]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_file.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
53 */
54 int
55 xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
60 {
61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 }
63
64 int
65 xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68 {
69 struct xfs_trans *tp;
70 int error;
71
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
96 }
97
98 /*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104 STATIC int
105 xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110 {
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
133 {
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
140
141 trace_xfs_file_fsync(ip);
142
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
146
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
162
163 /*
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
182
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
188
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199
200 return error;
201 }
202
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
207 {
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
211
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213
214 if (!count)
215 return 0; /* skip atime */
216
217 file_accessed(iocb->ki_filp);
218
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222
223 return ret;
224 }
225
226 static noinline ssize_t
227 xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230 {
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
240 xfs_ilock(ip, XFS_IOLOCK_SHARED);
241 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
242 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
243
244 file_accessed(iocb->ki_filp);
245 return ret;
246 }
247
248 STATIC ssize_t
249 xfs_file_buffered_aio_read(
250 struct kiocb *iocb,
251 struct iov_iter *to)
252 {
253 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
254 ssize_t ret;
255
256 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
257
258 xfs_ilock(ip, XFS_IOLOCK_SHARED);
259 ret = generic_file_read_iter(iocb, to);
260 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
261
262 return ret;
263 }
264
265 STATIC ssize_t
266 xfs_file_read_iter(
267 struct kiocb *iocb,
268 struct iov_iter *to)
269 {
270 struct inode *inode = file_inode(iocb->ki_filp);
271 struct xfs_mount *mp = XFS_I(inode)->i_mount;
272 ssize_t ret = 0;
273
274 XFS_STATS_INC(mp, xs_read_calls);
275
276 if (XFS_FORCED_SHUTDOWN(mp))
277 return -EIO;
278
279 if (IS_DAX(inode))
280 ret = xfs_file_dax_read(iocb, to);
281 else if (iocb->ki_flags & IOCB_DIRECT)
282 ret = xfs_file_dio_aio_read(iocb, to);
283 else
284 ret = xfs_file_buffered_aio_read(iocb, to);
285
286 if (ret > 0)
287 XFS_STATS_ADD(mp, xs_read_bytes, ret);
288 return ret;
289 }
290
291 /*
292 * Zero any on disk space between the current EOF and the new, larger EOF.
293 *
294 * This handles the normal case of zeroing the remainder of the last block in
295 * the file and the unusual case of zeroing blocks out beyond the size of the
296 * file. This second case only happens with fixed size extents and when the
297 * system crashes before the inode size was updated but after blocks were
298 * allocated.
299 *
300 * Expects the iolock to be held exclusive, and will take the ilock internally.
301 */
302 int /* error (positive) */
303 xfs_zero_eof(
304 struct xfs_inode *ip,
305 xfs_off_t offset, /* starting I/O offset */
306 xfs_fsize_t isize, /* current inode size */
307 bool *did_zeroing)
308 {
309 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
310 ASSERT(offset > isize);
311
312 trace_xfs_zero_eof(ip, isize, offset - isize);
313 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
314 }
315
316 /*
317 * Common pre-write limit and setup checks.
318 *
319 * Called with the iolocked held either shared and exclusive according to
320 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
321 * if called for a direct write beyond i_size.
322 */
323 STATIC ssize_t
324 xfs_file_aio_write_checks(
325 struct kiocb *iocb,
326 struct iov_iter *from,
327 int *iolock)
328 {
329 struct file *file = iocb->ki_filp;
330 struct inode *inode = file->f_mapping->host;
331 struct xfs_inode *ip = XFS_I(inode);
332 ssize_t error = 0;
333 size_t count = iov_iter_count(from);
334 bool drained_dio = false;
335
336 restart:
337 error = generic_write_checks(iocb, from);
338 if (error <= 0)
339 return error;
340
341 error = xfs_break_layouts(inode, iolock);
342 if (error)
343 return error;
344
345 /*
346 * For changing security info in file_remove_privs() we need i_rwsem
347 * exclusively.
348 */
349 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
350 xfs_iunlock(ip, *iolock);
351 *iolock = XFS_IOLOCK_EXCL;
352 xfs_ilock(ip, *iolock);
353 goto restart;
354 }
355 /*
356 * If the offset is beyond the size of the file, we need to zero any
357 * blocks that fall between the existing EOF and the start of this
358 * write. If zeroing is needed and we are currently holding the
359 * iolock shared, we need to update it to exclusive which implies
360 * having to redo all checks before.
361 *
362 * We need to serialise against EOF updates that occur in IO
363 * completions here. We want to make sure that nobody is changing the
364 * size while we do this check until we have placed an IO barrier (i.e.
365 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
366 * The spinlock effectively forms a memory barrier once we have the
367 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
368 * and hence be able to correctly determine if we need to run zeroing.
369 */
370 spin_lock(&ip->i_flags_lock);
371 if (iocb->ki_pos > i_size_read(inode)) {
372 bool zero = false;
373
374 spin_unlock(&ip->i_flags_lock);
375 if (!drained_dio) {
376 if (*iolock == XFS_IOLOCK_SHARED) {
377 xfs_iunlock(ip, *iolock);
378 *iolock = XFS_IOLOCK_EXCL;
379 xfs_ilock(ip, *iolock);
380 iov_iter_reexpand(from, count);
381 }
382 /*
383 * We now have an IO submission barrier in place, but
384 * AIO can do EOF updates during IO completion and hence
385 * we now need to wait for all of them to drain. Non-AIO
386 * DIO will have drained before we are given the
387 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
388 * no-op.
389 */
390 inode_dio_wait(inode);
391 drained_dio = true;
392 goto restart;
393 }
394 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
395 if (error)
396 return error;
397 } else
398 spin_unlock(&ip->i_flags_lock);
399
400 /*
401 * Updating the timestamps will grab the ilock again from
402 * xfs_fs_dirty_inode, so we have to call it after dropping the
403 * lock above. Eventually we should look into a way to avoid
404 * the pointless lock roundtrip.
405 */
406 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
407 error = file_update_time(file);
408 if (error)
409 return error;
410 }
411
412 /*
413 * If we're writing the file then make sure to clear the setuid and
414 * setgid bits if the process is not being run by root. This keeps
415 * people from modifying setuid and setgid binaries.
416 */
417 if (!IS_NOSEC(inode))
418 return file_remove_privs(file);
419 return 0;
420 }
421
422 static int
423 xfs_dio_write_end_io(
424 struct kiocb *iocb,
425 ssize_t size,
426 unsigned flags)
427 {
428 struct inode *inode = file_inode(iocb->ki_filp);
429 struct xfs_inode *ip = XFS_I(inode);
430 loff_t offset = iocb->ki_pos;
431 bool update_size = false;
432 int error = 0;
433
434 trace_xfs_end_io_direct_write(ip, offset, size);
435
436 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
437 return -EIO;
438
439 if (size <= 0)
440 return size;
441
442 /*
443 * We need to update the in-core inode size here so that we don't end up
444 * with the on-disk inode size being outside the in-core inode size. We
445 * have no other method of updating EOF for AIO, so always do it here
446 * if necessary.
447 *
448 * We need to lock the test/set EOF update as we can be racing with
449 * other IO completions here to update the EOF. Failing to serialise
450 * here can result in EOF moving backwards and Bad Things Happen when
451 * that occurs.
452 */
453 spin_lock(&ip->i_flags_lock);
454 if (offset + size > i_size_read(inode)) {
455 i_size_write(inode, offset + size);
456 update_size = true;
457 }
458 spin_unlock(&ip->i_flags_lock);
459
460 if (flags & IOMAP_DIO_COW) {
461 error = xfs_reflink_end_cow(ip, offset, size);
462 if (error)
463 return error;
464 }
465
466 if (flags & IOMAP_DIO_UNWRITTEN)
467 error = xfs_iomap_write_unwritten(ip, offset, size);
468 else if (update_size)
469 error = xfs_setfilesize(ip, offset, size);
470
471 return error;
472 }
473
474 /*
475 * xfs_file_dio_aio_write - handle direct IO writes
476 *
477 * Lock the inode appropriately to prepare for and issue a direct IO write.
478 * By separating it from the buffered write path we remove all the tricky to
479 * follow locking changes and looping.
480 *
481 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
482 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
483 * pages are flushed out.
484 *
485 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
486 * allowing them to be done in parallel with reads and other direct IO writes.
487 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
488 * needs to do sub-block zeroing and that requires serialisation against other
489 * direct IOs to the same block. In this case we need to serialise the
490 * submission of the unaligned IOs so that we don't get racing block zeroing in
491 * the dio layer. To avoid the problem with aio, we also need to wait for
492 * outstanding IOs to complete so that unwritten extent conversion is completed
493 * before we try to map the overlapping block. This is currently implemented by
494 * hitting it with a big hammer (i.e. inode_dio_wait()).
495 *
496 * Returns with locks held indicated by @iolock and errors indicated by
497 * negative return values.
498 */
499 STATIC ssize_t
500 xfs_file_dio_aio_write(
501 struct kiocb *iocb,
502 struct iov_iter *from)
503 {
504 struct file *file = iocb->ki_filp;
505 struct address_space *mapping = file->f_mapping;
506 struct inode *inode = mapping->host;
507 struct xfs_inode *ip = XFS_I(inode);
508 struct xfs_mount *mp = ip->i_mount;
509 ssize_t ret = 0;
510 int unaligned_io = 0;
511 int iolock;
512 size_t count = iov_iter_count(from);
513 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
514 mp->m_rtdev_targp : mp->m_ddev_targp;
515
516 /* DIO must be aligned to device logical sector size */
517 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
518 return -EINVAL;
519
520 /*
521 * Don't take the exclusive iolock here unless the I/O is unaligned to
522 * the file system block size. We don't need to consider the EOF
523 * extension case here because xfs_file_aio_write_checks() will relock
524 * the inode as necessary for EOF zeroing cases and fill out the new
525 * inode size as appropriate.
526 */
527 if ((iocb->ki_pos & mp->m_blockmask) ||
528 ((iocb->ki_pos + count) & mp->m_blockmask)) {
529 unaligned_io = 1;
530
531 /*
532 * We can't properly handle unaligned direct I/O to reflink
533 * files yet, as we can't unshare a partial block.
534 */
535 if (xfs_is_reflink_inode(ip)) {
536 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
537 return -EREMCHG;
538 }
539 iolock = XFS_IOLOCK_EXCL;
540 } else {
541 iolock = XFS_IOLOCK_SHARED;
542 }
543
544 xfs_ilock(ip, iolock);
545
546 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
547 if (ret)
548 goto out;
549 count = iov_iter_count(from);
550
551 /*
552 * If we are doing unaligned IO, wait for all other IO to drain,
553 * otherwise demote the lock if we had to take the exclusive lock
554 * for other reasons in xfs_file_aio_write_checks.
555 */
556 if (unaligned_io)
557 inode_dio_wait(inode);
558 else if (iolock == XFS_IOLOCK_EXCL) {
559 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
560 iolock = XFS_IOLOCK_SHARED;
561 }
562
563 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
564 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
565 out:
566 xfs_iunlock(ip, iolock);
567
568 /*
569 * No fallback to buffered IO on errors for XFS, direct IO will either
570 * complete fully or fail.
571 */
572 ASSERT(ret < 0 || ret == count);
573 return ret;
574 }
575
576 static noinline ssize_t
577 xfs_file_dax_write(
578 struct kiocb *iocb,
579 struct iov_iter *from)
580 {
581 struct inode *inode = iocb->ki_filp->f_mapping->host;
582 struct xfs_inode *ip = XFS_I(inode);
583 int iolock = XFS_IOLOCK_EXCL;
584 ssize_t ret, error = 0;
585 size_t count;
586 loff_t pos;
587
588 xfs_ilock(ip, iolock);
589 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
590 if (ret)
591 goto out;
592
593 pos = iocb->ki_pos;
594 count = iov_iter_count(from);
595
596 trace_xfs_file_dax_write(ip, count, pos);
597 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
598 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
599 i_size_write(inode, iocb->ki_pos);
600 error = xfs_setfilesize(ip, pos, ret);
601 }
602 out:
603 xfs_iunlock(ip, iolock);
604 return error ? error : ret;
605 }
606
607 STATIC ssize_t
608 xfs_file_buffered_aio_write(
609 struct kiocb *iocb,
610 struct iov_iter *from)
611 {
612 struct file *file = iocb->ki_filp;
613 struct address_space *mapping = file->f_mapping;
614 struct inode *inode = mapping->host;
615 struct xfs_inode *ip = XFS_I(inode);
616 ssize_t ret;
617 int enospc = 0;
618 int iolock;
619
620 write_retry:
621 iolock = XFS_IOLOCK_EXCL;
622 xfs_ilock(ip, iolock);
623
624 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
625 if (ret)
626 goto out;
627
628 /* We can write back this queue in page reclaim */
629 current->backing_dev_info = inode_to_bdi(inode);
630
631 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
632 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
633 if (likely(ret >= 0))
634 iocb->ki_pos += ret;
635
636 /*
637 * If we hit a space limit, try to free up some lingering preallocated
638 * space before returning an error. In the case of ENOSPC, first try to
639 * write back all dirty inodes to free up some of the excess reserved
640 * metadata space. This reduces the chances that the eofblocks scan
641 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
642 * also behaves as a filter to prevent too many eofblocks scans from
643 * running at the same time.
644 */
645 if (ret == -EDQUOT && !enospc) {
646 xfs_iunlock(ip, iolock);
647 enospc = xfs_inode_free_quota_eofblocks(ip);
648 if (enospc)
649 goto write_retry;
650 enospc = xfs_inode_free_quota_cowblocks(ip);
651 if (enospc)
652 goto write_retry;
653 iolock = 0;
654 } else if (ret == -ENOSPC && !enospc) {
655 struct xfs_eofblocks eofb = {0};
656
657 enospc = 1;
658 xfs_flush_inodes(ip->i_mount);
659
660 xfs_iunlock(ip, iolock);
661 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
662 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
663 goto write_retry;
664 }
665
666 current->backing_dev_info = NULL;
667 out:
668 if (iolock)
669 xfs_iunlock(ip, iolock);
670 return ret;
671 }
672
673 STATIC ssize_t
674 xfs_file_write_iter(
675 struct kiocb *iocb,
676 struct iov_iter *from)
677 {
678 struct file *file = iocb->ki_filp;
679 struct address_space *mapping = file->f_mapping;
680 struct inode *inode = mapping->host;
681 struct xfs_inode *ip = XFS_I(inode);
682 ssize_t ret;
683 size_t ocount = iov_iter_count(from);
684
685 XFS_STATS_INC(ip->i_mount, xs_write_calls);
686
687 if (ocount == 0)
688 return 0;
689
690 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
691 return -EIO;
692
693 if (IS_DAX(inode))
694 ret = xfs_file_dax_write(iocb, from);
695 else if (iocb->ki_flags & IOCB_DIRECT) {
696 /*
697 * Allow a directio write to fall back to a buffered
698 * write *only* in the case that we're doing a reflink
699 * CoW. In all other directio scenarios we do not
700 * allow an operation to fall back to buffered mode.
701 */
702 ret = xfs_file_dio_aio_write(iocb, from);
703 if (ret == -EREMCHG)
704 goto buffered;
705 } else {
706 buffered:
707 ret = xfs_file_buffered_aio_write(iocb, from);
708 }
709
710 if (ret > 0) {
711 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
712
713 /* Handle various SYNC-type writes */
714 ret = generic_write_sync(iocb, ret);
715 }
716 return ret;
717 }
718
719 #define XFS_FALLOC_FL_SUPPORTED \
720 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
721 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
722 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
723
724 STATIC long
725 xfs_file_fallocate(
726 struct file *file,
727 int mode,
728 loff_t offset,
729 loff_t len)
730 {
731 struct inode *inode = file_inode(file);
732 struct xfs_inode *ip = XFS_I(inode);
733 long error;
734 enum xfs_prealloc_flags flags = 0;
735 uint iolock = XFS_IOLOCK_EXCL;
736 loff_t new_size = 0;
737 bool do_file_insert = 0;
738
739 if (!S_ISREG(inode->i_mode))
740 return -EINVAL;
741 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
742 return -EOPNOTSUPP;
743
744 xfs_ilock(ip, iolock);
745 error = xfs_break_layouts(inode, &iolock);
746 if (error)
747 goto out_unlock;
748
749 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
750 iolock |= XFS_MMAPLOCK_EXCL;
751
752 if (mode & FALLOC_FL_PUNCH_HOLE) {
753 error = xfs_free_file_space(ip, offset, len);
754 if (error)
755 goto out_unlock;
756 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
757 unsigned int blksize_mask = i_blocksize(inode) - 1;
758
759 if (offset & blksize_mask || len & blksize_mask) {
760 error = -EINVAL;
761 goto out_unlock;
762 }
763
764 /*
765 * There is no need to overlap collapse range with EOF,
766 * in which case it is effectively a truncate operation
767 */
768 if (offset + len >= i_size_read(inode)) {
769 error = -EINVAL;
770 goto out_unlock;
771 }
772
773 new_size = i_size_read(inode) - len;
774
775 error = xfs_collapse_file_space(ip, offset, len);
776 if (error)
777 goto out_unlock;
778 } else if (mode & FALLOC_FL_INSERT_RANGE) {
779 unsigned int blksize_mask = i_blocksize(inode) - 1;
780
781 new_size = i_size_read(inode) + len;
782 if (offset & blksize_mask || len & blksize_mask) {
783 error = -EINVAL;
784 goto out_unlock;
785 }
786
787 /* check the new inode size does not wrap through zero */
788 if (new_size > inode->i_sb->s_maxbytes) {
789 error = -EFBIG;
790 goto out_unlock;
791 }
792
793 /* Offset should be less than i_size */
794 if (offset >= i_size_read(inode)) {
795 error = -EINVAL;
796 goto out_unlock;
797 }
798 do_file_insert = 1;
799 } else {
800 flags |= XFS_PREALLOC_SET;
801
802 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
803 offset + len > i_size_read(inode)) {
804 new_size = offset + len;
805 error = inode_newsize_ok(inode, new_size);
806 if (error)
807 goto out_unlock;
808 }
809
810 if (mode & FALLOC_FL_ZERO_RANGE)
811 error = xfs_zero_file_space(ip, offset, len);
812 else {
813 if (mode & FALLOC_FL_UNSHARE_RANGE) {
814 error = xfs_reflink_unshare(ip, offset, len);
815 if (error)
816 goto out_unlock;
817 }
818 error = xfs_alloc_file_space(ip, offset, len,
819 XFS_BMAPI_PREALLOC);
820 }
821 if (error)
822 goto out_unlock;
823 }
824
825 if (file->f_flags & O_DSYNC)
826 flags |= XFS_PREALLOC_SYNC;
827
828 error = xfs_update_prealloc_flags(ip, flags);
829 if (error)
830 goto out_unlock;
831
832 /* Change file size if needed */
833 if (new_size) {
834 struct iattr iattr;
835
836 iattr.ia_valid = ATTR_SIZE;
837 iattr.ia_size = new_size;
838 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
839 if (error)
840 goto out_unlock;
841 }
842
843 /*
844 * Perform hole insertion now that the file size has been
845 * updated so that if we crash during the operation we don't
846 * leave shifted extents past EOF and hence losing access to
847 * the data that is contained within them.
848 */
849 if (do_file_insert)
850 error = xfs_insert_file_space(ip, offset, len);
851
852 out_unlock:
853 xfs_iunlock(ip, iolock);
854 return error;
855 }
856
857 STATIC int
858 xfs_file_clone_range(
859 struct file *file_in,
860 loff_t pos_in,
861 struct file *file_out,
862 loff_t pos_out,
863 u64 len)
864 {
865 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
866 len, false);
867 }
868
869 STATIC ssize_t
870 xfs_file_dedupe_range(
871 struct file *src_file,
872 u64 loff,
873 u64 len,
874 struct file *dst_file,
875 u64 dst_loff)
876 {
877 int error;
878
879 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
880 len, true);
881 if (error)
882 return error;
883 return len;
884 }
885
886 STATIC int
887 xfs_file_open(
888 struct inode *inode,
889 struct file *file)
890 {
891 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
892 return -EFBIG;
893 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
894 return -EIO;
895 return 0;
896 }
897
898 STATIC int
899 xfs_dir_open(
900 struct inode *inode,
901 struct file *file)
902 {
903 struct xfs_inode *ip = XFS_I(inode);
904 int mode;
905 int error;
906
907 error = xfs_file_open(inode, file);
908 if (error)
909 return error;
910
911 /*
912 * If there are any blocks, read-ahead block 0 as we're almost
913 * certain to have the next operation be a read there.
914 */
915 mode = xfs_ilock_data_map_shared(ip);
916 if (ip->i_d.di_nextents > 0)
917 error = xfs_dir3_data_readahead(ip, 0, -1);
918 xfs_iunlock(ip, mode);
919 return error;
920 }
921
922 STATIC int
923 xfs_file_release(
924 struct inode *inode,
925 struct file *filp)
926 {
927 return xfs_release(XFS_I(inode));
928 }
929
930 STATIC int
931 xfs_file_readdir(
932 struct file *file,
933 struct dir_context *ctx)
934 {
935 struct inode *inode = file_inode(file);
936 xfs_inode_t *ip = XFS_I(inode);
937 size_t bufsize;
938
939 /*
940 * The Linux API doesn't pass down the total size of the buffer
941 * we read into down to the filesystem. With the filldir concept
942 * it's not needed for correct information, but the XFS dir2 leaf
943 * code wants an estimate of the buffer size to calculate it's
944 * readahead window and size the buffers used for mapping to
945 * physical blocks.
946 *
947 * Try to give it an estimate that's good enough, maybe at some
948 * point we can change the ->readdir prototype to include the
949 * buffer size. For now we use the current glibc buffer size.
950 */
951 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
952
953 return xfs_readdir(ip, ctx, bufsize);
954 }
955
956 /*
957 * This type is designed to indicate the type of offset we would like
958 * to search from page cache for xfs_seek_hole_data().
959 */
960 enum {
961 HOLE_OFF = 0,
962 DATA_OFF,
963 };
964
965 /*
966 * Lookup the desired type of offset from the given page.
967 *
968 * On success, return true and the offset argument will point to the
969 * start of the region that was found. Otherwise this function will
970 * return false and keep the offset argument unchanged.
971 */
972 STATIC bool
973 xfs_lookup_buffer_offset(
974 struct page *page,
975 loff_t *offset,
976 unsigned int type)
977 {
978 loff_t lastoff = page_offset(page);
979 bool found = false;
980 struct buffer_head *bh, *head;
981
982 bh = head = page_buffers(page);
983 do {
984 /*
985 * Unwritten extents that have data in the page
986 * cache covering them can be identified by the
987 * BH_Unwritten state flag. Pages with multiple
988 * buffers might have a mix of holes, data and
989 * unwritten extents - any buffer with valid
990 * data in it should have BH_Uptodate flag set
991 * on it.
992 */
993 if (buffer_unwritten(bh) ||
994 buffer_uptodate(bh)) {
995 if (type == DATA_OFF)
996 found = true;
997 } else {
998 if (type == HOLE_OFF)
999 found = true;
1000 }
1001
1002 if (found) {
1003 *offset = lastoff;
1004 break;
1005 }
1006 lastoff += bh->b_size;
1007 } while ((bh = bh->b_this_page) != head);
1008
1009 return found;
1010 }
1011
1012 /*
1013 * This routine is called to find out and return a data or hole offset
1014 * from the page cache for unwritten extents according to the desired
1015 * type for xfs_seek_hole_data().
1016 *
1017 * The argument offset is used to tell where we start to search from the
1018 * page cache. Map is used to figure out the end points of the range to
1019 * lookup pages.
1020 *
1021 * Return true if the desired type of offset was found, and the argument
1022 * offset is filled with that address. Otherwise, return false and keep
1023 * offset unchanged.
1024 */
1025 STATIC bool
1026 xfs_find_get_desired_pgoff(
1027 struct inode *inode,
1028 struct xfs_bmbt_irec *map,
1029 unsigned int type,
1030 loff_t *offset)
1031 {
1032 struct xfs_inode *ip = XFS_I(inode);
1033 struct xfs_mount *mp = ip->i_mount;
1034 struct pagevec pvec;
1035 pgoff_t index;
1036 pgoff_t end;
1037 loff_t endoff;
1038 loff_t startoff = *offset;
1039 loff_t lastoff = startoff;
1040 bool found = false;
1041
1042 pagevec_init(&pvec, 0);
1043
1044 index = startoff >> PAGE_SHIFT;
1045 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1046 end = endoff >> PAGE_SHIFT;
1047 do {
1048 int want;
1049 unsigned nr_pages;
1050 unsigned int i;
1051
1052 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1053 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1054 want);
1055 /*
1056 * No page mapped into given range. If we are searching holes
1057 * and if this is the first time we got into the loop, it means
1058 * that the given offset is landed in a hole, return it.
1059 *
1060 * If we have already stepped through some block buffers to find
1061 * holes but they all contains data. In this case, the last
1062 * offset is already updated and pointed to the end of the last
1063 * mapped page, if it does not reach the endpoint to search,
1064 * that means there should be a hole between them.
1065 */
1066 if (nr_pages == 0) {
1067 /* Data search found nothing */
1068 if (type == DATA_OFF)
1069 break;
1070
1071 ASSERT(type == HOLE_OFF);
1072 if (lastoff == startoff || lastoff < endoff) {
1073 found = true;
1074 *offset = lastoff;
1075 }
1076 break;
1077 }
1078
1079 /*
1080 * At lease we found one page. If this is the first time we
1081 * step into the loop, and if the first page index offset is
1082 * greater than the given search offset, a hole was found.
1083 */
1084 if (type == HOLE_OFF && lastoff == startoff &&
1085 lastoff < page_offset(pvec.pages[0])) {
1086 found = true;
1087 break;
1088 }
1089
1090 for (i = 0; i < nr_pages; i++) {
1091 struct page *page = pvec.pages[i];
1092 loff_t b_offset;
1093
1094 /*
1095 * At this point, the page may be truncated or
1096 * invalidated (changing page->mapping to NULL),
1097 * or even swizzled back from swapper_space to tmpfs
1098 * file mapping. However, page->index will not change
1099 * because we have a reference on the page.
1100 *
1101 * Searching done if the page index is out of range.
1102 * If the current offset is not reaches the end of
1103 * the specified search range, there should be a hole
1104 * between them.
1105 */
1106 if (page->index > end) {
1107 if (type == HOLE_OFF && lastoff < endoff) {
1108 *offset = lastoff;
1109 found = true;
1110 }
1111 goto out;
1112 }
1113
1114 lock_page(page);
1115 /*
1116 * Page truncated or invalidated(page->mapping == NULL).
1117 * We can freely skip it and proceed to check the next
1118 * page.
1119 */
1120 if (unlikely(page->mapping != inode->i_mapping)) {
1121 unlock_page(page);
1122 continue;
1123 }
1124
1125 if (!page_has_buffers(page)) {
1126 unlock_page(page);
1127 continue;
1128 }
1129
1130 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1131 if (found) {
1132 /*
1133 * The found offset may be less than the start
1134 * point to search if this is the first time to
1135 * come here.
1136 */
1137 *offset = max_t(loff_t, startoff, b_offset);
1138 unlock_page(page);
1139 goto out;
1140 }
1141
1142 /*
1143 * We either searching data but nothing was found, or
1144 * searching hole but found a data buffer. In either
1145 * case, probably the next page contains the desired
1146 * things, update the last offset to it so.
1147 */
1148 lastoff = page_offset(page) + PAGE_SIZE;
1149 unlock_page(page);
1150 }
1151
1152 /*
1153 * The number of returned pages less than our desired, search
1154 * done. In this case, nothing was found for searching data,
1155 * but we found a hole behind the last offset.
1156 */
1157 if (nr_pages < want) {
1158 if (type == HOLE_OFF) {
1159 *offset = lastoff;
1160 found = true;
1161 }
1162 break;
1163 }
1164
1165 index = pvec.pages[i - 1]->index + 1;
1166 pagevec_release(&pvec);
1167 } while (index <= end);
1168
1169 out:
1170 pagevec_release(&pvec);
1171 return found;
1172 }
1173
1174 /*
1175 * caller must lock inode with xfs_ilock_data_map_shared,
1176 * can we craft an appropriate ASSERT?
1177 *
1178 * end is because the VFS-level lseek interface is defined such that any
1179 * offset past i_size shall return -ENXIO, but we use this for quota code
1180 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1181 */
1182 loff_t
1183 __xfs_seek_hole_data(
1184 struct inode *inode,
1185 loff_t start,
1186 loff_t end,
1187 int whence)
1188 {
1189 struct xfs_inode *ip = XFS_I(inode);
1190 struct xfs_mount *mp = ip->i_mount;
1191 loff_t uninitialized_var(offset);
1192 xfs_fileoff_t fsbno;
1193 xfs_filblks_t lastbno;
1194 int error;
1195
1196 if (start >= end) {
1197 error = -ENXIO;
1198 goto out_error;
1199 }
1200
1201 /*
1202 * Try to read extents from the first block indicated
1203 * by fsbno to the end block of the file.
1204 */
1205 fsbno = XFS_B_TO_FSBT(mp, start);
1206 lastbno = XFS_B_TO_FSB(mp, end);
1207
1208 for (;;) {
1209 struct xfs_bmbt_irec map[2];
1210 int nmap = 2;
1211 unsigned int i;
1212
1213 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1214 XFS_BMAPI_ENTIRE);
1215 if (error)
1216 goto out_error;
1217
1218 /* No extents at given offset, must be beyond EOF */
1219 if (nmap == 0) {
1220 error = -ENXIO;
1221 goto out_error;
1222 }
1223
1224 for (i = 0; i < nmap; i++) {
1225 offset = max_t(loff_t, start,
1226 XFS_FSB_TO_B(mp, map[i].br_startoff));
1227
1228 /* Landed in the hole we wanted? */
1229 if (whence == SEEK_HOLE &&
1230 map[i].br_startblock == HOLESTARTBLOCK)
1231 goto out;
1232
1233 /* Landed in the data extent we wanted? */
1234 if (whence == SEEK_DATA &&
1235 (map[i].br_startblock == DELAYSTARTBLOCK ||
1236 (map[i].br_state == XFS_EXT_NORM &&
1237 !isnullstartblock(map[i].br_startblock))))
1238 goto out;
1239
1240 /*
1241 * Landed in an unwritten extent, try to search
1242 * for hole or data from page cache.
1243 */
1244 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1245 if (xfs_find_get_desired_pgoff(inode, &map[i],
1246 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1247 &offset))
1248 goto out;
1249 }
1250 }
1251
1252 /*
1253 * We only received one extent out of the two requested. This
1254 * means we've hit EOF and didn't find what we are looking for.
1255 */
1256 if (nmap == 1) {
1257 /*
1258 * If we were looking for a hole, set offset to
1259 * the end of the file (i.e., there is an implicit
1260 * hole at the end of any file).
1261 */
1262 if (whence == SEEK_HOLE) {
1263 offset = end;
1264 break;
1265 }
1266 /*
1267 * If we were looking for data, it's nowhere to be found
1268 */
1269 ASSERT(whence == SEEK_DATA);
1270 error = -ENXIO;
1271 goto out_error;
1272 }
1273
1274 ASSERT(i > 1);
1275
1276 /*
1277 * Nothing was found, proceed to the next round of search
1278 * if the next reading offset is not at or beyond EOF.
1279 */
1280 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1281 start = XFS_FSB_TO_B(mp, fsbno);
1282 if (start >= end) {
1283 if (whence == SEEK_HOLE) {
1284 offset = end;
1285 break;
1286 }
1287 ASSERT(whence == SEEK_DATA);
1288 error = -ENXIO;
1289 goto out_error;
1290 }
1291 }
1292
1293 out:
1294 /*
1295 * If at this point we have found the hole we wanted, the returned
1296 * offset may be bigger than the file size as it may be aligned to
1297 * page boundary for unwritten extents. We need to deal with this
1298 * situation in particular.
1299 */
1300 if (whence == SEEK_HOLE)
1301 offset = min_t(loff_t, offset, end);
1302
1303 return offset;
1304
1305 out_error:
1306 return error;
1307 }
1308
1309 STATIC loff_t
1310 xfs_seek_hole_data(
1311 struct file *file,
1312 loff_t start,
1313 int whence)
1314 {
1315 struct inode *inode = file->f_mapping->host;
1316 struct xfs_inode *ip = XFS_I(inode);
1317 struct xfs_mount *mp = ip->i_mount;
1318 uint lock;
1319 loff_t offset, end;
1320 int error = 0;
1321
1322 if (XFS_FORCED_SHUTDOWN(mp))
1323 return -EIO;
1324
1325 lock = xfs_ilock_data_map_shared(ip);
1326
1327 end = i_size_read(inode);
1328 offset = __xfs_seek_hole_data(inode, start, end, whence);
1329 if (offset < 0) {
1330 error = offset;
1331 goto out_unlock;
1332 }
1333
1334 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1335
1336 out_unlock:
1337 xfs_iunlock(ip, lock);
1338
1339 if (error)
1340 return error;
1341 return offset;
1342 }
1343
1344 STATIC loff_t
1345 xfs_file_llseek(
1346 struct file *file,
1347 loff_t offset,
1348 int whence)
1349 {
1350 switch (whence) {
1351 case SEEK_END:
1352 case SEEK_CUR:
1353 case SEEK_SET:
1354 return generic_file_llseek(file, offset, whence);
1355 case SEEK_HOLE:
1356 case SEEK_DATA:
1357 return xfs_seek_hole_data(file, offset, whence);
1358 default:
1359 return -EINVAL;
1360 }
1361 }
1362
1363 /*
1364 * Locking for serialisation of IO during page faults. This results in a lock
1365 * ordering of:
1366 *
1367 * mmap_sem (MM)
1368 * sb_start_pagefault(vfs, freeze)
1369 * i_mmaplock (XFS - truncate serialisation)
1370 * page_lock (MM)
1371 * i_lock (XFS - extent map serialisation)
1372 */
1373
1374 /*
1375 * mmap()d file has taken write protection fault and is being made writable. We
1376 * can set the page state up correctly for a writable page, which means we can
1377 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1378 * mapping.
1379 */
1380 STATIC int
1381 xfs_filemap_page_mkwrite(
1382 struct vm_fault *vmf)
1383 {
1384 struct inode *inode = file_inode(vmf->vma->vm_file);
1385 int ret;
1386
1387 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1388
1389 sb_start_pagefault(inode->i_sb);
1390 file_update_time(vmf->vma->vm_file);
1391 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1392
1393 if (IS_DAX(inode)) {
1394 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1395 } else {
1396 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1397 ret = block_page_mkwrite_return(ret);
1398 }
1399
1400 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401 sb_end_pagefault(inode->i_sb);
1402
1403 return ret;
1404 }
1405
1406 STATIC int
1407 xfs_filemap_fault(
1408 struct vm_fault *vmf)
1409 {
1410 struct inode *inode = file_inode(vmf->vma->vm_file);
1411 int ret;
1412
1413 trace_xfs_filemap_fault(XFS_I(inode));
1414
1415 /* DAX can shortcut the normal fault path on write faults! */
1416 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1417 return xfs_filemap_page_mkwrite(vmf);
1418
1419 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1420 if (IS_DAX(inode))
1421 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1422 else
1423 ret = filemap_fault(vmf);
1424 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1425
1426 return ret;
1427 }
1428
1429 /*
1430 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1431 * both read and write faults. Hence we need to handle both cases. There is no
1432 * ->huge_mkwrite callout for huge pages, so we have a single function here to
1433 * handle both cases here. @flags carries the information on the type of fault
1434 * occuring.
1435 */
1436 STATIC int
1437 xfs_filemap_huge_fault(
1438 struct vm_fault *vmf,
1439 enum page_entry_size pe_size)
1440 {
1441 struct inode *inode = file_inode(vmf->vma->vm_file);
1442 struct xfs_inode *ip = XFS_I(inode);
1443 int ret;
1444
1445 if (!IS_DAX(inode))
1446 return VM_FAULT_FALLBACK;
1447
1448 trace_xfs_filemap_huge_fault(ip);
1449
1450 if (vmf->flags & FAULT_FLAG_WRITE) {
1451 sb_start_pagefault(inode->i_sb);
1452 file_update_time(vmf->vma->vm_file);
1453 }
1454
1455 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1456 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1457 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1458
1459 if (vmf->flags & FAULT_FLAG_WRITE)
1460 sb_end_pagefault(inode->i_sb);
1461
1462 return ret;
1463 }
1464
1465 /*
1466 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1467 * updates on write faults. In reality, it's need to serialise against
1468 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1469 * to ensure we serialise the fault barrier in place.
1470 */
1471 static int
1472 xfs_filemap_pfn_mkwrite(
1473 struct vm_fault *vmf)
1474 {
1475
1476 struct inode *inode = file_inode(vmf->vma->vm_file);
1477 struct xfs_inode *ip = XFS_I(inode);
1478 int ret = VM_FAULT_NOPAGE;
1479 loff_t size;
1480
1481 trace_xfs_filemap_pfn_mkwrite(ip);
1482
1483 sb_start_pagefault(inode->i_sb);
1484 file_update_time(vmf->vma->vm_file);
1485
1486 /* check if the faulting page hasn't raced with truncate */
1487 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1488 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1489 if (vmf->pgoff >= size)
1490 ret = VM_FAULT_SIGBUS;
1491 else if (IS_DAX(inode))
1492 ret = dax_pfn_mkwrite(vmf);
1493 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1494 sb_end_pagefault(inode->i_sb);
1495 return ret;
1496
1497 }
1498
1499 static const struct vm_operations_struct xfs_file_vm_ops = {
1500 .fault = xfs_filemap_fault,
1501 .huge_fault = xfs_filemap_huge_fault,
1502 .map_pages = filemap_map_pages,
1503 .page_mkwrite = xfs_filemap_page_mkwrite,
1504 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1505 };
1506
1507 STATIC int
1508 xfs_file_mmap(
1509 struct file *filp,
1510 struct vm_area_struct *vma)
1511 {
1512 file_accessed(filp);
1513 vma->vm_ops = &xfs_file_vm_ops;
1514 if (IS_DAX(file_inode(filp)))
1515 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1516 return 0;
1517 }
1518
1519 const struct file_operations xfs_file_operations = {
1520 .llseek = xfs_file_llseek,
1521 .read_iter = xfs_file_read_iter,
1522 .write_iter = xfs_file_write_iter,
1523 .splice_read = generic_file_splice_read,
1524 .splice_write = iter_file_splice_write,
1525 .unlocked_ioctl = xfs_file_ioctl,
1526 #ifdef CONFIG_COMPAT
1527 .compat_ioctl = xfs_file_compat_ioctl,
1528 #endif
1529 .mmap = xfs_file_mmap,
1530 .open = xfs_file_open,
1531 .release = xfs_file_release,
1532 .fsync = xfs_file_fsync,
1533 .get_unmapped_area = thp_get_unmapped_area,
1534 .fallocate = xfs_file_fallocate,
1535 .clone_file_range = xfs_file_clone_range,
1536 .dedupe_file_range = xfs_file_dedupe_range,
1537 };
1538
1539 const struct file_operations xfs_dir_file_operations = {
1540 .open = xfs_dir_open,
1541 .read = generic_read_dir,
1542 .iterate_shared = xfs_file_readdir,
1543 .llseek = generic_file_llseek,
1544 .unlocked_ioctl = xfs_file_ioctl,
1545 #ifdef CONFIG_COMPAT
1546 .compat_ioctl = xfs_file_compat_ioctl,
1547 #endif
1548 .fsync = xfs_dir_fsync,
1549 };