]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
53 */
54 int
55 xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
60 {
61 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
62 }
63
64 int
65 xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68 {
69 struct xfs_trans *tp;
70 int error;
71
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
96 }
97
98 /*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104 STATIC int
105 xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110 {
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
133 {
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
140
141 trace_xfs_file_fsync(ip);
142
143 error = file_write_and_wait_range(file, start, end);
144 if (error)
145 return error;
146
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
162
163 /*
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
182
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
188
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199
200 return error;
201 }
202
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
207 {
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
211
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213
214 if (!count)
215 return 0; /* skip atime */
216
217 file_accessed(iocb->ki_filp);
218
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222
223 return ret;
224 }
225
226 static noinline ssize_t
227 xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230 {
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 if (iocb->ki_flags & IOCB_NOWAIT)
242 return -EAGAIN;
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247
248 file_accessed(iocb->ki_filp);
249 return ret;
250 }
251
252 STATIC ssize_t
253 xfs_file_buffered_aio_read(
254 struct kiocb *iocb,
255 struct iov_iter *to)
256 {
257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
258 ssize_t ret;
259
260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
261
262 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
263 if (iocb->ki_flags & IOCB_NOWAIT)
264 return -EAGAIN;
265 xfs_ilock(ip, XFS_IOLOCK_SHARED);
266 }
267 ret = generic_file_read_iter(iocb, to);
268 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
269
270 return ret;
271 }
272
273 STATIC ssize_t
274 xfs_file_read_iter(
275 struct kiocb *iocb,
276 struct iov_iter *to)
277 {
278 struct inode *inode = file_inode(iocb->ki_filp);
279 struct xfs_mount *mp = XFS_I(inode)->i_mount;
280 ssize_t ret = 0;
281
282 XFS_STATS_INC(mp, xs_read_calls);
283
284 if (XFS_FORCED_SHUTDOWN(mp))
285 return -EIO;
286
287 if (IS_DAX(inode))
288 ret = xfs_file_dax_read(iocb, to);
289 else if (iocb->ki_flags & IOCB_DIRECT)
290 ret = xfs_file_dio_aio_read(iocb, to);
291 else
292 ret = xfs_file_buffered_aio_read(iocb, to);
293
294 if (ret > 0)
295 XFS_STATS_ADD(mp, xs_read_bytes, ret);
296 return ret;
297 }
298
299 /*
300 * Zero any on disk space between the current EOF and the new, larger EOF.
301 *
302 * This handles the normal case of zeroing the remainder of the last block in
303 * the file and the unusual case of zeroing blocks out beyond the size of the
304 * file. This second case only happens with fixed size extents and when the
305 * system crashes before the inode size was updated but after blocks were
306 * allocated.
307 *
308 * Expects the iolock to be held exclusive, and will take the ilock internally.
309 */
310 int /* error (positive) */
311 xfs_zero_eof(
312 struct xfs_inode *ip,
313 xfs_off_t offset, /* starting I/O offset */
314 xfs_fsize_t isize, /* current inode size */
315 bool *did_zeroing)
316 {
317 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
318 ASSERT(offset > isize);
319
320 trace_xfs_zero_eof(ip, isize, offset - isize);
321 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
322 }
323
324 /*
325 * Common pre-write limit and setup checks.
326 *
327 * Called with the iolocked held either shared and exclusive according to
328 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
329 * if called for a direct write beyond i_size.
330 */
331 STATIC ssize_t
332 xfs_file_aio_write_checks(
333 struct kiocb *iocb,
334 struct iov_iter *from,
335 int *iolock)
336 {
337 struct file *file = iocb->ki_filp;
338 struct inode *inode = file->f_mapping->host;
339 struct xfs_inode *ip = XFS_I(inode);
340 ssize_t error = 0;
341 size_t count = iov_iter_count(from);
342 bool drained_dio = false;
343
344 restart:
345 error = generic_write_checks(iocb, from);
346 if (error <= 0)
347 return error;
348
349 error = xfs_break_layouts(inode, iolock);
350 if (error)
351 return error;
352
353 /*
354 * For changing security info in file_remove_privs() we need i_rwsem
355 * exclusively.
356 */
357 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
358 xfs_iunlock(ip, *iolock);
359 *iolock = XFS_IOLOCK_EXCL;
360 xfs_ilock(ip, *iolock);
361 goto restart;
362 }
363 /*
364 * If the offset is beyond the size of the file, we need to zero any
365 * blocks that fall between the existing EOF and the start of this
366 * write. If zeroing is needed and we are currently holding the
367 * iolock shared, we need to update it to exclusive which implies
368 * having to redo all checks before.
369 *
370 * We need to serialise against EOF updates that occur in IO
371 * completions here. We want to make sure that nobody is changing the
372 * size while we do this check until we have placed an IO barrier (i.e.
373 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
374 * The spinlock effectively forms a memory barrier once we have the
375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
376 * and hence be able to correctly determine if we need to run zeroing.
377 */
378 spin_lock(&ip->i_flags_lock);
379 if (iocb->ki_pos > i_size_read(inode)) {
380 spin_unlock(&ip->i_flags_lock);
381 if (!drained_dio) {
382 if (*iolock == XFS_IOLOCK_SHARED) {
383 xfs_iunlock(ip, *iolock);
384 *iolock = XFS_IOLOCK_EXCL;
385 xfs_ilock(ip, *iolock);
386 iov_iter_reexpand(from, count);
387 }
388 /*
389 * We now have an IO submission barrier in place, but
390 * AIO can do EOF updates during IO completion and hence
391 * we now need to wait for all of them to drain. Non-AIO
392 * DIO will have drained before we are given the
393 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
394 * no-op.
395 */
396 inode_dio_wait(inode);
397 drained_dio = true;
398 goto restart;
399 }
400 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
401 if (error)
402 return error;
403 } else
404 spin_unlock(&ip->i_flags_lock);
405
406 /*
407 * Updating the timestamps will grab the ilock again from
408 * xfs_fs_dirty_inode, so we have to call it after dropping the
409 * lock above. Eventually we should look into a way to avoid
410 * the pointless lock roundtrip.
411 */
412 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
413 error = file_update_time(file);
414 if (error)
415 return error;
416 }
417
418 /*
419 * If we're writing the file then make sure to clear the setuid and
420 * setgid bits if the process is not being run by root. This keeps
421 * people from modifying setuid and setgid binaries.
422 */
423 if (!IS_NOSEC(inode))
424 return file_remove_privs(file);
425 return 0;
426 }
427
428 static int
429 xfs_dio_write_end_io(
430 struct kiocb *iocb,
431 ssize_t size,
432 unsigned flags)
433 {
434 struct inode *inode = file_inode(iocb->ki_filp);
435 struct xfs_inode *ip = XFS_I(inode);
436 loff_t offset = iocb->ki_pos;
437 int error = 0;
438
439 trace_xfs_end_io_direct_write(ip, offset, size);
440
441 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
442 return -EIO;
443
444 if (size <= 0)
445 return size;
446
447 if (flags & IOMAP_DIO_COW) {
448 error = xfs_reflink_end_cow(ip, offset, size);
449 if (error)
450 return error;
451 }
452
453 /*
454 * Unwritten conversion updates the in-core isize after extent
455 * conversion but before updating the on-disk size. Updating isize any
456 * earlier allows a racing dio read to find unwritten extents before
457 * they are converted.
458 */
459 if (flags & IOMAP_DIO_UNWRITTEN)
460 return xfs_iomap_write_unwritten(ip, offset, size, true);
461
462 /*
463 * We need to update the in-core inode size here so that we don't end up
464 * with the on-disk inode size being outside the in-core inode size. We
465 * have no other method of updating EOF for AIO, so always do it here
466 * if necessary.
467 *
468 * We need to lock the test/set EOF update as we can be racing with
469 * other IO completions here to update the EOF. Failing to serialise
470 * here can result in EOF moving backwards and Bad Things Happen when
471 * that occurs.
472 */
473 spin_lock(&ip->i_flags_lock);
474 if (offset + size > i_size_read(inode)) {
475 i_size_write(inode, offset + size);
476 spin_unlock(&ip->i_flags_lock);
477 error = xfs_setfilesize(ip, offset, size);
478 } else {
479 spin_unlock(&ip->i_flags_lock);
480 }
481
482 return error;
483 }
484
485 /*
486 * xfs_file_dio_aio_write - handle direct IO writes
487 *
488 * Lock the inode appropriately to prepare for and issue a direct IO write.
489 * By separating it from the buffered write path we remove all the tricky to
490 * follow locking changes and looping.
491 *
492 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
493 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
494 * pages are flushed out.
495 *
496 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
497 * allowing them to be done in parallel with reads and other direct IO writes.
498 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
499 * needs to do sub-block zeroing and that requires serialisation against other
500 * direct IOs to the same block. In this case we need to serialise the
501 * submission of the unaligned IOs so that we don't get racing block zeroing in
502 * the dio layer. To avoid the problem with aio, we also need to wait for
503 * outstanding IOs to complete so that unwritten extent conversion is completed
504 * before we try to map the overlapping block. This is currently implemented by
505 * hitting it with a big hammer (i.e. inode_dio_wait()).
506 *
507 * Returns with locks held indicated by @iolock and errors indicated by
508 * negative return values.
509 */
510 STATIC ssize_t
511 xfs_file_dio_aio_write(
512 struct kiocb *iocb,
513 struct iov_iter *from)
514 {
515 struct file *file = iocb->ki_filp;
516 struct address_space *mapping = file->f_mapping;
517 struct inode *inode = mapping->host;
518 struct xfs_inode *ip = XFS_I(inode);
519 struct xfs_mount *mp = ip->i_mount;
520 ssize_t ret = 0;
521 int unaligned_io = 0;
522 int iolock;
523 size_t count = iov_iter_count(from);
524 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
525 mp->m_rtdev_targp : mp->m_ddev_targp;
526
527 /* DIO must be aligned to device logical sector size */
528 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
529 return -EINVAL;
530
531 /*
532 * Don't take the exclusive iolock here unless the I/O is unaligned to
533 * the file system block size. We don't need to consider the EOF
534 * extension case here because xfs_file_aio_write_checks() will relock
535 * the inode as necessary for EOF zeroing cases and fill out the new
536 * inode size as appropriate.
537 */
538 if ((iocb->ki_pos & mp->m_blockmask) ||
539 ((iocb->ki_pos + count) & mp->m_blockmask)) {
540 unaligned_io = 1;
541
542 /*
543 * We can't properly handle unaligned direct I/O to reflink
544 * files yet, as we can't unshare a partial block.
545 */
546 if (xfs_is_reflink_inode(ip)) {
547 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
548 return -EREMCHG;
549 }
550 iolock = XFS_IOLOCK_EXCL;
551 } else {
552 iolock = XFS_IOLOCK_SHARED;
553 }
554
555 if (!xfs_ilock_nowait(ip, iolock)) {
556 if (iocb->ki_flags & IOCB_NOWAIT)
557 return -EAGAIN;
558 xfs_ilock(ip, iolock);
559 }
560
561 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
562 if (ret)
563 goto out;
564 count = iov_iter_count(from);
565
566 /*
567 * If we are doing unaligned IO, wait for all other IO to drain,
568 * otherwise demote the lock if we had to take the exclusive lock
569 * for other reasons in xfs_file_aio_write_checks.
570 */
571 if (unaligned_io) {
572 /* If we are going to wait for other DIO to finish, bail */
573 if (iocb->ki_flags & IOCB_NOWAIT) {
574 if (atomic_read(&inode->i_dio_count))
575 return -EAGAIN;
576 } else {
577 inode_dio_wait(inode);
578 }
579 } else if (iolock == XFS_IOLOCK_EXCL) {
580 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
581 iolock = XFS_IOLOCK_SHARED;
582 }
583
584 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
585 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
586 out:
587 xfs_iunlock(ip, iolock);
588
589 /*
590 * No fallback to buffered IO on errors for XFS, direct IO will either
591 * complete fully or fail.
592 */
593 ASSERT(ret < 0 || ret == count);
594 return ret;
595 }
596
597 static noinline ssize_t
598 xfs_file_dax_write(
599 struct kiocb *iocb,
600 struct iov_iter *from)
601 {
602 struct inode *inode = iocb->ki_filp->f_mapping->host;
603 struct xfs_inode *ip = XFS_I(inode);
604 int iolock = XFS_IOLOCK_EXCL;
605 ssize_t ret, error = 0;
606 size_t count;
607 loff_t pos;
608
609 if (!xfs_ilock_nowait(ip, iolock)) {
610 if (iocb->ki_flags & IOCB_NOWAIT)
611 return -EAGAIN;
612 xfs_ilock(ip, iolock);
613 }
614
615 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
616 if (ret)
617 goto out;
618
619 pos = iocb->ki_pos;
620 count = iov_iter_count(from);
621
622 trace_xfs_file_dax_write(ip, count, pos);
623 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
624 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
625 i_size_write(inode, iocb->ki_pos);
626 error = xfs_setfilesize(ip, pos, ret);
627 }
628 out:
629 xfs_iunlock(ip, iolock);
630 return error ? error : ret;
631 }
632
633 STATIC ssize_t
634 xfs_file_buffered_aio_write(
635 struct kiocb *iocb,
636 struct iov_iter *from)
637 {
638 struct file *file = iocb->ki_filp;
639 struct address_space *mapping = file->f_mapping;
640 struct inode *inode = mapping->host;
641 struct xfs_inode *ip = XFS_I(inode);
642 ssize_t ret;
643 int enospc = 0;
644 int iolock;
645
646 if (iocb->ki_flags & IOCB_NOWAIT)
647 return -EOPNOTSUPP;
648
649 write_retry:
650 iolock = XFS_IOLOCK_EXCL;
651 xfs_ilock(ip, iolock);
652
653 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
654 if (ret)
655 goto out;
656
657 /* We can write back this queue in page reclaim */
658 current->backing_dev_info = inode_to_bdi(inode);
659
660 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
661 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
662 if (likely(ret >= 0))
663 iocb->ki_pos += ret;
664
665 /*
666 * If we hit a space limit, try to free up some lingering preallocated
667 * space before returning an error. In the case of ENOSPC, first try to
668 * write back all dirty inodes to free up some of the excess reserved
669 * metadata space. This reduces the chances that the eofblocks scan
670 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
671 * also behaves as a filter to prevent too many eofblocks scans from
672 * running at the same time.
673 */
674 if (ret == -EDQUOT && !enospc) {
675 xfs_iunlock(ip, iolock);
676 enospc = xfs_inode_free_quota_eofblocks(ip);
677 if (enospc)
678 goto write_retry;
679 enospc = xfs_inode_free_quota_cowblocks(ip);
680 if (enospc)
681 goto write_retry;
682 iolock = 0;
683 } else if (ret == -ENOSPC && !enospc) {
684 struct xfs_eofblocks eofb = {0};
685
686 enospc = 1;
687 xfs_flush_inodes(ip->i_mount);
688
689 xfs_iunlock(ip, iolock);
690 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
691 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
692 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
693 goto write_retry;
694 }
695
696 current->backing_dev_info = NULL;
697 out:
698 if (iolock)
699 xfs_iunlock(ip, iolock);
700 return ret;
701 }
702
703 STATIC ssize_t
704 xfs_file_write_iter(
705 struct kiocb *iocb,
706 struct iov_iter *from)
707 {
708 struct file *file = iocb->ki_filp;
709 struct address_space *mapping = file->f_mapping;
710 struct inode *inode = mapping->host;
711 struct xfs_inode *ip = XFS_I(inode);
712 ssize_t ret;
713 size_t ocount = iov_iter_count(from);
714
715 XFS_STATS_INC(ip->i_mount, xs_write_calls);
716
717 if (ocount == 0)
718 return 0;
719
720 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
721 return -EIO;
722
723 if (IS_DAX(inode))
724 ret = xfs_file_dax_write(iocb, from);
725 else if (iocb->ki_flags & IOCB_DIRECT) {
726 /*
727 * Allow a directio write to fall back to a buffered
728 * write *only* in the case that we're doing a reflink
729 * CoW. In all other directio scenarios we do not
730 * allow an operation to fall back to buffered mode.
731 */
732 ret = xfs_file_dio_aio_write(iocb, from);
733 if (ret == -EREMCHG)
734 goto buffered;
735 } else {
736 buffered:
737 ret = xfs_file_buffered_aio_write(iocb, from);
738 }
739
740 if (ret > 0) {
741 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
742
743 /* Handle various SYNC-type writes */
744 ret = generic_write_sync(iocb, ret);
745 }
746 return ret;
747 }
748
749 #define XFS_FALLOC_FL_SUPPORTED \
750 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
751 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
752 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
753
754 STATIC long
755 xfs_file_fallocate(
756 struct file *file,
757 int mode,
758 loff_t offset,
759 loff_t len)
760 {
761 struct inode *inode = file_inode(file);
762 struct xfs_inode *ip = XFS_I(inode);
763 long error;
764 enum xfs_prealloc_flags flags = 0;
765 uint iolock = XFS_IOLOCK_EXCL;
766 loff_t new_size = 0;
767 bool do_file_insert = false;
768
769 if (!S_ISREG(inode->i_mode))
770 return -EINVAL;
771 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
772 return -EOPNOTSUPP;
773
774 xfs_ilock(ip, iolock);
775 error = xfs_break_layouts(inode, &iolock);
776 if (error)
777 goto out_unlock;
778
779 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
780 iolock |= XFS_MMAPLOCK_EXCL;
781
782 if (mode & FALLOC_FL_PUNCH_HOLE) {
783 error = xfs_free_file_space(ip, offset, len);
784 if (error)
785 goto out_unlock;
786 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
787 unsigned int blksize_mask = i_blocksize(inode) - 1;
788
789 if (offset & blksize_mask || len & blksize_mask) {
790 error = -EINVAL;
791 goto out_unlock;
792 }
793
794 /*
795 * There is no need to overlap collapse range with EOF,
796 * in which case it is effectively a truncate operation
797 */
798 if (offset + len >= i_size_read(inode)) {
799 error = -EINVAL;
800 goto out_unlock;
801 }
802
803 new_size = i_size_read(inode) - len;
804
805 error = xfs_collapse_file_space(ip, offset, len);
806 if (error)
807 goto out_unlock;
808 } else if (mode & FALLOC_FL_INSERT_RANGE) {
809 unsigned int blksize_mask = i_blocksize(inode) - 1;
810
811 new_size = i_size_read(inode) + len;
812 if (offset & blksize_mask || len & blksize_mask) {
813 error = -EINVAL;
814 goto out_unlock;
815 }
816
817 /* check the new inode size does not wrap through zero */
818 if (new_size > inode->i_sb->s_maxbytes) {
819 error = -EFBIG;
820 goto out_unlock;
821 }
822
823 /* Offset should be less than i_size */
824 if (offset >= i_size_read(inode)) {
825 error = -EINVAL;
826 goto out_unlock;
827 }
828 do_file_insert = true;
829 } else {
830 flags |= XFS_PREALLOC_SET;
831
832 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
833 offset + len > i_size_read(inode)) {
834 new_size = offset + len;
835 error = inode_newsize_ok(inode, new_size);
836 if (error)
837 goto out_unlock;
838 }
839
840 if (mode & FALLOC_FL_ZERO_RANGE)
841 error = xfs_zero_file_space(ip, offset, len);
842 else {
843 if (mode & FALLOC_FL_UNSHARE_RANGE) {
844 error = xfs_reflink_unshare(ip, offset, len);
845 if (error)
846 goto out_unlock;
847 }
848 error = xfs_alloc_file_space(ip, offset, len,
849 XFS_BMAPI_PREALLOC);
850 }
851 if (error)
852 goto out_unlock;
853 }
854
855 if (file->f_flags & O_DSYNC)
856 flags |= XFS_PREALLOC_SYNC;
857
858 error = xfs_update_prealloc_flags(ip, flags);
859 if (error)
860 goto out_unlock;
861
862 /* Change file size if needed */
863 if (new_size) {
864 struct iattr iattr;
865
866 iattr.ia_valid = ATTR_SIZE;
867 iattr.ia_size = new_size;
868 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
869 if (error)
870 goto out_unlock;
871 }
872
873 /*
874 * Perform hole insertion now that the file size has been
875 * updated so that if we crash during the operation we don't
876 * leave shifted extents past EOF and hence losing access to
877 * the data that is contained within them.
878 */
879 if (do_file_insert)
880 error = xfs_insert_file_space(ip, offset, len);
881
882 out_unlock:
883 xfs_iunlock(ip, iolock);
884 return error;
885 }
886
887 STATIC int
888 xfs_file_clone_range(
889 struct file *file_in,
890 loff_t pos_in,
891 struct file *file_out,
892 loff_t pos_out,
893 u64 len)
894 {
895 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
896 len, false);
897 }
898
899 STATIC ssize_t
900 xfs_file_dedupe_range(
901 struct file *src_file,
902 u64 loff,
903 u64 len,
904 struct file *dst_file,
905 u64 dst_loff)
906 {
907 int error;
908
909 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
910 len, true);
911 if (error)
912 return error;
913 return len;
914 }
915
916 STATIC int
917 xfs_file_open(
918 struct inode *inode,
919 struct file *file)
920 {
921 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
922 return -EFBIG;
923 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
924 return -EIO;
925 file->f_mode |= FMODE_NOWAIT;
926 return 0;
927 }
928
929 STATIC int
930 xfs_dir_open(
931 struct inode *inode,
932 struct file *file)
933 {
934 struct xfs_inode *ip = XFS_I(inode);
935 int mode;
936 int error;
937
938 error = xfs_file_open(inode, file);
939 if (error)
940 return error;
941
942 /*
943 * If there are any blocks, read-ahead block 0 as we're almost
944 * certain to have the next operation be a read there.
945 */
946 mode = xfs_ilock_data_map_shared(ip);
947 if (ip->i_d.di_nextents > 0)
948 error = xfs_dir3_data_readahead(ip, 0, -1);
949 xfs_iunlock(ip, mode);
950 return error;
951 }
952
953 STATIC int
954 xfs_file_release(
955 struct inode *inode,
956 struct file *filp)
957 {
958 return xfs_release(XFS_I(inode));
959 }
960
961 STATIC int
962 xfs_file_readdir(
963 struct file *file,
964 struct dir_context *ctx)
965 {
966 struct inode *inode = file_inode(file);
967 xfs_inode_t *ip = XFS_I(inode);
968 size_t bufsize;
969
970 /*
971 * The Linux API doesn't pass down the total size of the buffer
972 * we read into down to the filesystem. With the filldir concept
973 * it's not needed for correct information, but the XFS dir2 leaf
974 * code wants an estimate of the buffer size to calculate it's
975 * readahead window and size the buffers used for mapping to
976 * physical blocks.
977 *
978 * Try to give it an estimate that's good enough, maybe at some
979 * point we can change the ->readdir prototype to include the
980 * buffer size. For now we use the current glibc buffer size.
981 */
982 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
983
984 return xfs_readdir(NULL, ip, ctx, bufsize);
985 }
986
987 STATIC loff_t
988 xfs_file_llseek(
989 struct file *file,
990 loff_t offset,
991 int whence)
992 {
993 struct inode *inode = file->f_mapping->host;
994
995 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
996 return -EIO;
997
998 switch (whence) {
999 default:
1000 return generic_file_llseek(file, offset, whence);
1001 case SEEK_HOLE:
1002 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1003 break;
1004 case SEEK_DATA:
1005 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1006 break;
1007 }
1008
1009 if (offset < 0)
1010 return offset;
1011 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1012 }
1013
1014 /*
1015 * Locking for serialisation of IO during page faults. This results in a lock
1016 * ordering of:
1017 *
1018 * mmap_sem (MM)
1019 * sb_start_pagefault(vfs, freeze)
1020 * i_mmaplock (XFS - truncate serialisation)
1021 * page_lock (MM)
1022 * i_lock (XFS - extent map serialisation)
1023 */
1024 static int
1025 __xfs_filemap_fault(
1026 struct vm_fault *vmf,
1027 enum page_entry_size pe_size,
1028 bool write_fault)
1029 {
1030 struct inode *inode = file_inode(vmf->vma->vm_file);
1031 struct xfs_inode *ip = XFS_I(inode);
1032 int ret;
1033
1034 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1035
1036 if (write_fault) {
1037 sb_start_pagefault(inode->i_sb);
1038 file_update_time(vmf->vma->vm_file);
1039 }
1040
1041 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1042 if (IS_DAX(inode)) {
1043 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1044 } else {
1045 if (write_fault)
1046 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1047 else
1048 ret = filemap_fault(vmf);
1049 }
1050 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1051
1052 if (write_fault)
1053 sb_end_pagefault(inode->i_sb);
1054 return ret;
1055 }
1056
1057 static int
1058 xfs_filemap_fault(
1059 struct vm_fault *vmf)
1060 {
1061 /* DAX can shortcut the normal fault path on write faults! */
1062 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1063 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1064 (vmf->flags & FAULT_FLAG_WRITE));
1065 }
1066
1067 static int
1068 xfs_filemap_huge_fault(
1069 struct vm_fault *vmf,
1070 enum page_entry_size pe_size)
1071 {
1072 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1073 return VM_FAULT_FALLBACK;
1074
1075 /* DAX can shortcut the normal fault path on write faults! */
1076 return __xfs_filemap_fault(vmf, pe_size,
1077 (vmf->flags & FAULT_FLAG_WRITE));
1078 }
1079
1080 static int
1081 xfs_filemap_page_mkwrite(
1082 struct vm_fault *vmf)
1083 {
1084 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1085 }
1086
1087 /*
1088 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1089 * updates on write faults. In reality, it's need to serialise against
1090 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1091 * to ensure we serialise the fault barrier in place.
1092 */
1093 static int
1094 xfs_filemap_pfn_mkwrite(
1095 struct vm_fault *vmf)
1096 {
1097
1098 struct inode *inode = file_inode(vmf->vma->vm_file);
1099 struct xfs_inode *ip = XFS_I(inode);
1100 int ret = VM_FAULT_NOPAGE;
1101 loff_t size;
1102
1103 trace_xfs_filemap_pfn_mkwrite(ip);
1104
1105 sb_start_pagefault(inode->i_sb);
1106 file_update_time(vmf->vma->vm_file);
1107
1108 /* check if the faulting page hasn't raced with truncate */
1109 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1110 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1111 if (vmf->pgoff >= size)
1112 ret = VM_FAULT_SIGBUS;
1113 else if (IS_DAX(inode))
1114 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1115 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1116 sb_end_pagefault(inode->i_sb);
1117 return ret;
1118
1119 }
1120
1121 static const struct vm_operations_struct xfs_file_vm_ops = {
1122 .fault = xfs_filemap_fault,
1123 .huge_fault = xfs_filemap_huge_fault,
1124 .map_pages = filemap_map_pages,
1125 .page_mkwrite = xfs_filemap_page_mkwrite,
1126 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1127 };
1128
1129 STATIC int
1130 xfs_file_mmap(
1131 struct file *filp,
1132 struct vm_area_struct *vma)
1133 {
1134 file_accessed(filp);
1135 vma->vm_ops = &xfs_file_vm_ops;
1136 if (IS_DAX(file_inode(filp)))
1137 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1138 return 0;
1139 }
1140
1141 const struct file_operations xfs_file_operations = {
1142 .llseek = xfs_file_llseek,
1143 .read_iter = xfs_file_read_iter,
1144 .write_iter = xfs_file_write_iter,
1145 .splice_read = generic_file_splice_read,
1146 .splice_write = iter_file_splice_write,
1147 .unlocked_ioctl = xfs_file_ioctl,
1148 #ifdef CONFIG_COMPAT
1149 .compat_ioctl = xfs_file_compat_ioctl,
1150 #endif
1151 .mmap = xfs_file_mmap,
1152 .open = xfs_file_open,
1153 .release = xfs_file_release,
1154 .fsync = xfs_file_fsync,
1155 .get_unmapped_area = thp_get_unmapped_area,
1156 .fallocate = xfs_file_fallocate,
1157 .clone_file_range = xfs_file_clone_range,
1158 .dedupe_file_range = xfs_file_dedupe_range,
1159 };
1160
1161 const struct file_operations xfs_dir_file_operations = {
1162 .open = xfs_dir_open,
1163 .read = generic_read_dir,
1164 .iterate_shared = xfs_file_readdir,
1165 .llseek = generic_file_llseek,
1166 .unlocked_ioctl = xfs_file_ioctl,
1167 #ifdef CONFIG_COMPAT
1168 .compat_ioctl = xfs_file_compat_ioctl,
1169 #endif
1170 .fsync = xfs_dir_fsync,
1171 };