]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_file.c
xfs: remove the i_size field in struct xfs_inode
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41
42 static const struct vm_operations_struct xfs_file_vm_ops;
43
44 /*
45 * Locking primitives for read and write IO paths to ensure we consistently use
46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47 */
48 static inline void
49 xfs_rw_ilock(
50 struct xfs_inode *ip,
51 int type)
52 {
53 if (type & XFS_IOLOCK_EXCL)
54 mutex_lock(&VFS_I(ip)->i_mutex);
55 xfs_ilock(ip, type);
56 }
57
58 static inline void
59 xfs_rw_iunlock(
60 struct xfs_inode *ip,
61 int type)
62 {
63 xfs_iunlock(ip, type);
64 if (type & XFS_IOLOCK_EXCL)
65 mutex_unlock(&VFS_I(ip)->i_mutex);
66 }
67
68 static inline void
69 xfs_rw_ilock_demote(
70 struct xfs_inode *ip,
71 int type)
72 {
73 xfs_ilock_demote(ip, type);
74 if (type & XFS_IOLOCK_EXCL)
75 mutex_unlock(&VFS_I(ip)->i_mutex);
76 }
77
78 /*
79 * xfs_iozero
80 *
81 * xfs_iozero clears the specified range of buffer supplied,
82 * and marks all the affected blocks as valid and modified. If
83 * an affected block is not allocated, it will be allocated. If
84 * an affected block is not completely overwritten, and is not
85 * valid before the operation, it will be read from disk before
86 * being partially zeroed.
87 */
88 STATIC int
89 xfs_iozero(
90 struct xfs_inode *ip, /* inode */
91 loff_t pos, /* offset in file */
92 size_t count) /* size of data to zero */
93 {
94 struct page *page;
95 struct address_space *mapping;
96 int status;
97
98 mapping = VFS_I(ip)->i_mapping;
99 do {
100 unsigned offset, bytes;
101 void *fsdata;
102
103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 bytes = PAGE_CACHE_SIZE - offset;
105 if (bytes > count)
106 bytes = count;
107
108 status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 AOP_FLAG_UNINTERRUPTIBLE,
110 &page, &fsdata);
111 if (status)
112 break;
113
114 zero_user(page, offset, bytes);
115
116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 page, fsdata);
118 WARN_ON(status <= 0); /* can't return less than zero! */
119 pos += bytes;
120 count -= bytes;
121 status = 0;
122 } while (count);
123
124 return (-status);
125 }
126
127 /*
128 * Fsync operations on directories are much simpler than on regular files,
129 * as there is no file data to flush, and thus also no need for explicit
130 * cache flush operations, and there are no non-transaction metadata updates
131 * on directories either.
132 */
133 STATIC int
134 xfs_dir_fsync(
135 struct file *file,
136 loff_t start,
137 loff_t end,
138 int datasync)
139 {
140 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
141 struct xfs_mount *mp = ip->i_mount;
142 xfs_lsn_t lsn = 0;
143
144 trace_xfs_dir_fsync(ip);
145
146 xfs_ilock(ip, XFS_ILOCK_SHARED);
147 if (xfs_ipincount(ip))
148 lsn = ip->i_itemp->ili_last_lsn;
149 xfs_iunlock(ip, XFS_ILOCK_SHARED);
150
151 if (!lsn)
152 return 0;
153 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
154 }
155
156 STATIC int
157 xfs_file_fsync(
158 struct file *file,
159 loff_t start,
160 loff_t end,
161 int datasync)
162 {
163 struct inode *inode = file->f_mapping->host;
164 struct xfs_inode *ip = XFS_I(inode);
165 struct xfs_mount *mp = ip->i_mount;
166 struct xfs_trans *tp;
167 int error = 0;
168 int log_flushed = 0;
169 xfs_lsn_t lsn = 0;
170
171 trace_xfs_file_fsync(ip);
172
173 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 if (error)
175 return error;
176
177 if (XFS_FORCED_SHUTDOWN(mp))
178 return -XFS_ERROR(EIO);
179
180 xfs_iflags_clear(ip, XFS_ITRUNCATED);
181
182 if (mp->m_flags & XFS_MOUNT_BARRIER) {
183 /*
184 * If we have an RT and/or log subvolume we need to make sure
185 * to flush the write cache the device used for file data
186 * first. This is to ensure newly written file data make
187 * it to disk before logging the new inode size in case of
188 * an extending write.
189 */
190 if (XFS_IS_REALTIME_INODE(ip))
191 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
192 else if (mp->m_logdev_targp != mp->m_ddev_targp)
193 xfs_blkdev_issue_flush(mp->m_ddev_targp);
194 }
195
196 /*
197 * We always need to make sure that the required inode state is safe on
198 * disk. The inode might be clean but we still might need to force the
199 * log because of committed transactions that haven't hit the disk yet.
200 * Likewise, there could be unflushed non-transactional changes to the
201 * inode core that have to go to disk and this requires us to issue
202 * a synchronous transaction to capture these changes correctly.
203 *
204 * This code relies on the assumption that if the i_update_core field
205 * of the inode is clear and the inode is unpinned then it is clean
206 * and no action is required.
207 */
208 xfs_ilock(ip, XFS_ILOCK_SHARED);
209
210 /*
211 * First check if the VFS inode is marked dirty. All the dirtying
212 * of non-transactional updates do not go through mark_inode_dirty*,
213 * which allows us to distinguish between pure timestamp updates
214 * and i_size updates which need to be caught for fdatasync.
215 * After that also check for the dirty state in the XFS inode, which
216 * might gets cleared when the inode gets written out via the AIL
217 * or xfs_iflush_cluster.
218 */
219 if (((inode->i_state & I_DIRTY_DATASYNC) ||
220 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
221 ip->i_update_core) {
222 /*
223 * Kick off a transaction to log the inode core to get the
224 * updates. The sync transaction will also force the log.
225 */
226 xfs_iunlock(ip, XFS_ILOCK_SHARED);
227 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
228 error = xfs_trans_reserve(tp, 0,
229 XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
230 if (error) {
231 xfs_trans_cancel(tp, 0);
232 return -error;
233 }
234 xfs_ilock(ip, XFS_ILOCK_EXCL);
235
236 /*
237 * Note - it's possible that we might have pushed ourselves out
238 * of the way during trans_reserve which would flush the inode.
239 * But there's no guarantee that the inode buffer has actually
240 * gone out yet (it's delwri). Plus the buffer could be pinned
241 * anyway if it's part of an inode in another recent
242 * transaction. So we play it safe and fire off the
243 * transaction anyway.
244 */
245 xfs_trans_ijoin(tp, ip, 0);
246 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
247 error = xfs_trans_commit(tp, 0);
248
249 lsn = ip->i_itemp->ili_last_lsn;
250 xfs_iunlock(ip, XFS_ILOCK_EXCL);
251 } else {
252 /*
253 * Timestamps/size haven't changed since last inode flush or
254 * inode transaction commit. That means either nothing got
255 * written or a transaction committed which caught the updates.
256 * If the latter happened and the transaction hasn't hit the
257 * disk yet, the inode will be still be pinned. If it is,
258 * force the log.
259 */
260 if (xfs_ipincount(ip))
261 lsn = ip->i_itemp->ili_last_lsn;
262 xfs_iunlock(ip, XFS_ILOCK_SHARED);
263 }
264
265 if (!error && lsn)
266 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
267
268 /*
269 * If we only have a single device, and the log force about was
270 * a no-op we might have to flush the data device cache here.
271 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 * an already allocated file and thus do not have any metadata to
273 * commit.
274 */
275 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 mp->m_logdev_targp == mp->m_ddev_targp &&
277 !XFS_IS_REALTIME_INODE(ip) &&
278 !log_flushed)
279 xfs_blkdev_issue_flush(mp->m_ddev_targp);
280
281 return -error;
282 }
283
284 STATIC ssize_t
285 xfs_file_aio_read(
286 struct kiocb *iocb,
287 const struct iovec *iovp,
288 unsigned long nr_segs,
289 loff_t pos)
290 {
291 struct file *file = iocb->ki_filp;
292 struct inode *inode = file->f_mapping->host;
293 struct xfs_inode *ip = XFS_I(inode);
294 struct xfs_mount *mp = ip->i_mount;
295 size_t size = 0;
296 ssize_t ret = 0;
297 int ioflags = 0;
298 xfs_fsize_t n;
299 unsigned long seg;
300
301 XFS_STATS_INC(xs_read_calls);
302
303 BUG_ON(iocb->ki_pos != pos);
304
305 if (unlikely(file->f_flags & O_DIRECT))
306 ioflags |= IO_ISDIRECT;
307 if (file->f_mode & FMODE_NOCMTIME)
308 ioflags |= IO_INVIS;
309
310 /* START copy & waste from filemap.c */
311 for (seg = 0; seg < nr_segs; seg++) {
312 const struct iovec *iv = &iovp[seg];
313
314 /*
315 * If any segment has a negative length, or the cumulative
316 * length ever wraps negative then return -EINVAL.
317 */
318 size += iv->iov_len;
319 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
320 return XFS_ERROR(-EINVAL);
321 }
322 /* END copy & waste from filemap.c */
323
324 if (unlikely(ioflags & IO_ISDIRECT)) {
325 xfs_buftarg_t *target =
326 XFS_IS_REALTIME_INODE(ip) ?
327 mp->m_rtdev_targp : mp->m_ddev_targp;
328 if ((iocb->ki_pos & target->bt_smask) ||
329 (size & target->bt_smask)) {
330 if (iocb->ki_pos == i_size_read(inode))
331 return 0;
332 return -XFS_ERROR(EINVAL);
333 }
334 }
335
336 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
337 if (n <= 0 || size == 0)
338 return 0;
339
340 if (n < size)
341 size = n;
342
343 if (XFS_FORCED_SHUTDOWN(mp))
344 return -EIO;
345
346 /*
347 * Locking is a bit tricky here. If we take an exclusive lock
348 * for direct IO, we effectively serialise all new concurrent
349 * read IO to this file and block it behind IO that is currently in
350 * progress because IO in progress holds the IO lock shared. We only
351 * need to hold the lock exclusive to blow away the page cache, so
352 * only take lock exclusively if the page cache needs invalidation.
353 * This allows the normal direct IO case of no page cache pages to
354 * proceeed concurrently without serialisation.
355 */
356 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
357 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
358 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
359 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
360
361 if (inode->i_mapping->nrpages) {
362 ret = -xfs_flushinval_pages(ip,
363 (iocb->ki_pos & PAGE_CACHE_MASK),
364 -1, FI_REMAPF_LOCKED);
365 if (ret) {
366 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
367 return ret;
368 }
369 }
370 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
371 }
372
373 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
374
375 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
376 if (ret > 0)
377 XFS_STATS_ADD(xs_read_bytes, ret);
378
379 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
380 return ret;
381 }
382
383 STATIC ssize_t
384 xfs_file_splice_read(
385 struct file *infilp,
386 loff_t *ppos,
387 struct pipe_inode_info *pipe,
388 size_t count,
389 unsigned int flags)
390 {
391 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
392 int ioflags = 0;
393 ssize_t ret;
394
395 XFS_STATS_INC(xs_read_calls);
396
397 if (infilp->f_mode & FMODE_NOCMTIME)
398 ioflags |= IO_INVIS;
399
400 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
401 return -EIO;
402
403 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
404
405 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
406
407 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
408 if (ret > 0)
409 XFS_STATS_ADD(xs_read_bytes, ret);
410
411 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
412 return ret;
413 }
414
415 /*
416 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
417 * part of the I/O may have been written to disk before the error occurred. In
418 * this case the on-disk file size may have been adjusted beyond the in-memory
419 * file size and now needs to be truncated back.
420 */
421 STATIC void
422 xfs_aio_write_newsize_update(
423 struct xfs_inode *ip,
424 xfs_fsize_t new_size)
425 {
426 if (new_size == ip->i_new_size) {
427 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
428 if (new_size == ip->i_new_size)
429 ip->i_new_size = 0;
430 if (ip->i_d.di_size > i_size_read(VFS_I(ip)))
431 ip->i_d.di_size = i_size_read(VFS_I(ip));
432 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
433 }
434 }
435
436 /*
437 * xfs_file_splice_write() does not use xfs_rw_ilock() because
438 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
439 * couuld cause lock inversions between the aio_write path and the splice path
440 * if someone is doing concurrent splice(2) based writes and write(2) based
441 * writes to the same inode. The only real way to fix this is to re-implement
442 * the generic code here with correct locking orders.
443 */
444 STATIC ssize_t
445 xfs_file_splice_write(
446 struct pipe_inode_info *pipe,
447 struct file *outfilp,
448 loff_t *ppos,
449 size_t count,
450 unsigned int flags)
451 {
452 struct inode *inode = outfilp->f_mapping->host;
453 struct xfs_inode *ip = XFS_I(inode);
454 xfs_fsize_t new_size;
455 int ioflags = 0;
456 ssize_t ret;
457
458 XFS_STATS_INC(xs_write_calls);
459
460 if (outfilp->f_mode & FMODE_NOCMTIME)
461 ioflags |= IO_INVIS;
462
463 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
464 return -EIO;
465
466 xfs_ilock(ip, XFS_IOLOCK_EXCL);
467
468 new_size = *ppos + count;
469
470 xfs_ilock(ip, XFS_ILOCK_EXCL);
471 if (new_size > i_size_read(inode))
472 ip->i_new_size = new_size;
473 xfs_iunlock(ip, XFS_ILOCK_EXCL);
474
475 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
476
477 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
478 if (ret > 0)
479 XFS_STATS_ADD(xs_write_bytes, ret);
480
481 xfs_aio_write_newsize_update(ip, new_size);
482 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
483 return ret;
484 }
485
486 /*
487 * This routine is called to handle zeroing any space in the last
488 * block of the file that is beyond the EOF. We do this since the
489 * size is being increased without writing anything to that block
490 * and we don't want anyone to read the garbage on the disk.
491 */
492 STATIC int /* error (positive) */
493 xfs_zero_last_block(
494 xfs_inode_t *ip,
495 xfs_fsize_t offset,
496 xfs_fsize_t isize)
497 {
498 xfs_fileoff_t last_fsb;
499 xfs_mount_t *mp = ip->i_mount;
500 int nimaps;
501 int zero_offset;
502 int zero_len;
503 int error = 0;
504 xfs_bmbt_irec_t imap;
505
506 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
507
508 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
509 if (zero_offset == 0) {
510 /*
511 * There are no extra bytes in the last block on disk to
512 * zero, so return.
513 */
514 return 0;
515 }
516
517 last_fsb = XFS_B_TO_FSBT(mp, isize);
518 nimaps = 1;
519 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
520 if (error)
521 return error;
522 ASSERT(nimaps > 0);
523 /*
524 * If the block underlying isize is just a hole, then there
525 * is nothing to zero.
526 */
527 if (imap.br_startblock == HOLESTARTBLOCK) {
528 return 0;
529 }
530 /*
531 * Zero the part of the last block beyond the EOF, and write it
532 * out sync. We need to drop the ilock while we do this so we
533 * don't deadlock when the buffer cache calls back to us.
534 */
535 xfs_iunlock(ip, XFS_ILOCK_EXCL);
536
537 zero_len = mp->m_sb.sb_blocksize - zero_offset;
538 if (isize + zero_len > offset)
539 zero_len = offset - isize;
540 error = xfs_iozero(ip, isize, zero_len);
541
542 xfs_ilock(ip, XFS_ILOCK_EXCL);
543 ASSERT(error >= 0);
544 return error;
545 }
546
547 /*
548 * Zero any on disk space between the current EOF and the new,
549 * larger EOF. This handles the normal case of zeroing the remainder
550 * of the last block in the file and the unusual case of zeroing blocks
551 * out beyond the size of the file. This second case only happens
552 * with fixed size extents and when the system crashes before the inode
553 * size was updated but after blocks were allocated. If fill is set,
554 * then any holes in the range are filled and zeroed. If not, the holes
555 * are left alone as holes.
556 */
557
558 int /* error (positive) */
559 xfs_zero_eof(
560 xfs_inode_t *ip,
561 xfs_off_t offset, /* starting I/O offset */
562 xfs_fsize_t isize) /* current inode size */
563 {
564 xfs_mount_t *mp = ip->i_mount;
565 xfs_fileoff_t start_zero_fsb;
566 xfs_fileoff_t end_zero_fsb;
567 xfs_fileoff_t zero_count_fsb;
568 xfs_fileoff_t last_fsb;
569 xfs_fileoff_t zero_off;
570 xfs_fsize_t zero_len;
571 int nimaps;
572 int error = 0;
573 xfs_bmbt_irec_t imap;
574
575 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
576 ASSERT(offset > isize);
577
578 /*
579 * First handle zeroing the block on which isize resides.
580 * We only zero a part of that block so it is handled specially.
581 */
582 error = xfs_zero_last_block(ip, offset, isize);
583 if (error) {
584 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
585 return error;
586 }
587
588 /*
589 * Calculate the range between the new size and the old
590 * where blocks needing to be zeroed may exist. To get the
591 * block where the last byte in the file currently resides,
592 * we need to subtract one from the size and truncate back
593 * to a block boundary. We subtract 1 in case the size is
594 * exactly on a block boundary.
595 */
596 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
597 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
598 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
599 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
600 if (last_fsb == end_zero_fsb) {
601 /*
602 * The size was only incremented on its last block.
603 * We took care of that above, so just return.
604 */
605 return 0;
606 }
607
608 ASSERT(start_zero_fsb <= end_zero_fsb);
609 while (start_zero_fsb <= end_zero_fsb) {
610 nimaps = 1;
611 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
612 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
613 &imap, &nimaps, 0);
614 if (error) {
615 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
616 return error;
617 }
618 ASSERT(nimaps > 0);
619
620 if (imap.br_state == XFS_EXT_UNWRITTEN ||
621 imap.br_startblock == HOLESTARTBLOCK) {
622 /*
623 * This loop handles initializing pages that were
624 * partially initialized by the code below this
625 * loop. It basically zeroes the part of the page
626 * that sits on a hole and sets the page as P_HOLE
627 * and calls remapf if it is a mapped file.
628 */
629 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
630 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
631 continue;
632 }
633
634 /*
635 * There are blocks we need to zero.
636 * Drop the inode lock while we're doing the I/O.
637 * We'll still have the iolock to protect us.
638 */
639 xfs_iunlock(ip, XFS_ILOCK_EXCL);
640
641 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
642 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
643
644 if ((zero_off + zero_len) > offset)
645 zero_len = offset - zero_off;
646
647 error = xfs_iozero(ip, zero_off, zero_len);
648 if (error) {
649 goto out_lock;
650 }
651
652 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
653 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
654
655 xfs_ilock(ip, XFS_ILOCK_EXCL);
656 }
657
658 return 0;
659
660 out_lock:
661 xfs_ilock(ip, XFS_ILOCK_EXCL);
662 ASSERT(error >= 0);
663 return error;
664 }
665
666 /*
667 * Common pre-write limit and setup checks.
668 *
669 * Returns with iolock held according to @iolock.
670 */
671 STATIC ssize_t
672 xfs_file_aio_write_checks(
673 struct file *file,
674 loff_t *pos,
675 size_t *count,
676 xfs_fsize_t *new_sizep,
677 int *iolock)
678 {
679 struct inode *inode = file->f_mapping->host;
680 struct xfs_inode *ip = XFS_I(inode);
681 xfs_fsize_t new_size;
682 int error = 0;
683
684 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
685 *new_sizep = 0;
686 restart:
687 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
688 if (error) {
689 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
690 *iolock = 0;
691 return error;
692 }
693
694 if (likely(!(file->f_mode & FMODE_NOCMTIME)))
695 file_update_time(file);
696
697 /*
698 * If the offset is beyond the size of the file, we need to zero any
699 * blocks that fall between the existing EOF and the start of this
700 * write. There is no need to issue zeroing if another in-flght IO ends
701 * at or before this one If zeronig is needed and we are currently
702 * holding the iolock shared, we need to update it to exclusive which
703 * involves dropping all locks and relocking to maintain correct locking
704 * order. If we do this, restart the function to ensure all checks and
705 * values are still valid.
706 */
707 if ((ip->i_new_size && *pos > ip->i_new_size) ||
708 (!ip->i_new_size && *pos > i_size_read(inode))) {
709 if (*iolock == XFS_IOLOCK_SHARED) {
710 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
711 *iolock = XFS_IOLOCK_EXCL;
712 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
713 goto restart;
714 }
715 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
716 }
717
718 /*
719 * If this IO extends beyond EOF, we may need to update ip->i_new_size.
720 * We have already zeroed space beyond EOF (if necessary). Only update
721 * ip->i_new_size if this IO ends beyond any other in-flight writes.
722 */
723 new_size = *pos + *count;
724 if (new_size > i_size_read(inode)) {
725 if (new_size > ip->i_new_size)
726 ip->i_new_size = new_size;
727 *new_sizep = new_size;
728 }
729
730 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
731 if (error)
732 return error;
733
734 /*
735 * If we're writing the file then make sure to clear the setuid and
736 * setgid bits if the process is not being run by root. This keeps
737 * people from modifying setuid and setgid binaries.
738 */
739 return file_remove_suid(file);
740
741 }
742
743 /*
744 * xfs_file_dio_aio_write - handle direct IO writes
745 *
746 * Lock the inode appropriately to prepare for and issue a direct IO write.
747 * By separating it from the buffered write path we remove all the tricky to
748 * follow locking changes and looping.
749 *
750 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
751 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
752 * pages are flushed out.
753 *
754 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
755 * allowing them to be done in parallel with reads and other direct IO writes.
756 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
757 * needs to do sub-block zeroing and that requires serialisation against other
758 * direct IOs to the same block. In this case we need to serialise the
759 * submission of the unaligned IOs so that we don't get racing block zeroing in
760 * the dio layer. To avoid the problem with aio, we also need to wait for
761 * outstanding IOs to complete so that unwritten extent conversion is completed
762 * before we try to map the overlapping block. This is currently implemented by
763 * hitting it with a big hammer (i.e. inode_dio_wait()).
764 *
765 * Returns with locks held indicated by @iolock and errors indicated by
766 * negative return values.
767 */
768 STATIC ssize_t
769 xfs_file_dio_aio_write(
770 struct kiocb *iocb,
771 const struct iovec *iovp,
772 unsigned long nr_segs,
773 loff_t pos,
774 size_t ocount,
775 xfs_fsize_t *new_size,
776 int *iolock)
777 {
778 struct file *file = iocb->ki_filp;
779 struct address_space *mapping = file->f_mapping;
780 struct inode *inode = mapping->host;
781 struct xfs_inode *ip = XFS_I(inode);
782 struct xfs_mount *mp = ip->i_mount;
783 ssize_t ret = 0;
784 size_t count = ocount;
785 int unaligned_io = 0;
786 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
787 mp->m_rtdev_targp : mp->m_ddev_targp;
788
789 *iolock = 0;
790 if ((pos & target->bt_smask) || (count & target->bt_smask))
791 return -XFS_ERROR(EINVAL);
792
793 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
794 unaligned_io = 1;
795
796 /*
797 * We don't need to take an exclusive lock unless there page cache needs
798 * to be invalidated or unaligned IO is being executed. We don't need to
799 * consider the EOF extension case here because
800 * xfs_file_aio_write_checks() will relock the inode as necessary for
801 * EOF zeroing cases and fill out the new inode size as appropriate.
802 */
803 if (unaligned_io || mapping->nrpages)
804 *iolock = XFS_IOLOCK_EXCL;
805 else
806 *iolock = XFS_IOLOCK_SHARED;
807 xfs_rw_ilock(ip, *iolock);
808
809 /*
810 * Recheck if there are cached pages that need invalidate after we got
811 * the iolock to protect against other threads adding new pages while
812 * we were waiting for the iolock.
813 */
814 if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) {
815 xfs_rw_iunlock(ip, *iolock);
816 *iolock = XFS_IOLOCK_EXCL;
817 xfs_rw_ilock(ip, *iolock);
818 }
819
820 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
821 if (ret)
822 return ret;
823
824 if (mapping->nrpages) {
825 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
826 FI_REMAPF_LOCKED);
827 if (ret)
828 return ret;
829 }
830
831 /*
832 * If we are doing unaligned IO, wait for all other IO to drain,
833 * otherwise demote the lock if we had to flush cached pages
834 */
835 if (unaligned_io)
836 inode_dio_wait(inode);
837 else if (*iolock == XFS_IOLOCK_EXCL) {
838 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
839 *iolock = XFS_IOLOCK_SHARED;
840 }
841
842 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
843 ret = generic_file_direct_write(iocb, iovp,
844 &nr_segs, pos, &iocb->ki_pos, count, ocount);
845
846 /* No fallback to buffered IO on errors for XFS. */
847 ASSERT(ret < 0 || ret == count);
848 return ret;
849 }
850
851 STATIC ssize_t
852 xfs_file_buffered_aio_write(
853 struct kiocb *iocb,
854 const struct iovec *iovp,
855 unsigned long nr_segs,
856 loff_t pos,
857 size_t ocount,
858 xfs_fsize_t *new_size,
859 int *iolock)
860 {
861 struct file *file = iocb->ki_filp;
862 struct address_space *mapping = file->f_mapping;
863 struct inode *inode = mapping->host;
864 struct xfs_inode *ip = XFS_I(inode);
865 ssize_t ret;
866 int enospc = 0;
867 size_t count = ocount;
868
869 *iolock = XFS_IOLOCK_EXCL;
870 xfs_rw_ilock(ip, *iolock);
871
872 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
873 if (ret)
874 return ret;
875
876 /* We can write back this queue in page reclaim */
877 current->backing_dev_info = mapping->backing_dev_info;
878
879 write_retry:
880 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
881 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
882 pos, &iocb->ki_pos, count, ret);
883 /*
884 * if we just got an ENOSPC, flush the inode now we aren't holding any
885 * page locks and retry *once*
886 */
887 if (ret == -ENOSPC && !enospc) {
888 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
889 if (ret)
890 return ret;
891 enospc = 1;
892 goto write_retry;
893 }
894 current->backing_dev_info = NULL;
895 return ret;
896 }
897
898 STATIC ssize_t
899 xfs_file_aio_write(
900 struct kiocb *iocb,
901 const struct iovec *iovp,
902 unsigned long nr_segs,
903 loff_t pos)
904 {
905 struct file *file = iocb->ki_filp;
906 struct address_space *mapping = file->f_mapping;
907 struct inode *inode = mapping->host;
908 struct xfs_inode *ip = XFS_I(inode);
909 ssize_t ret;
910 int iolock;
911 size_t ocount = 0;
912 xfs_fsize_t new_size = 0;
913
914 XFS_STATS_INC(xs_write_calls);
915
916 BUG_ON(iocb->ki_pos != pos);
917
918 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
919 if (ret)
920 return ret;
921
922 if (ocount == 0)
923 return 0;
924
925 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
926
927 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
928 return -EIO;
929
930 if (unlikely(file->f_flags & O_DIRECT))
931 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
932 ocount, &new_size, &iolock);
933 else
934 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
935 ocount, &new_size, &iolock);
936
937 if (ret <= 0)
938 goto out_unlock;
939
940 XFS_STATS_ADD(xs_write_bytes, ret);
941
942 /* Handle various SYNC-type writes */
943 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
944 loff_t end = pos + ret - 1;
945 int error;
946
947 xfs_rw_iunlock(ip, iolock);
948 error = xfs_file_fsync(file, pos, end,
949 (file->f_flags & __O_SYNC) ? 0 : 1);
950 xfs_rw_ilock(ip, iolock);
951 if (error)
952 ret = error;
953 }
954
955 out_unlock:
956 xfs_aio_write_newsize_update(ip, new_size);
957 xfs_rw_iunlock(ip, iolock);
958 return ret;
959 }
960
961 STATIC long
962 xfs_file_fallocate(
963 struct file *file,
964 int mode,
965 loff_t offset,
966 loff_t len)
967 {
968 struct inode *inode = file->f_path.dentry->d_inode;
969 long error;
970 loff_t new_size = 0;
971 xfs_flock64_t bf;
972 xfs_inode_t *ip = XFS_I(inode);
973 int cmd = XFS_IOC_RESVSP;
974 int attr_flags = XFS_ATTR_NOLOCK;
975
976 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
977 return -EOPNOTSUPP;
978
979 bf.l_whence = 0;
980 bf.l_start = offset;
981 bf.l_len = len;
982
983 xfs_ilock(ip, XFS_IOLOCK_EXCL);
984
985 if (mode & FALLOC_FL_PUNCH_HOLE)
986 cmd = XFS_IOC_UNRESVSP;
987
988 /* check the new inode size is valid before allocating */
989 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
990 offset + len > i_size_read(inode)) {
991 new_size = offset + len;
992 error = inode_newsize_ok(inode, new_size);
993 if (error)
994 goto out_unlock;
995 }
996
997 if (file->f_flags & O_DSYNC)
998 attr_flags |= XFS_ATTR_SYNC;
999
1000 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
1001 if (error)
1002 goto out_unlock;
1003
1004 /* Change file size if needed */
1005 if (new_size) {
1006 struct iattr iattr;
1007
1008 iattr.ia_valid = ATTR_SIZE;
1009 iattr.ia_size = new_size;
1010 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
1011 }
1012
1013 out_unlock:
1014 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1015 return error;
1016 }
1017
1018
1019 STATIC int
1020 xfs_file_open(
1021 struct inode *inode,
1022 struct file *file)
1023 {
1024 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1025 return -EFBIG;
1026 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1027 return -EIO;
1028 return 0;
1029 }
1030
1031 STATIC int
1032 xfs_dir_open(
1033 struct inode *inode,
1034 struct file *file)
1035 {
1036 struct xfs_inode *ip = XFS_I(inode);
1037 int mode;
1038 int error;
1039
1040 error = xfs_file_open(inode, file);
1041 if (error)
1042 return error;
1043
1044 /*
1045 * If there are any blocks, read-ahead block 0 as we're almost
1046 * certain to have the next operation be a read there.
1047 */
1048 mode = xfs_ilock_map_shared(ip);
1049 if (ip->i_d.di_nextents > 0)
1050 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
1051 xfs_iunlock(ip, mode);
1052 return 0;
1053 }
1054
1055 STATIC int
1056 xfs_file_release(
1057 struct inode *inode,
1058 struct file *filp)
1059 {
1060 return -xfs_release(XFS_I(inode));
1061 }
1062
1063 STATIC int
1064 xfs_file_readdir(
1065 struct file *filp,
1066 void *dirent,
1067 filldir_t filldir)
1068 {
1069 struct inode *inode = filp->f_path.dentry->d_inode;
1070 xfs_inode_t *ip = XFS_I(inode);
1071 int error;
1072 size_t bufsize;
1073
1074 /*
1075 * The Linux API doesn't pass down the total size of the buffer
1076 * we read into down to the filesystem. With the filldir concept
1077 * it's not needed for correct information, but the XFS dir2 leaf
1078 * code wants an estimate of the buffer size to calculate it's
1079 * readahead window and size the buffers used for mapping to
1080 * physical blocks.
1081 *
1082 * Try to give it an estimate that's good enough, maybe at some
1083 * point we can change the ->readdir prototype to include the
1084 * buffer size. For now we use the current glibc buffer size.
1085 */
1086 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1087
1088 error = xfs_readdir(ip, dirent, bufsize,
1089 (xfs_off_t *)&filp->f_pos, filldir);
1090 if (error)
1091 return -error;
1092 return 0;
1093 }
1094
1095 STATIC int
1096 xfs_file_mmap(
1097 struct file *filp,
1098 struct vm_area_struct *vma)
1099 {
1100 vma->vm_ops = &xfs_file_vm_ops;
1101 vma->vm_flags |= VM_CAN_NONLINEAR;
1102
1103 file_accessed(filp);
1104 return 0;
1105 }
1106
1107 /*
1108 * mmap()d file has taken write protection fault and is being made
1109 * writable. We can set the page state up correctly for a writable
1110 * page, which means we can do correct delalloc accounting (ENOSPC
1111 * checking!) and unwritten extent mapping.
1112 */
1113 STATIC int
1114 xfs_vm_page_mkwrite(
1115 struct vm_area_struct *vma,
1116 struct vm_fault *vmf)
1117 {
1118 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1119 }
1120
1121 const struct file_operations xfs_file_operations = {
1122 .llseek = generic_file_llseek,
1123 .read = do_sync_read,
1124 .write = do_sync_write,
1125 .aio_read = xfs_file_aio_read,
1126 .aio_write = xfs_file_aio_write,
1127 .splice_read = xfs_file_splice_read,
1128 .splice_write = xfs_file_splice_write,
1129 .unlocked_ioctl = xfs_file_ioctl,
1130 #ifdef CONFIG_COMPAT
1131 .compat_ioctl = xfs_file_compat_ioctl,
1132 #endif
1133 .mmap = xfs_file_mmap,
1134 .open = xfs_file_open,
1135 .release = xfs_file_release,
1136 .fsync = xfs_file_fsync,
1137 .fallocate = xfs_file_fallocate,
1138 };
1139
1140 const struct file_operations xfs_dir_file_operations = {
1141 .open = xfs_dir_open,
1142 .read = generic_read_dir,
1143 .readdir = xfs_file_readdir,
1144 .llseek = generic_file_llseek,
1145 .unlocked_ioctl = xfs_file_ioctl,
1146 #ifdef CONFIG_COMPAT
1147 .compat_ioctl = xfs_file_compat_ioctl,
1148 #endif
1149 .fsync = xfs_dir_fsync,
1150 };
1151
1152 static const struct vm_operations_struct xfs_file_vm_ops = {
1153 .fault = filemap_fault,
1154 .page_mkwrite = xfs_vm_page_mkwrite,
1155 };