]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
writeback: separate out include/linux/backing-dev-defs.h
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45
46 static const struct vm_operations_struct xfs_file_vm_ops;
47
48 /*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56 {
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60 }
61
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66 {
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70 }
71
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76 {
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80 }
81
82 /*
83 * xfs_iozero
84 *
85 * xfs_iozero clears the specified range of buffer supplied,
86 * and marks all the affected blocks as valid and modified. If
87 * an affected block is not allocated, it will be allocated. If
88 * an affected block is not completely overwritten, and is not
89 * valid before the operation, it will be read from disk before
90 * being partially zeroed.
91 */
92 int
93 xfs_iozero(
94 struct xfs_inode *ip, /* inode */
95 loff_t pos, /* offset in file */
96 size_t count) /* size of data to zero */
97 {
98 struct page *page;
99 struct address_space *mapping;
100 int status;
101
102 mapping = VFS_I(ip)->i_mapping;
103 do {
104 unsigned offset, bytes;
105 void *fsdata;
106
107 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
108 bytes = PAGE_CACHE_SIZE - offset;
109 if (bytes > count)
110 bytes = count;
111
112 status = pagecache_write_begin(NULL, mapping, pos, bytes,
113 AOP_FLAG_UNINTERRUPTIBLE,
114 &page, &fsdata);
115 if (status)
116 break;
117
118 zero_user(page, offset, bytes);
119
120 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
121 page, fsdata);
122 WARN_ON(status <= 0); /* can't return less than zero! */
123 pos += bytes;
124 count -= bytes;
125 status = 0;
126 } while (count);
127
128 return (-status);
129 }
130
131 int
132 xfs_update_prealloc_flags(
133 struct xfs_inode *ip,
134 enum xfs_prealloc_flags flags)
135 {
136 struct xfs_trans *tp;
137 int error;
138
139 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
140 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
141 if (error) {
142 xfs_trans_cancel(tp, 0);
143 return error;
144 }
145
146 xfs_ilock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
148
149 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
150 ip->i_d.di_mode &= ~S_ISUID;
151 if (ip->i_d.di_mode & S_IXGRP)
152 ip->i_d.di_mode &= ~S_ISGID;
153 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
154 }
155
156 if (flags & XFS_PREALLOC_SET)
157 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
158 if (flags & XFS_PREALLOC_CLEAR)
159 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
160
161 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
162 if (flags & XFS_PREALLOC_SYNC)
163 xfs_trans_set_sync(tp);
164 return xfs_trans_commit(tp, 0);
165 }
166
167 /*
168 * Fsync operations on directories are much simpler than on regular files,
169 * as there is no file data to flush, and thus also no need for explicit
170 * cache flush operations, and there are no non-transaction metadata updates
171 * on directories either.
172 */
173 STATIC int
174 xfs_dir_fsync(
175 struct file *file,
176 loff_t start,
177 loff_t end,
178 int datasync)
179 {
180 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
181 struct xfs_mount *mp = ip->i_mount;
182 xfs_lsn_t lsn = 0;
183
184 trace_xfs_dir_fsync(ip);
185
186 xfs_ilock(ip, XFS_ILOCK_SHARED);
187 if (xfs_ipincount(ip))
188 lsn = ip->i_itemp->ili_last_lsn;
189 xfs_iunlock(ip, XFS_ILOCK_SHARED);
190
191 if (!lsn)
192 return 0;
193 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
194 }
195
196 STATIC int
197 xfs_file_fsync(
198 struct file *file,
199 loff_t start,
200 loff_t end,
201 int datasync)
202 {
203 struct inode *inode = file->f_mapping->host;
204 struct xfs_inode *ip = XFS_I(inode);
205 struct xfs_mount *mp = ip->i_mount;
206 int error = 0;
207 int log_flushed = 0;
208 xfs_lsn_t lsn = 0;
209
210 trace_xfs_file_fsync(ip);
211
212 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
213 if (error)
214 return error;
215
216 if (XFS_FORCED_SHUTDOWN(mp))
217 return -EIO;
218
219 xfs_iflags_clear(ip, XFS_ITRUNCATED);
220
221 if (mp->m_flags & XFS_MOUNT_BARRIER) {
222 /*
223 * If we have an RT and/or log subvolume we need to make sure
224 * to flush the write cache the device used for file data
225 * first. This is to ensure newly written file data make
226 * it to disk before logging the new inode size in case of
227 * an extending write.
228 */
229 if (XFS_IS_REALTIME_INODE(ip))
230 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
231 else if (mp->m_logdev_targp != mp->m_ddev_targp)
232 xfs_blkdev_issue_flush(mp->m_ddev_targp);
233 }
234
235 /*
236 * All metadata updates are logged, which means that we just have
237 * to flush the log up to the latest LSN that touched the inode.
238 */
239 xfs_ilock(ip, XFS_ILOCK_SHARED);
240 if (xfs_ipincount(ip)) {
241 if (!datasync ||
242 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
243 lsn = ip->i_itemp->ili_last_lsn;
244 }
245 xfs_iunlock(ip, XFS_ILOCK_SHARED);
246
247 if (lsn)
248 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
249
250 /*
251 * If we only have a single device, and the log force about was
252 * a no-op we might have to flush the data device cache here.
253 * This can only happen for fdatasync/O_DSYNC if we were overwriting
254 * an already allocated file and thus do not have any metadata to
255 * commit.
256 */
257 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
258 mp->m_logdev_targp == mp->m_ddev_targp &&
259 !XFS_IS_REALTIME_INODE(ip) &&
260 !log_flushed)
261 xfs_blkdev_issue_flush(mp->m_ddev_targp);
262
263 return error;
264 }
265
266 STATIC ssize_t
267 xfs_file_read_iter(
268 struct kiocb *iocb,
269 struct iov_iter *to)
270 {
271 struct file *file = iocb->ki_filp;
272 struct inode *inode = file->f_mapping->host;
273 struct xfs_inode *ip = XFS_I(inode);
274 struct xfs_mount *mp = ip->i_mount;
275 size_t size = iov_iter_count(to);
276 ssize_t ret = 0;
277 int ioflags = 0;
278 xfs_fsize_t n;
279 loff_t pos = iocb->ki_pos;
280
281 XFS_STATS_INC(xs_read_calls);
282
283 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
284 ioflags |= XFS_IO_ISDIRECT;
285 if (file->f_mode & FMODE_NOCMTIME)
286 ioflags |= XFS_IO_INVIS;
287
288 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
289 xfs_buftarg_t *target =
290 XFS_IS_REALTIME_INODE(ip) ?
291 mp->m_rtdev_targp : mp->m_ddev_targp;
292 /* DIO must be aligned to device logical sector size */
293 if ((pos | size) & target->bt_logical_sectormask) {
294 if (pos == i_size_read(inode))
295 return 0;
296 return -EINVAL;
297 }
298 }
299
300 n = mp->m_super->s_maxbytes - pos;
301 if (n <= 0 || size == 0)
302 return 0;
303
304 if (n < size)
305 size = n;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -EIO;
309
310 /*
311 * Locking is a bit tricky here. If we take an exclusive lock
312 * for direct IO, we effectively serialise all new concurrent
313 * read IO to this file and block it behind IO that is currently in
314 * progress because IO in progress holds the IO lock shared. We only
315 * need to hold the lock exclusive to blow away the page cache, so
316 * only take lock exclusively if the page cache needs invalidation.
317 * This allows the normal direct IO case of no page cache pages to
318 * proceeed concurrently without serialisation.
319 */
320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
324
325 if (inode->i_mapping->nrpages) {
326 ret = filemap_write_and_wait_range(
327 VFS_I(ip)->i_mapping,
328 pos, pos + size - 1);
329 if (ret) {
330 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
331 return ret;
332 }
333
334 /*
335 * Invalidate whole pages. This can return an error if
336 * we fail to invalidate a page, but this should never
337 * happen on XFS. Warn if it does fail.
338 */
339 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
340 pos >> PAGE_CACHE_SHIFT,
341 (pos + size - 1) >> PAGE_CACHE_SHIFT);
342 WARN_ON_ONCE(ret);
343 ret = 0;
344 }
345 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
346 }
347
348 trace_xfs_file_read(ip, size, pos, ioflags);
349
350 ret = generic_file_read_iter(iocb, to);
351 if (ret > 0)
352 XFS_STATS_ADD(xs_read_bytes, ret);
353
354 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
355 return ret;
356 }
357
358 STATIC ssize_t
359 xfs_file_splice_read(
360 struct file *infilp,
361 loff_t *ppos,
362 struct pipe_inode_info *pipe,
363 size_t count,
364 unsigned int flags)
365 {
366 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
367 int ioflags = 0;
368 ssize_t ret;
369
370 XFS_STATS_INC(xs_read_calls);
371
372 if (infilp->f_mode & FMODE_NOCMTIME)
373 ioflags |= XFS_IO_INVIS;
374
375 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 return -EIO;
377
378 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
379
380 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
381
382 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
383 if (ret > 0)
384 XFS_STATS_ADD(xs_read_bytes, ret);
385
386 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
387 return ret;
388 }
389
390 /*
391 * This routine is called to handle zeroing any space in the last block of the
392 * file that is beyond the EOF. We do this since the size is being increased
393 * without writing anything to that block and we don't want to read the
394 * garbage on the disk.
395 */
396 STATIC int /* error (positive) */
397 xfs_zero_last_block(
398 struct xfs_inode *ip,
399 xfs_fsize_t offset,
400 xfs_fsize_t isize,
401 bool *did_zeroing)
402 {
403 struct xfs_mount *mp = ip->i_mount;
404 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
405 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406 int zero_len;
407 int nimaps = 1;
408 int error = 0;
409 struct xfs_bmbt_irec imap;
410
411 xfs_ilock(ip, XFS_ILOCK_EXCL);
412 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
413 xfs_iunlock(ip, XFS_ILOCK_EXCL);
414 if (error)
415 return error;
416
417 ASSERT(nimaps > 0);
418
419 /*
420 * If the block underlying isize is just a hole, then there
421 * is nothing to zero.
422 */
423 if (imap.br_startblock == HOLESTARTBLOCK)
424 return 0;
425
426 zero_len = mp->m_sb.sb_blocksize - zero_offset;
427 if (isize + zero_len > offset)
428 zero_len = offset - isize;
429 *did_zeroing = true;
430 return xfs_iozero(ip, isize, zero_len);
431 }
432
433 /*
434 * Zero any on disk space between the current EOF and the new, larger EOF.
435 *
436 * This handles the normal case of zeroing the remainder of the last block in
437 * the file and the unusual case of zeroing blocks out beyond the size of the
438 * file. This second case only happens with fixed size extents and when the
439 * system crashes before the inode size was updated but after blocks were
440 * allocated.
441 *
442 * Expects the iolock to be held exclusive, and will take the ilock internally.
443 */
444 int /* error (positive) */
445 xfs_zero_eof(
446 struct xfs_inode *ip,
447 xfs_off_t offset, /* starting I/O offset */
448 xfs_fsize_t isize, /* current inode size */
449 bool *did_zeroing)
450 {
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
461
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 ASSERT(offset > isize);
464
465 /*
466 * First handle zeroing the block on which isize resides.
467 *
468 * We only zero a part of that block so it is handled specially.
469 */
470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
472 if (error)
473 return error;
474 }
475
476 /*
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
479 *
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
484 */
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
490 /*
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
493 */
494 return 0;
495 }
496
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
501
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
507 return error;
508
509 ASSERT(nimaps > 0);
510
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
516 }
517
518 /*
519 * There are blocks we need to zero.
520 */
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
526
527 error = xfs_iozero(ip, zero_off, zero_len);
528 if (error)
529 return error;
530
531 *did_zeroing = true;
532 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
533 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
534 }
535
536 return 0;
537 }
538
539 /*
540 * Common pre-write limit and setup checks.
541 *
542 * Called with the iolocked held either shared and exclusive according to
543 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
544 * if called for a direct write beyond i_size.
545 */
546 STATIC ssize_t
547 xfs_file_aio_write_checks(
548 struct kiocb *iocb,
549 struct iov_iter *from,
550 int *iolock)
551 {
552 struct file *file = iocb->ki_filp;
553 struct inode *inode = file->f_mapping->host;
554 struct xfs_inode *ip = XFS_I(inode);
555 ssize_t error = 0;
556 size_t count = iov_iter_count(from);
557
558 restart:
559 error = generic_write_checks(iocb, from);
560 if (error <= 0)
561 return error;
562
563 error = xfs_break_layouts(inode, iolock, true);
564 if (error)
565 return error;
566
567 /*
568 * If the offset is beyond the size of the file, we need to zero any
569 * blocks that fall between the existing EOF and the start of this
570 * write. If zeroing is needed and we are currently holding the
571 * iolock shared, we need to update it to exclusive which implies
572 * having to redo all checks before.
573 *
574 * We need to serialise against EOF updates that occur in IO
575 * completions here. We want to make sure that nobody is changing the
576 * size while we do this check until we have placed an IO barrier (i.e.
577 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
578 * The spinlock effectively forms a memory barrier once we have the
579 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
580 * and hence be able to correctly determine if we need to run zeroing.
581 */
582 spin_lock(&ip->i_flags_lock);
583 if (iocb->ki_pos > i_size_read(inode)) {
584 bool zero = false;
585
586 spin_unlock(&ip->i_flags_lock);
587 if (*iolock == XFS_IOLOCK_SHARED) {
588 xfs_rw_iunlock(ip, *iolock);
589 *iolock = XFS_IOLOCK_EXCL;
590 xfs_rw_ilock(ip, *iolock);
591 iov_iter_reexpand(from, count);
592
593 /*
594 * We now have an IO submission barrier in place, but
595 * AIO can do EOF updates during IO completion and hence
596 * we now need to wait for all of them to drain. Non-AIO
597 * DIO will have drained before we are given the
598 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
599 * no-op.
600 */
601 inode_dio_wait(inode);
602 goto restart;
603 }
604 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
605 if (error)
606 return error;
607 } else
608 spin_unlock(&ip->i_flags_lock);
609
610 /*
611 * Updating the timestamps will grab the ilock again from
612 * xfs_fs_dirty_inode, so we have to call it after dropping the
613 * lock above. Eventually we should look into a way to avoid
614 * the pointless lock roundtrip.
615 */
616 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
617 error = file_update_time(file);
618 if (error)
619 return error;
620 }
621
622 /*
623 * If we're writing the file then make sure to clear the setuid and
624 * setgid bits if the process is not being run by root. This keeps
625 * people from modifying setuid and setgid binaries.
626 */
627 return file_remove_suid(file);
628 }
629
630 /*
631 * xfs_file_dio_aio_write - handle direct IO writes
632 *
633 * Lock the inode appropriately to prepare for and issue a direct IO write.
634 * By separating it from the buffered write path we remove all the tricky to
635 * follow locking changes and looping.
636 *
637 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
638 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
639 * pages are flushed out.
640 *
641 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
642 * allowing them to be done in parallel with reads and other direct IO writes.
643 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
644 * needs to do sub-block zeroing and that requires serialisation against other
645 * direct IOs to the same block. In this case we need to serialise the
646 * submission of the unaligned IOs so that we don't get racing block zeroing in
647 * the dio layer. To avoid the problem with aio, we also need to wait for
648 * outstanding IOs to complete so that unwritten extent conversion is completed
649 * before we try to map the overlapping block. This is currently implemented by
650 * hitting it with a big hammer (i.e. inode_dio_wait()).
651 *
652 * Returns with locks held indicated by @iolock and errors indicated by
653 * negative return values.
654 */
655 STATIC ssize_t
656 xfs_file_dio_aio_write(
657 struct kiocb *iocb,
658 struct iov_iter *from)
659 {
660 struct file *file = iocb->ki_filp;
661 struct address_space *mapping = file->f_mapping;
662 struct inode *inode = mapping->host;
663 struct xfs_inode *ip = XFS_I(inode);
664 struct xfs_mount *mp = ip->i_mount;
665 ssize_t ret = 0;
666 int unaligned_io = 0;
667 int iolock;
668 size_t count = iov_iter_count(from);
669 loff_t pos = iocb->ki_pos;
670 loff_t end;
671 struct iov_iter data;
672 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
673 mp->m_rtdev_targp : mp->m_ddev_targp;
674
675 /* DIO must be aligned to device logical sector size */
676 if ((pos | count) & target->bt_logical_sectormask)
677 return -EINVAL;
678
679 /* "unaligned" here means not aligned to a filesystem block */
680 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
681 unaligned_io = 1;
682
683 /*
684 * We don't need to take an exclusive lock unless there page cache needs
685 * to be invalidated or unaligned IO is being executed. We don't need to
686 * consider the EOF extension case here because
687 * xfs_file_aio_write_checks() will relock the inode as necessary for
688 * EOF zeroing cases and fill out the new inode size as appropriate.
689 */
690 if (unaligned_io || mapping->nrpages)
691 iolock = XFS_IOLOCK_EXCL;
692 else
693 iolock = XFS_IOLOCK_SHARED;
694 xfs_rw_ilock(ip, iolock);
695
696 /*
697 * Recheck if there are cached pages that need invalidate after we got
698 * the iolock to protect against other threads adding new pages while
699 * we were waiting for the iolock.
700 */
701 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
702 xfs_rw_iunlock(ip, iolock);
703 iolock = XFS_IOLOCK_EXCL;
704 xfs_rw_ilock(ip, iolock);
705 }
706
707 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
708 if (ret)
709 goto out;
710 count = iov_iter_count(from);
711 pos = iocb->ki_pos;
712 end = pos + count - 1;
713
714 if (mapping->nrpages) {
715 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
716 pos, end);
717 if (ret)
718 goto out;
719 /*
720 * Invalidate whole pages. This can return an error if
721 * we fail to invalidate a page, but this should never
722 * happen on XFS. Warn if it does fail.
723 */
724 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
725 pos >> PAGE_CACHE_SHIFT,
726 end >> PAGE_CACHE_SHIFT);
727 WARN_ON_ONCE(ret);
728 ret = 0;
729 }
730
731 /*
732 * If we are doing unaligned IO, wait for all other IO to drain,
733 * otherwise demote the lock if we had to flush cached pages
734 */
735 if (unaligned_io)
736 inode_dio_wait(inode);
737 else if (iolock == XFS_IOLOCK_EXCL) {
738 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
739 iolock = XFS_IOLOCK_SHARED;
740 }
741
742 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
743
744 data = *from;
745 ret = mapping->a_ops->direct_IO(iocb, &data, pos);
746
747 /* see generic_file_direct_write() for why this is necessary */
748 if (mapping->nrpages) {
749 invalidate_inode_pages2_range(mapping,
750 pos >> PAGE_CACHE_SHIFT,
751 end >> PAGE_CACHE_SHIFT);
752 }
753
754 if (ret > 0) {
755 pos += ret;
756 iov_iter_advance(from, ret);
757 iocb->ki_pos = pos;
758 }
759 out:
760 xfs_rw_iunlock(ip, iolock);
761
762 /* No fallback to buffered IO on errors for XFS. */
763 ASSERT(ret < 0 || ret == count);
764 return ret;
765 }
766
767 STATIC ssize_t
768 xfs_file_buffered_aio_write(
769 struct kiocb *iocb,
770 struct iov_iter *from)
771 {
772 struct file *file = iocb->ki_filp;
773 struct address_space *mapping = file->f_mapping;
774 struct inode *inode = mapping->host;
775 struct xfs_inode *ip = XFS_I(inode);
776 ssize_t ret;
777 int enospc = 0;
778 int iolock = XFS_IOLOCK_EXCL;
779
780 xfs_rw_ilock(ip, iolock);
781
782 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
783 if (ret)
784 goto out;
785
786 /* We can write back this queue in page reclaim */
787 current->backing_dev_info = inode_to_bdi(inode);
788
789 write_retry:
790 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
791 iocb->ki_pos, 0);
792 ret = generic_perform_write(file, from, iocb->ki_pos);
793 if (likely(ret >= 0))
794 iocb->ki_pos += ret;
795
796 /*
797 * If we hit a space limit, try to free up some lingering preallocated
798 * space before returning an error. In the case of ENOSPC, first try to
799 * write back all dirty inodes to free up some of the excess reserved
800 * metadata space. This reduces the chances that the eofblocks scan
801 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
802 * also behaves as a filter to prevent too many eofblocks scans from
803 * running at the same time.
804 */
805 if (ret == -EDQUOT && !enospc) {
806 enospc = xfs_inode_free_quota_eofblocks(ip);
807 if (enospc)
808 goto write_retry;
809 } else if (ret == -ENOSPC && !enospc) {
810 struct xfs_eofblocks eofb = {0};
811
812 enospc = 1;
813 xfs_flush_inodes(ip->i_mount);
814 eofb.eof_scan_owner = ip->i_ino; /* for locking */
815 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
816 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
817 goto write_retry;
818 }
819
820 current->backing_dev_info = NULL;
821 out:
822 xfs_rw_iunlock(ip, iolock);
823 return ret;
824 }
825
826 STATIC ssize_t
827 xfs_file_write_iter(
828 struct kiocb *iocb,
829 struct iov_iter *from)
830 {
831 struct file *file = iocb->ki_filp;
832 struct address_space *mapping = file->f_mapping;
833 struct inode *inode = mapping->host;
834 struct xfs_inode *ip = XFS_I(inode);
835 ssize_t ret;
836 size_t ocount = iov_iter_count(from);
837
838 XFS_STATS_INC(xs_write_calls);
839
840 if (ocount == 0)
841 return 0;
842
843 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
844 return -EIO;
845
846 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
847 ret = xfs_file_dio_aio_write(iocb, from);
848 else
849 ret = xfs_file_buffered_aio_write(iocb, from);
850
851 if (ret > 0) {
852 ssize_t err;
853
854 XFS_STATS_ADD(xs_write_bytes, ret);
855
856 /* Handle various SYNC-type writes */
857 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
858 if (err < 0)
859 ret = err;
860 }
861 return ret;
862 }
863
864 #define XFS_FALLOC_FL_SUPPORTED \
865 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
866 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
867 FALLOC_FL_INSERT_RANGE)
868
869 STATIC long
870 xfs_file_fallocate(
871 struct file *file,
872 int mode,
873 loff_t offset,
874 loff_t len)
875 {
876 struct inode *inode = file_inode(file);
877 struct xfs_inode *ip = XFS_I(inode);
878 long error;
879 enum xfs_prealloc_flags flags = 0;
880 uint iolock = XFS_IOLOCK_EXCL;
881 loff_t new_size = 0;
882 bool do_file_insert = 0;
883
884 if (!S_ISREG(inode->i_mode))
885 return -EINVAL;
886 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
887 return -EOPNOTSUPP;
888
889 xfs_ilock(ip, iolock);
890 error = xfs_break_layouts(inode, &iolock, false);
891 if (error)
892 goto out_unlock;
893
894 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
895 iolock |= XFS_MMAPLOCK_EXCL;
896
897 if (mode & FALLOC_FL_PUNCH_HOLE) {
898 error = xfs_free_file_space(ip, offset, len);
899 if (error)
900 goto out_unlock;
901 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
902 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
903
904 if (offset & blksize_mask || len & blksize_mask) {
905 error = -EINVAL;
906 goto out_unlock;
907 }
908
909 /*
910 * There is no need to overlap collapse range with EOF,
911 * in which case it is effectively a truncate operation
912 */
913 if (offset + len >= i_size_read(inode)) {
914 error = -EINVAL;
915 goto out_unlock;
916 }
917
918 new_size = i_size_read(inode) - len;
919
920 error = xfs_collapse_file_space(ip, offset, len);
921 if (error)
922 goto out_unlock;
923 } else if (mode & FALLOC_FL_INSERT_RANGE) {
924 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
925
926 new_size = i_size_read(inode) + len;
927 if (offset & blksize_mask || len & blksize_mask) {
928 error = -EINVAL;
929 goto out_unlock;
930 }
931
932 /* check the new inode size does not wrap through zero */
933 if (new_size > inode->i_sb->s_maxbytes) {
934 error = -EFBIG;
935 goto out_unlock;
936 }
937
938 /* Offset should be less than i_size */
939 if (offset >= i_size_read(inode)) {
940 error = -EINVAL;
941 goto out_unlock;
942 }
943 do_file_insert = 1;
944 } else {
945 flags |= XFS_PREALLOC_SET;
946
947 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
948 offset + len > i_size_read(inode)) {
949 new_size = offset + len;
950 error = inode_newsize_ok(inode, new_size);
951 if (error)
952 goto out_unlock;
953 }
954
955 if (mode & FALLOC_FL_ZERO_RANGE)
956 error = xfs_zero_file_space(ip, offset, len);
957 else
958 error = xfs_alloc_file_space(ip, offset, len,
959 XFS_BMAPI_PREALLOC);
960 if (error)
961 goto out_unlock;
962 }
963
964 if (file->f_flags & O_DSYNC)
965 flags |= XFS_PREALLOC_SYNC;
966
967 error = xfs_update_prealloc_flags(ip, flags);
968 if (error)
969 goto out_unlock;
970
971 /* Change file size if needed */
972 if (new_size) {
973 struct iattr iattr;
974
975 iattr.ia_valid = ATTR_SIZE;
976 iattr.ia_size = new_size;
977 error = xfs_setattr_size(ip, &iattr);
978 if (error)
979 goto out_unlock;
980 }
981
982 /*
983 * Perform hole insertion now that the file size has been
984 * updated so that if we crash during the operation we don't
985 * leave shifted extents past EOF and hence losing access to
986 * the data that is contained within them.
987 */
988 if (do_file_insert)
989 error = xfs_insert_file_space(ip, offset, len);
990
991 out_unlock:
992 xfs_iunlock(ip, iolock);
993 return error;
994 }
995
996
997 STATIC int
998 xfs_file_open(
999 struct inode *inode,
1000 struct file *file)
1001 {
1002 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1003 return -EFBIG;
1004 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1005 return -EIO;
1006 return 0;
1007 }
1008
1009 STATIC int
1010 xfs_dir_open(
1011 struct inode *inode,
1012 struct file *file)
1013 {
1014 struct xfs_inode *ip = XFS_I(inode);
1015 int mode;
1016 int error;
1017
1018 error = xfs_file_open(inode, file);
1019 if (error)
1020 return error;
1021
1022 /*
1023 * If there are any blocks, read-ahead block 0 as we're almost
1024 * certain to have the next operation be a read there.
1025 */
1026 mode = xfs_ilock_data_map_shared(ip);
1027 if (ip->i_d.di_nextents > 0)
1028 xfs_dir3_data_readahead(ip, 0, -1);
1029 xfs_iunlock(ip, mode);
1030 return 0;
1031 }
1032
1033 STATIC int
1034 xfs_file_release(
1035 struct inode *inode,
1036 struct file *filp)
1037 {
1038 return xfs_release(XFS_I(inode));
1039 }
1040
1041 STATIC int
1042 xfs_file_readdir(
1043 struct file *file,
1044 struct dir_context *ctx)
1045 {
1046 struct inode *inode = file_inode(file);
1047 xfs_inode_t *ip = XFS_I(inode);
1048 size_t bufsize;
1049
1050 /*
1051 * The Linux API doesn't pass down the total size of the buffer
1052 * we read into down to the filesystem. With the filldir concept
1053 * it's not needed for correct information, but the XFS dir2 leaf
1054 * code wants an estimate of the buffer size to calculate it's
1055 * readahead window and size the buffers used for mapping to
1056 * physical blocks.
1057 *
1058 * Try to give it an estimate that's good enough, maybe at some
1059 * point we can change the ->readdir prototype to include the
1060 * buffer size. For now we use the current glibc buffer size.
1061 */
1062 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1063
1064 return xfs_readdir(ip, ctx, bufsize);
1065 }
1066
1067 STATIC int
1068 xfs_file_mmap(
1069 struct file *filp,
1070 struct vm_area_struct *vma)
1071 {
1072 vma->vm_ops = &xfs_file_vm_ops;
1073
1074 file_accessed(filp);
1075 return 0;
1076 }
1077
1078 /*
1079 * This type is designed to indicate the type of offset we would like
1080 * to search from page cache for xfs_seek_hole_data().
1081 */
1082 enum {
1083 HOLE_OFF = 0,
1084 DATA_OFF,
1085 };
1086
1087 /*
1088 * Lookup the desired type of offset from the given page.
1089 *
1090 * On success, return true and the offset argument will point to the
1091 * start of the region that was found. Otherwise this function will
1092 * return false and keep the offset argument unchanged.
1093 */
1094 STATIC bool
1095 xfs_lookup_buffer_offset(
1096 struct page *page,
1097 loff_t *offset,
1098 unsigned int type)
1099 {
1100 loff_t lastoff = page_offset(page);
1101 bool found = false;
1102 struct buffer_head *bh, *head;
1103
1104 bh = head = page_buffers(page);
1105 do {
1106 /*
1107 * Unwritten extents that have data in the page
1108 * cache covering them can be identified by the
1109 * BH_Unwritten state flag. Pages with multiple
1110 * buffers might have a mix of holes, data and
1111 * unwritten extents - any buffer with valid
1112 * data in it should have BH_Uptodate flag set
1113 * on it.
1114 */
1115 if (buffer_unwritten(bh) ||
1116 buffer_uptodate(bh)) {
1117 if (type == DATA_OFF)
1118 found = true;
1119 } else {
1120 if (type == HOLE_OFF)
1121 found = true;
1122 }
1123
1124 if (found) {
1125 *offset = lastoff;
1126 break;
1127 }
1128 lastoff += bh->b_size;
1129 } while ((bh = bh->b_this_page) != head);
1130
1131 return found;
1132 }
1133
1134 /*
1135 * This routine is called to find out and return a data or hole offset
1136 * from the page cache for unwritten extents according to the desired
1137 * type for xfs_seek_hole_data().
1138 *
1139 * The argument offset is used to tell where we start to search from the
1140 * page cache. Map is used to figure out the end points of the range to
1141 * lookup pages.
1142 *
1143 * Return true if the desired type of offset was found, and the argument
1144 * offset is filled with that address. Otherwise, return false and keep
1145 * offset unchanged.
1146 */
1147 STATIC bool
1148 xfs_find_get_desired_pgoff(
1149 struct inode *inode,
1150 struct xfs_bmbt_irec *map,
1151 unsigned int type,
1152 loff_t *offset)
1153 {
1154 struct xfs_inode *ip = XFS_I(inode);
1155 struct xfs_mount *mp = ip->i_mount;
1156 struct pagevec pvec;
1157 pgoff_t index;
1158 pgoff_t end;
1159 loff_t endoff;
1160 loff_t startoff = *offset;
1161 loff_t lastoff = startoff;
1162 bool found = false;
1163
1164 pagevec_init(&pvec, 0);
1165
1166 index = startoff >> PAGE_CACHE_SHIFT;
1167 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1168 end = endoff >> PAGE_CACHE_SHIFT;
1169 do {
1170 int want;
1171 unsigned nr_pages;
1172 unsigned int i;
1173
1174 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1175 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1176 want);
1177 /*
1178 * No page mapped into given range. If we are searching holes
1179 * and if this is the first time we got into the loop, it means
1180 * that the given offset is landed in a hole, return it.
1181 *
1182 * If we have already stepped through some block buffers to find
1183 * holes but they all contains data. In this case, the last
1184 * offset is already updated and pointed to the end of the last
1185 * mapped page, if it does not reach the endpoint to search,
1186 * that means there should be a hole between them.
1187 */
1188 if (nr_pages == 0) {
1189 /* Data search found nothing */
1190 if (type == DATA_OFF)
1191 break;
1192
1193 ASSERT(type == HOLE_OFF);
1194 if (lastoff == startoff || lastoff < endoff) {
1195 found = true;
1196 *offset = lastoff;
1197 }
1198 break;
1199 }
1200
1201 /*
1202 * At lease we found one page. If this is the first time we
1203 * step into the loop, and if the first page index offset is
1204 * greater than the given search offset, a hole was found.
1205 */
1206 if (type == HOLE_OFF && lastoff == startoff &&
1207 lastoff < page_offset(pvec.pages[0])) {
1208 found = true;
1209 break;
1210 }
1211
1212 for (i = 0; i < nr_pages; i++) {
1213 struct page *page = pvec.pages[i];
1214 loff_t b_offset;
1215
1216 /*
1217 * At this point, the page may be truncated or
1218 * invalidated (changing page->mapping to NULL),
1219 * or even swizzled back from swapper_space to tmpfs
1220 * file mapping. However, page->index will not change
1221 * because we have a reference on the page.
1222 *
1223 * Searching done if the page index is out of range.
1224 * If the current offset is not reaches the end of
1225 * the specified search range, there should be a hole
1226 * between them.
1227 */
1228 if (page->index > end) {
1229 if (type == HOLE_OFF && lastoff < endoff) {
1230 *offset = lastoff;
1231 found = true;
1232 }
1233 goto out;
1234 }
1235
1236 lock_page(page);
1237 /*
1238 * Page truncated or invalidated(page->mapping == NULL).
1239 * We can freely skip it and proceed to check the next
1240 * page.
1241 */
1242 if (unlikely(page->mapping != inode->i_mapping)) {
1243 unlock_page(page);
1244 continue;
1245 }
1246
1247 if (!page_has_buffers(page)) {
1248 unlock_page(page);
1249 continue;
1250 }
1251
1252 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1253 if (found) {
1254 /*
1255 * The found offset may be less than the start
1256 * point to search if this is the first time to
1257 * come here.
1258 */
1259 *offset = max_t(loff_t, startoff, b_offset);
1260 unlock_page(page);
1261 goto out;
1262 }
1263
1264 /*
1265 * We either searching data but nothing was found, or
1266 * searching hole but found a data buffer. In either
1267 * case, probably the next page contains the desired
1268 * things, update the last offset to it so.
1269 */
1270 lastoff = page_offset(page) + PAGE_SIZE;
1271 unlock_page(page);
1272 }
1273
1274 /*
1275 * The number of returned pages less than our desired, search
1276 * done. In this case, nothing was found for searching data,
1277 * but we found a hole behind the last offset.
1278 */
1279 if (nr_pages < want) {
1280 if (type == HOLE_OFF) {
1281 *offset = lastoff;
1282 found = true;
1283 }
1284 break;
1285 }
1286
1287 index = pvec.pages[i - 1]->index + 1;
1288 pagevec_release(&pvec);
1289 } while (index <= end);
1290
1291 out:
1292 pagevec_release(&pvec);
1293 return found;
1294 }
1295
1296 STATIC loff_t
1297 xfs_seek_hole_data(
1298 struct file *file,
1299 loff_t start,
1300 int whence)
1301 {
1302 struct inode *inode = file->f_mapping->host;
1303 struct xfs_inode *ip = XFS_I(inode);
1304 struct xfs_mount *mp = ip->i_mount;
1305 loff_t uninitialized_var(offset);
1306 xfs_fsize_t isize;
1307 xfs_fileoff_t fsbno;
1308 xfs_filblks_t end;
1309 uint lock;
1310 int error;
1311
1312 if (XFS_FORCED_SHUTDOWN(mp))
1313 return -EIO;
1314
1315 lock = xfs_ilock_data_map_shared(ip);
1316
1317 isize = i_size_read(inode);
1318 if (start >= isize) {
1319 error = -ENXIO;
1320 goto out_unlock;
1321 }
1322
1323 /*
1324 * Try to read extents from the first block indicated
1325 * by fsbno to the end block of the file.
1326 */
1327 fsbno = XFS_B_TO_FSBT(mp, start);
1328 end = XFS_B_TO_FSB(mp, isize);
1329
1330 for (;;) {
1331 struct xfs_bmbt_irec map[2];
1332 int nmap = 2;
1333 unsigned int i;
1334
1335 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1336 XFS_BMAPI_ENTIRE);
1337 if (error)
1338 goto out_unlock;
1339
1340 /* No extents at given offset, must be beyond EOF */
1341 if (nmap == 0) {
1342 error = -ENXIO;
1343 goto out_unlock;
1344 }
1345
1346 for (i = 0; i < nmap; i++) {
1347 offset = max_t(loff_t, start,
1348 XFS_FSB_TO_B(mp, map[i].br_startoff));
1349
1350 /* Landed in the hole we wanted? */
1351 if (whence == SEEK_HOLE &&
1352 map[i].br_startblock == HOLESTARTBLOCK)
1353 goto out;
1354
1355 /* Landed in the data extent we wanted? */
1356 if (whence == SEEK_DATA &&
1357 (map[i].br_startblock == DELAYSTARTBLOCK ||
1358 (map[i].br_state == XFS_EXT_NORM &&
1359 !isnullstartblock(map[i].br_startblock))))
1360 goto out;
1361
1362 /*
1363 * Landed in an unwritten extent, try to search
1364 * for hole or data from page cache.
1365 */
1366 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1367 if (xfs_find_get_desired_pgoff(inode, &map[i],
1368 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1369 &offset))
1370 goto out;
1371 }
1372 }
1373
1374 /*
1375 * We only received one extent out of the two requested. This
1376 * means we've hit EOF and didn't find what we are looking for.
1377 */
1378 if (nmap == 1) {
1379 /*
1380 * If we were looking for a hole, set offset to
1381 * the end of the file (i.e., there is an implicit
1382 * hole at the end of any file).
1383 */
1384 if (whence == SEEK_HOLE) {
1385 offset = isize;
1386 break;
1387 }
1388 /*
1389 * If we were looking for data, it's nowhere to be found
1390 */
1391 ASSERT(whence == SEEK_DATA);
1392 error = -ENXIO;
1393 goto out_unlock;
1394 }
1395
1396 ASSERT(i > 1);
1397
1398 /*
1399 * Nothing was found, proceed to the next round of search
1400 * if the next reading offset is not at or beyond EOF.
1401 */
1402 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1403 start = XFS_FSB_TO_B(mp, fsbno);
1404 if (start >= isize) {
1405 if (whence == SEEK_HOLE) {
1406 offset = isize;
1407 break;
1408 }
1409 ASSERT(whence == SEEK_DATA);
1410 error = -ENXIO;
1411 goto out_unlock;
1412 }
1413 }
1414
1415 out:
1416 /*
1417 * If at this point we have found the hole we wanted, the returned
1418 * offset may be bigger than the file size as it may be aligned to
1419 * page boundary for unwritten extents. We need to deal with this
1420 * situation in particular.
1421 */
1422 if (whence == SEEK_HOLE)
1423 offset = min_t(loff_t, offset, isize);
1424 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1425
1426 out_unlock:
1427 xfs_iunlock(ip, lock);
1428
1429 if (error)
1430 return error;
1431 return offset;
1432 }
1433
1434 STATIC loff_t
1435 xfs_file_llseek(
1436 struct file *file,
1437 loff_t offset,
1438 int whence)
1439 {
1440 switch (whence) {
1441 case SEEK_END:
1442 case SEEK_CUR:
1443 case SEEK_SET:
1444 return generic_file_llseek(file, offset, whence);
1445 case SEEK_HOLE:
1446 case SEEK_DATA:
1447 return xfs_seek_hole_data(file, offset, whence);
1448 default:
1449 return -EINVAL;
1450 }
1451 }
1452
1453 /*
1454 * Locking for serialisation of IO during page faults. This results in a lock
1455 * ordering of:
1456 *
1457 * mmap_sem (MM)
1458 * i_mmap_lock (XFS - truncate serialisation)
1459 * page_lock (MM)
1460 * i_lock (XFS - extent map serialisation)
1461 */
1462 STATIC int
1463 xfs_filemap_fault(
1464 struct vm_area_struct *vma,
1465 struct vm_fault *vmf)
1466 {
1467 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host);
1468 int error;
1469
1470 trace_xfs_filemap_fault(ip);
1471
1472 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1473 error = filemap_fault(vma, vmf);
1474 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1475
1476 return error;
1477 }
1478
1479 /*
1480 * mmap()d file has taken write protection fault and is being made writable. We
1481 * can set the page state up correctly for a writable page, which means we can
1482 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1483 * mapping.
1484 */
1485 STATIC int
1486 xfs_filemap_page_mkwrite(
1487 struct vm_area_struct *vma,
1488 struct vm_fault *vmf)
1489 {
1490 struct xfs_inode *ip = XFS_I(vma->vm_file->f_mapping->host);
1491 int error;
1492
1493 trace_xfs_filemap_page_mkwrite(ip);
1494
1495 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1496 error = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1497 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1498
1499 return error;
1500 }
1501
1502 const struct file_operations xfs_file_operations = {
1503 .llseek = xfs_file_llseek,
1504 .read_iter = xfs_file_read_iter,
1505 .write_iter = xfs_file_write_iter,
1506 .splice_read = xfs_file_splice_read,
1507 .splice_write = iter_file_splice_write,
1508 .unlocked_ioctl = xfs_file_ioctl,
1509 #ifdef CONFIG_COMPAT
1510 .compat_ioctl = xfs_file_compat_ioctl,
1511 #endif
1512 .mmap = xfs_file_mmap,
1513 .open = xfs_file_open,
1514 .release = xfs_file_release,
1515 .fsync = xfs_file_fsync,
1516 .fallocate = xfs_file_fallocate,
1517 };
1518
1519 const struct file_operations xfs_dir_file_operations = {
1520 .open = xfs_dir_open,
1521 .read = generic_read_dir,
1522 .iterate = xfs_file_readdir,
1523 .llseek = generic_file_llseek,
1524 .unlocked_ioctl = xfs_file_ioctl,
1525 #ifdef CONFIG_COMPAT
1526 .compat_ioctl = xfs_file_compat_ioctl,
1527 #endif
1528 .fsync = xfs_dir_fsync,
1529 };
1530
1531 static const struct vm_operations_struct xfs_file_vm_ops = {
1532 .fault = xfs_filemap_fault,
1533 .map_pages = filemap_map_pages,
1534 .page_mkwrite = xfs_filemap_page_mkwrite,
1535 };