
1207 pagevec_release(&pvec);
1208 } while (index <= end);
1209
1210 out:
1211 pagevec_release(&pvec);
1212 return found;
1213 }
1214
1215 STATIC loff_t
1216 xfs_seek_hole_data(
1217 struct file *file,
1218 loff_t start,
1219 int whence)
1220 {
1221 struct inode *inode = file->f_mapping->host;
1222 struct xfs_inode *ip = XFS_I(inode);
1223 struct xfs_mount *mp = ip->i_mount;
1224 loff_t uninitialized_var(offset);
1225 xfs_fsize_t isize;
1226 xfs_fileoff_t fsbno;
1227 xfs_filblks_t end;
1228 uint lock;
1229 int error;
1230
1231 if (XFS_FORCED_SHUTDOWN(mp))
1232 return -EIO;
1233
1234 lock = xfs_ilock_data_map_shared(ip);
1235
1236 isize = i_size_read(inode);
1237 if (start >= isize) {
1238 error = -ENXIO;
1239 goto out_unlock;
1240 }
1241
1242 /*
1243 * Try to read extents from the first block indicated
1244 * by fsbno to the end block of the file.
1245 */
1246 fsbno = XFS_B_TO_FSBT(mp, start);
1247 end = XFS_B_TO_FSB(mp, isize);
1248
1249 for (;;) {
1250 struct xfs_bmbt_irec map[2];
1251 int nmap = 2;
1252 unsigned int i;
1253
1254 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1255 XFS_BMAPI_ENTIRE);
1256 if (error)
1257 goto out_unlock;
1258
1259 /* No extents at given offset, must be beyond EOF */
1260 if (nmap == 0) {
1261 error = -ENXIO;
1262 goto out_unlock;
1263 }
1264
1265 for (i = 0; i < nmap; i++) {
1266 offset = max_t(loff_t, start,
1267 XFS_FSB_TO_B(mp, map[i].br_startoff));
1268
1269 /* Landed in the hole we wanted? */
1270 if (whence == SEEK_HOLE &&
1271 map[i].br_startblock == HOLESTARTBLOCK)
1272 goto out;
1273
1274 /* Landed in the data extent we wanted? */
1275 if (whence == SEEK_DATA &&
1276 (map[i].br_startblock == DELAYSTARTBLOCK ||
1277 (map[i].br_state == XFS_EXT_NORM &&
1278 !isnullstartblock(map[i].br_startblock))))
1279 goto out;
1280
1281 /*
1282 * Landed in an unwritten extent, try to search
1283 * for hole or data from page cache.
1284 */
1285 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1286 if (xfs_find_get_desired_pgoff(inode, &map[i],
1287 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1288 &offset))
1289 goto out;
1290 }
1291 }
1292
1293 /*
1294 * We only received one extent out of the two requested. This
1295 * means we've hit EOF and didn't find what we are looking for.
1296 */
1297 if (nmap == 1) {
1298 /*
1299 * If we were looking for a hole, set offset to
1300 * the end of the file (i.e., there is an implicit
1301 * hole at the end of any file).
1302 */
1303 if (whence == SEEK_HOLE) {
1304 offset = isize;
1305 break;
1306 }
1307 /*
1308 * If we were looking for data, it's nowhere to be found
1309 */
1310 ASSERT(whence == SEEK_DATA);
1311 error = -ENXIO;
1312 goto out_unlock;
1313 }
1314
1315 ASSERT(i > 1);
1316
1317 /*
1318 * Nothing was found, proceed to the next round of search
1319 * if the next reading offset is not at or beyond EOF.
1320 */
1321 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1322 start = XFS_FSB_TO_B(mp, fsbno);
1323 if (start >= isize) {
1324 if (whence == SEEK_HOLE) {
1325 offset = isize;
1326 break;
1327 }
1328 ASSERT(whence == SEEK_DATA);
1329 error = -ENXIO;
1330 goto out_unlock;
1331 }
1332 }
1333
1334 out:
1335 /*
1336 * If at this point we have found the hole we wanted, the returned
1337 * offset may be bigger than the file size as it may be aligned to
1338 * page boundary for unwritten extents. We need to deal with this
1339 * situation in particular.
1340 */
1341 if (whence == SEEK_HOLE)
1342 offset = min_t(loff_t, offset, isize);
1343 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1344
1345 out_unlock:
1346 xfs_iunlock(ip, lock);
1347
1348 if (error)
1349 return error;
1350 return offset;
1351 }
1352
1353 STATIC loff_t
1354 xfs_file_llseek(
1355 struct file *file,
1356 loff_t offset,
1357 int whence)
1358 {
1359 switch (whence) {
1360 case SEEK_END:
1361 case SEEK_CUR:
1362 case SEEK_SET:
1363 return generic_file_llseek(file, offset, whence);
1364 case SEEK_HOLE:
1365 case SEEK_DATA:
1366 return xfs_seek_hole_data(file, offset, whence);
1367 default:
1368 return -EINVAL;
1369 }
1370 }
1371
1372 const struct file_operations xfs_file_operations = {
1373 .llseek = xfs_file_llseek,
1374 .read = new_sync_read,
1375 .write = new_sync_write,
1376 .read_iter = xfs_file_read_iter,
1377 .write_iter = xfs_file_write_iter,
1378 .splice_read = xfs_file_splice_read,
1379 .splice_write = iter_file_splice_write,
1380 .unlocked_ioctl = xfs_file_ioctl,
1381 #ifdef CONFIG_COMPAT
1382 .compat_ioctl = xfs_file_compat_ioctl,
1383 #endif
1384 .mmap = xfs_file_mmap,
1385 .open = xfs_file_open,
1386 .release = xfs_file_release,
1387 .fsync = xfs_file_fsync,
1388 .fallocate = xfs_file_fallocate,
1389 };
1390
1391 const struct file_operations xfs_dir_file_operations = {
1392 .open = xfs_dir_open,
1393 .read = generic_read_dir,
1394 .iterate = xfs_file_readdir,
1395 .llseek = generic_file_llseek,
1396 .unlocked_ioctl = xfs_file_ioctl,
1397 #ifdef CONFIG_COMPAT
1398 .compat_ioctl = xfs_file_compat_ioctl,
1399 #endif
1400 .fsync = xfs_dir_fsync,
1401 };
1402
1403 static const struct vm_operations_struct xfs_file_vm_ops = {
1404 .fault = filemap_fault,
1405 .map_pages = filemap_map_pages,
1406 .page_mkwrite = xfs_vm_page_mkwrite,
1407 };