]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
Merge branch 'iomap-4.9-dax' into for-next
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41
42 #include <linux/dcache.h>
43 #include <linux/falloc.h>
44 #include <linux/pagevec.h>
45 #include <linux/backing-dev.h>
46
47 static const struct vm_operations_struct xfs_file_vm_ops;
48
49 /*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53 static inline void
54 xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57 {
58 if (type & XFS_IOLOCK_EXCL)
59 inode_lock(VFS_I(ip));
60 xfs_ilock(ip, type);
61 }
62
63 static inline void
64 xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67 {
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 inode_unlock(VFS_I(ip));
71 }
72
73 static inline void
74 xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77 {
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 inode_unlock(VFS_I(ip));
81 }
82
83 /*
84 * Clear the specified ranges to zero through either the pagecache or DAX.
85 * Holes and unwritten extents will be left as-is as they already are zeroed.
86 */
87 int
88 xfs_zero_range(
89 struct xfs_inode *ip,
90 xfs_off_t pos,
91 xfs_off_t count,
92 bool *did_zero)
93 {
94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
95 }
96
97 int
98 xfs_update_prealloc_flags(
99 struct xfs_inode *ip,
100 enum xfs_prealloc_flags flags)
101 {
102 struct xfs_trans *tp;
103 int error;
104
105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 0, 0, 0, &tp);
107 if (error)
108 return error;
109
110 xfs_ilock(ip, XFS_ILOCK_EXCL);
111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112
113 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
114 VFS_I(ip)->i_mode &= ~S_ISUID;
115 if (VFS_I(ip)->i_mode & S_IXGRP)
116 VFS_I(ip)->i_mode &= ~S_ISGID;
117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 }
119
120 if (flags & XFS_PREALLOC_SET)
121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 if (flags & XFS_PREALLOC_CLEAR)
123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124
125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 if (flags & XFS_PREALLOC_SYNC)
127 xfs_trans_set_sync(tp);
128 return xfs_trans_commit(tp);
129 }
130
131 /*
132 * Fsync operations on directories are much simpler than on regular files,
133 * as there is no file data to flush, and thus also no need for explicit
134 * cache flush operations, and there are no non-transaction metadata updates
135 * on directories either.
136 */
137 STATIC int
138 xfs_dir_fsync(
139 struct file *file,
140 loff_t start,
141 loff_t end,
142 int datasync)
143 {
144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
145 struct xfs_mount *mp = ip->i_mount;
146 xfs_lsn_t lsn = 0;
147
148 trace_xfs_dir_fsync(ip);
149
150 xfs_ilock(ip, XFS_ILOCK_SHARED);
151 if (xfs_ipincount(ip))
152 lsn = ip->i_itemp->ili_last_lsn;
153 xfs_iunlock(ip, XFS_ILOCK_SHARED);
154
155 if (!lsn)
156 return 0;
157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 }
159
160 STATIC int
161 xfs_file_fsync(
162 struct file *file,
163 loff_t start,
164 loff_t end,
165 int datasync)
166 {
167 struct inode *inode = file->f_mapping->host;
168 struct xfs_inode *ip = XFS_I(inode);
169 struct xfs_mount *mp = ip->i_mount;
170 int error = 0;
171 int log_flushed = 0;
172 xfs_lsn_t lsn = 0;
173
174 trace_xfs_file_fsync(ip);
175
176 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 if (error)
178 return error;
179
180 if (XFS_FORCED_SHUTDOWN(mp))
181 return -EIO;
182
183 xfs_iflags_clear(ip, XFS_ITRUNCATED);
184
185 if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 /*
187 * If we have an RT and/or log subvolume we need to make sure
188 * to flush the write cache the device used for file data
189 * first. This is to ensure newly written file data make
190 * it to disk before logging the new inode size in case of
191 * an extending write.
192 */
193 if (XFS_IS_REALTIME_INODE(ip))
194 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 }
198
199 /*
200 * All metadata updates are logged, which means that we just have to
201 * flush the log up to the latest LSN that touched the inode. If we have
202 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 * log force before we clear the ili_fsync_fields field. This ensures
204 * that we don't get a racing sync operation that does not wait for the
205 * metadata to hit the journal before returning. If we race with
206 * clearing the ili_fsync_fields, then all that will happen is the log
207 * force will do nothing as the lsn will already be on disk. We can't
208 * race with setting ili_fsync_fields because that is done under
209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 * until after the ili_fsync_fields is cleared.
211 */
212 xfs_ilock(ip, XFS_ILOCK_SHARED);
213 if (xfs_ipincount(ip)) {
214 if (!datasync ||
215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 lsn = ip->i_itemp->ili_last_lsn;
217 }
218
219 if (lsn) {
220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 ip->i_itemp->ili_fsync_fields = 0;
222 }
223 xfs_iunlock(ip, XFS_ILOCK_SHARED);
224
225 /*
226 * If we only have a single device, and the log force about was
227 * a no-op we might have to flush the data device cache here.
228 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 * an already allocated file and thus do not have any metadata to
230 * commit.
231 */
232 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 mp->m_logdev_targp == mp->m_ddev_targp &&
234 !XFS_IS_REALTIME_INODE(ip) &&
235 !log_flushed)
236 xfs_blkdev_issue_flush(mp->m_ddev_targp);
237
238 return error;
239 }
240
241 STATIC ssize_t
242 xfs_file_dio_aio_read(
243 struct kiocb *iocb,
244 struct iov_iter *to)
245 {
246 struct address_space *mapping = iocb->ki_filp->f_mapping;
247 struct inode *inode = mapping->host;
248 struct xfs_inode *ip = XFS_I(inode);
249 loff_t isize = i_size_read(inode);
250 size_t count = iov_iter_count(to);
251 struct iov_iter data;
252 struct xfs_buftarg *target;
253 ssize_t ret = 0;
254
255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
256
257 if (!count)
258 return 0; /* skip atime */
259
260 if (XFS_IS_REALTIME_INODE(ip))
261 target = ip->i_mount->m_rtdev_targp;
262 else
263 target = ip->i_mount->m_ddev_targp;
264
265 /* DIO must be aligned to device logical sector size */
266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 if (iocb->ki_pos == isize)
268 return 0;
269 return -EINVAL;
270 }
271
272 file_accessed(iocb->ki_filp);
273
274 /*
275 * Locking is a bit tricky here. If we take an exclusive lock for direct
276 * IO, we effectively serialise all new concurrent read IO to this file
277 * and block it behind IO that is currently in progress because IO in
278 * progress holds the IO lock shared. We only need to hold the lock
279 * exclusive to blow away the page cache, so only take lock exclusively
280 * if the page cache needs invalidation. This allows the normal direct
281 * IO case of no page cache pages to proceeed concurrently without
282 * serialisation.
283 */
284 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
285 if (mapping->nrpages) {
286 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
287 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
288
289 /*
290 * The generic dio code only flushes the range of the particular
291 * I/O. Because we take an exclusive lock here, this whole
292 * sequence is considerably more expensive for us. This has a
293 * noticeable performance impact for any file with cached pages,
294 * even when outside of the range of the particular I/O.
295 *
296 * Hence, amortize the cost of the lock against a full file
297 * flush and reduce the chances of repeated iolock cycles going
298 * forward.
299 */
300 if (mapping->nrpages) {
301 ret = filemap_write_and_wait(mapping);
302 if (ret) {
303 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
304 return ret;
305 }
306
307 /*
308 * Invalidate whole pages. This can return an error if
309 * we fail to invalidate a page, but this should never
310 * happen on XFS. Warn if it does fail.
311 */
312 ret = invalidate_inode_pages2(mapping);
313 WARN_ON_ONCE(ret);
314 ret = 0;
315 }
316 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
317 }
318
319 data = *to;
320 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
321 xfs_get_blocks_direct, NULL, NULL, 0);
322 if (ret > 0) {
323 iocb->ki_pos += ret;
324 iov_iter_advance(to, ret);
325 }
326 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
327
328 return ret;
329 }
330
331 static noinline ssize_t
332 xfs_file_dax_read(
333 struct kiocb *iocb,
334 struct iov_iter *to)
335 {
336 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
337 size_t count = iov_iter_count(to);
338 ssize_t ret = 0;
339
340 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
341
342 if (!count)
343 return 0; /* skip atime */
344
345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
346 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
347 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
348
349 file_accessed(iocb->ki_filp);
350 return ret;
351 }
352
353 STATIC ssize_t
354 xfs_file_buffered_aio_read(
355 struct kiocb *iocb,
356 struct iov_iter *to)
357 {
358 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
359 ssize_t ret;
360
361 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
362
363 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
364 ret = generic_file_read_iter(iocb, to);
365 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
366
367 return ret;
368 }
369
370 STATIC ssize_t
371 xfs_file_read_iter(
372 struct kiocb *iocb,
373 struct iov_iter *to)
374 {
375 struct inode *inode = file_inode(iocb->ki_filp);
376 struct xfs_mount *mp = XFS_I(inode)->i_mount;
377 ssize_t ret = 0;
378
379 XFS_STATS_INC(mp, xs_read_calls);
380
381 if (XFS_FORCED_SHUTDOWN(mp))
382 return -EIO;
383
384 if (IS_DAX(inode))
385 ret = xfs_file_dax_read(iocb, to);
386 else if (iocb->ki_flags & IOCB_DIRECT)
387 ret = xfs_file_dio_aio_read(iocb, to);
388 else
389 ret = xfs_file_buffered_aio_read(iocb, to);
390
391 if (ret > 0)
392 XFS_STATS_ADD(mp, xs_read_bytes, ret);
393 return ret;
394 }
395
396 STATIC ssize_t
397 xfs_file_splice_read(
398 struct file *infilp,
399 loff_t *ppos,
400 struct pipe_inode_info *pipe,
401 size_t count,
402 unsigned int flags)
403 {
404 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
405 ssize_t ret;
406
407 XFS_STATS_INC(ip->i_mount, xs_read_calls);
408
409 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
410 return -EIO;
411
412 trace_xfs_file_splice_read(ip, count, *ppos);
413
414 /*
415 * DAX inodes cannot ues the page cache for splice, so we have to push
416 * them through the VFS IO path. This means it goes through
417 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
418 * cannot lock the splice operation at this level for DAX inodes.
419 */
420 if (IS_DAX(VFS_I(ip))) {
421 ret = default_file_splice_read(infilp, ppos, pipe, count,
422 flags);
423 goto out;
424 }
425
426 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
427 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
428 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
429 out:
430 if (ret > 0)
431 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
432 return ret;
433 }
434
435 /*
436 * Zero any on disk space between the current EOF and the new, larger EOF.
437 *
438 * This handles the normal case of zeroing the remainder of the last block in
439 * the file and the unusual case of zeroing blocks out beyond the size of the
440 * file. This second case only happens with fixed size extents and when the
441 * system crashes before the inode size was updated but after blocks were
442 * allocated.
443 *
444 * Expects the iolock to be held exclusive, and will take the ilock internally.
445 */
446 int /* error (positive) */
447 xfs_zero_eof(
448 struct xfs_inode *ip,
449 xfs_off_t offset, /* starting I/O offset */
450 xfs_fsize_t isize, /* current inode size */
451 bool *did_zeroing)
452 {
453 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
454 ASSERT(offset > isize);
455
456 trace_xfs_zero_eof(ip, isize, offset - isize);
457 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
458 }
459
460 /*
461 * Common pre-write limit and setup checks.
462 *
463 * Called with the iolocked held either shared and exclusive according to
464 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
465 * if called for a direct write beyond i_size.
466 */
467 STATIC ssize_t
468 xfs_file_aio_write_checks(
469 struct kiocb *iocb,
470 struct iov_iter *from,
471 int *iolock)
472 {
473 struct file *file = iocb->ki_filp;
474 struct inode *inode = file->f_mapping->host;
475 struct xfs_inode *ip = XFS_I(inode);
476 ssize_t error = 0;
477 size_t count = iov_iter_count(from);
478 bool drained_dio = false;
479
480 restart:
481 error = generic_write_checks(iocb, from);
482 if (error <= 0)
483 return error;
484
485 error = xfs_break_layouts(inode, iolock, true);
486 if (error)
487 return error;
488
489 /* For changing security info in file_remove_privs() we need i_mutex */
490 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
491 xfs_rw_iunlock(ip, *iolock);
492 *iolock = XFS_IOLOCK_EXCL;
493 xfs_rw_ilock(ip, *iolock);
494 goto restart;
495 }
496 /*
497 * If the offset is beyond the size of the file, we need to zero any
498 * blocks that fall between the existing EOF and the start of this
499 * write. If zeroing is needed and we are currently holding the
500 * iolock shared, we need to update it to exclusive which implies
501 * having to redo all checks before.
502 *
503 * We need to serialise against EOF updates that occur in IO
504 * completions here. We want to make sure that nobody is changing the
505 * size while we do this check until we have placed an IO barrier (i.e.
506 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
507 * The spinlock effectively forms a memory barrier once we have the
508 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
509 * and hence be able to correctly determine if we need to run zeroing.
510 */
511 spin_lock(&ip->i_flags_lock);
512 if (iocb->ki_pos > i_size_read(inode)) {
513 bool zero = false;
514
515 spin_unlock(&ip->i_flags_lock);
516 if (!drained_dio) {
517 if (*iolock == XFS_IOLOCK_SHARED) {
518 xfs_rw_iunlock(ip, *iolock);
519 *iolock = XFS_IOLOCK_EXCL;
520 xfs_rw_ilock(ip, *iolock);
521 iov_iter_reexpand(from, count);
522 }
523 /*
524 * We now have an IO submission barrier in place, but
525 * AIO can do EOF updates during IO completion and hence
526 * we now need to wait for all of them to drain. Non-AIO
527 * DIO will have drained before we are given the
528 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
529 * no-op.
530 */
531 inode_dio_wait(inode);
532 drained_dio = true;
533 goto restart;
534 }
535 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
536 if (error)
537 return error;
538 } else
539 spin_unlock(&ip->i_flags_lock);
540
541 /*
542 * Updating the timestamps will grab the ilock again from
543 * xfs_fs_dirty_inode, so we have to call it after dropping the
544 * lock above. Eventually we should look into a way to avoid
545 * the pointless lock roundtrip.
546 */
547 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
548 error = file_update_time(file);
549 if (error)
550 return error;
551 }
552
553 /*
554 * If we're writing the file then make sure to clear the setuid and
555 * setgid bits if the process is not being run by root. This keeps
556 * people from modifying setuid and setgid binaries.
557 */
558 if (!IS_NOSEC(inode))
559 return file_remove_privs(file);
560 return 0;
561 }
562
563 /*
564 * xfs_file_dio_aio_write - handle direct IO writes
565 *
566 * Lock the inode appropriately to prepare for and issue a direct IO write.
567 * By separating it from the buffered write path we remove all the tricky to
568 * follow locking changes and looping.
569 *
570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572 * pages are flushed out.
573 *
574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575 * allowing them to be done in parallel with reads and other direct IO writes.
576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577 * needs to do sub-block zeroing and that requires serialisation against other
578 * direct IOs to the same block. In this case we need to serialise the
579 * submission of the unaligned IOs so that we don't get racing block zeroing in
580 * the dio layer. To avoid the problem with aio, we also need to wait for
581 * outstanding IOs to complete so that unwritten extent conversion is completed
582 * before we try to map the overlapping block. This is currently implemented by
583 * hitting it with a big hammer (i.e. inode_dio_wait()).
584 *
585 * Returns with locks held indicated by @iolock and errors indicated by
586 * negative return values.
587 */
588 STATIC ssize_t
589 xfs_file_dio_aio_write(
590 struct kiocb *iocb,
591 struct iov_iter *from)
592 {
593 struct file *file = iocb->ki_filp;
594 struct address_space *mapping = file->f_mapping;
595 struct inode *inode = mapping->host;
596 struct xfs_inode *ip = XFS_I(inode);
597 struct xfs_mount *mp = ip->i_mount;
598 ssize_t ret = 0;
599 int unaligned_io = 0;
600 int iolock;
601 size_t count = iov_iter_count(from);
602 loff_t end;
603 struct iov_iter data;
604 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
605 mp->m_rtdev_targp : mp->m_ddev_targp;
606
607 /* DIO must be aligned to device logical sector size */
608 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
609 return -EINVAL;
610
611 /* "unaligned" here means not aligned to a filesystem block */
612 if ((iocb->ki_pos & mp->m_blockmask) ||
613 ((iocb->ki_pos + count) & mp->m_blockmask))
614 unaligned_io = 1;
615
616 /*
617 * We don't need to take an exclusive lock unless there page cache needs
618 * to be invalidated or unaligned IO is being executed. We don't need to
619 * consider the EOF extension case here because
620 * xfs_file_aio_write_checks() will relock the inode as necessary for
621 * EOF zeroing cases and fill out the new inode size as appropriate.
622 */
623 if (unaligned_io || mapping->nrpages)
624 iolock = XFS_IOLOCK_EXCL;
625 else
626 iolock = XFS_IOLOCK_SHARED;
627 xfs_rw_ilock(ip, iolock);
628
629 /*
630 * Recheck if there are cached pages that need invalidate after we got
631 * the iolock to protect against other threads adding new pages while
632 * we were waiting for the iolock.
633 */
634 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
635 xfs_rw_iunlock(ip, iolock);
636 iolock = XFS_IOLOCK_EXCL;
637 xfs_rw_ilock(ip, iolock);
638 }
639
640 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
641 if (ret)
642 goto out;
643 count = iov_iter_count(from);
644 end = iocb->ki_pos + count - 1;
645
646 /*
647 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
648 */
649 if (mapping->nrpages) {
650 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
651 if (ret)
652 goto out;
653 /*
654 * Invalidate whole pages. This can return an error if we fail
655 * to invalidate a page, but this should never happen on XFS.
656 * Warn if it does fail.
657 */
658 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
659 WARN_ON_ONCE(ret);
660 ret = 0;
661 }
662
663 /*
664 * If we are doing unaligned IO, wait for all other IO to drain,
665 * otherwise demote the lock if we had to flush cached pages
666 */
667 if (unaligned_io)
668 inode_dio_wait(inode);
669 else if (iolock == XFS_IOLOCK_EXCL) {
670 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
671 iolock = XFS_IOLOCK_SHARED;
672 }
673
674 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
675
676 data = *from;
677 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
678 xfs_get_blocks_direct, xfs_end_io_direct_write,
679 NULL, DIO_ASYNC_EXTEND);
680
681 /* see generic_file_direct_write() for why this is necessary */
682 if (mapping->nrpages) {
683 invalidate_inode_pages2_range(mapping,
684 iocb->ki_pos >> PAGE_SHIFT,
685 end >> PAGE_SHIFT);
686 }
687
688 if (ret > 0) {
689 iocb->ki_pos += ret;
690 iov_iter_advance(from, ret);
691 }
692 out:
693 xfs_rw_iunlock(ip, iolock);
694
695 /*
696 * No fallback to buffered IO on errors for XFS, direct IO will either
697 * complete fully or fail.
698 */
699 ASSERT(ret < 0 || ret == count);
700 return ret;
701 }
702
703 static noinline ssize_t
704 xfs_file_dax_write(
705 struct kiocb *iocb,
706 struct iov_iter *from)
707 {
708 struct inode *inode = iocb->ki_filp->f_mapping->host;
709 struct xfs_inode *ip = XFS_I(inode);
710 int iolock = XFS_IOLOCK_EXCL;
711 ssize_t ret, error = 0;
712 size_t count;
713 loff_t pos;
714
715 xfs_rw_ilock(ip, iolock);
716 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
717 if (ret)
718 goto out;
719
720 pos = iocb->ki_pos;
721 count = iov_iter_count(from);
722
723 trace_xfs_file_dax_write(ip, count, pos);
724
725 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
726 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
727 i_size_write(inode, iocb->ki_pos);
728 error = xfs_setfilesize(ip, pos, ret);
729 }
730
731 out:
732 xfs_rw_iunlock(ip, iolock);
733 return error ? error : ret;
734 }
735
736 STATIC ssize_t
737 xfs_file_buffered_aio_write(
738 struct kiocb *iocb,
739 struct iov_iter *from)
740 {
741 struct file *file = iocb->ki_filp;
742 struct address_space *mapping = file->f_mapping;
743 struct inode *inode = mapping->host;
744 struct xfs_inode *ip = XFS_I(inode);
745 ssize_t ret;
746 int enospc = 0;
747 int iolock = XFS_IOLOCK_EXCL;
748
749 xfs_rw_ilock(ip, iolock);
750
751 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
752 if (ret)
753 goto out;
754
755 /* We can write back this queue in page reclaim */
756 current->backing_dev_info = inode_to_bdi(inode);
757
758 write_retry:
759 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
760 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
761 if (likely(ret >= 0))
762 iocb->ki_pos += ret;
763
764 /*
765 * If we hit a space limit, try to free up some lingering preallocated
766 * space before returning an error. In the case of ENOSPC, first try to
767 * write back all dirty inodes to free up some of the excess reserved
768 * metadata space. This reduces the chances that the eofblocks scan
769 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
770 * also behaves as a filter to prevent too many eofblocks scans from
771 * running at the same time.
772 */
773 if (ret == -EDQUOT && !enospc) {
774 enospc = xfs_inode_free_quota_eofblocks(ip);
775 if (enospc)
776 goto write_retry;
777 } else if (ret == -ENOSPC && !enospc) {
778 struct xfs_eofblocks eofb = {0};
779
780 enospc = 1;
781 xfs_flush_inodes(ip->i_mount);
782 eofb.eof_scan_owner = ip->i_ino; /* for locking */
783 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
784 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
785 goto write_retry;
786 }
787
788 current->backing_dev_info = NULL;
789 out:
790 xfs_rw_iunlock(ip, iolock);
791 return ret;
792 }
793
794 STATIC ssize_t
795 xfs_file_write_iter(
796 struct kiocb *iocb,
797 struct iov_iter *from)
798 {
799 struct file *file = iocb->ki_filp;
800 struct address_space *mapping = file->f_mapping;
801 struct inode *inode = mapping->host;
802 struct xfs_inode *ip = XFS_I(inode);
803 ssize_t ret;
804 size_t ocount = iov_iter_count(from);
805
806 XFS_STATS_INC(ip->i_mount, xs_write_calls);
807
808 if (ocount == 0)
809 return 0;
810
811 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
812 return -EIO;
813
814 if (IS_DAX(inode))
815 ret = xfs_file_dax_write(iocb, from);
816 else if (iocb->ki_flags & IOCB_DIRECT)
817 ret = xfs_file_dio_aio_write(iocb, from);
818 else
819 ret = xfs_file_buffered_aio_write(iocb, from);
820
821 if (ret > 0) {
822 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
823
824 /* Handle various SYNC-type writes */
825 ret = generic_write_sync(iocb, ret);
826 }
827 return ret;
828 }
829
830 #define XFS_FALLOC_FL_SUPPORTED \
831 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
832 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
833 FALLOC_FL_INSERT_RANGE)
834
835 STATIC long
836 xfs_file_fallocate(
837 struct file *file,
838 int mode,
839 loff_t offset,
840 loff_t len)
841 {
842 struct inode *inode = file_inode(file);
843 struct xfs_inode *ip = XFS_I(inode);
844 long error;
845 enum xfs_prealloc_flags flags = 0;
846 uint iolock = XFS_IOLOCK_EXCL;
847 loff_t new_size = 0;
848 bool do_file_insert = 0;
849
850 if (!S_ISREG(inode->i_mode))
851 return -EINVAL;
852 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
853 return -EOPNOTSUPP;
854
855 xfs_ilock(ip, iolock);
856 error = xfs_break_layouts(inode, &iolock, false);
857 if (error)
858 goto out_unlock;
859
860 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
861 iolock |= XFS_MMAPLOCK_EXCL;
862
863 if (mode & FALLOC_FL_PUNCH_HOLE) {
864 error = xfs_free_file_space(ip, offset, len);
865 if (error)
866 goto out_unlock;
867 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
868 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
869
870 if (offset & blksize_mask || len & blksize_mask) {
871 error = -EINVAL;
872 goto out_unlock;
873 }
874
875 /*
876 * There is no need to overlap collapse range with EOF,
877 * in which case it is effectively a truncate operation
878 */
879 if (offset + len >= i_size_read(inode)) {
880 error = -EINVAL;
881 goto out_unlock;
882 }
883
884 new_size = i_size_read(inode) - len;
885
886 error = xfs_collapse_file_space(ip, offset, len);
887 if (error)
888 goto out_unlock;
889 } else if (mode & FALLOC_FL_INSERT_RANGE) {
890 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
891
892 new_size = i_size_read(inode) + len;
893 if (offset & blksize_mask || len & blksize_mask) {
894 error = -EINVAL;
895 goto out_unlock;
896 }
897
898 /* check the new inode size does not wrap through zero */
899 if (new_size > inode->i_sb->s_maxbytes) {
900 error = -EFBIG;
901 goto out_unlock;
902 }
903
904 /* Offset should be less than i_size */
905 if (offset >= i_size_read(inode)) {
906 error = -EINVAL;
907 goto out_unlock;
908 }
909 do_file_insert = 1;
910 } else {
911 flags |= XFS_PREALLOC_SET;
912
913 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
914 offset + len > i_size_read(inode)) {
915 new_size = offset + len;
916 error = inode_newsize_ok(inode, new_size);
917 if (error)
918 goto out_unlock;
919 }
920
921 if (mode & FALLOC_FL_ZERO_RANGE)
922 error = xfs_zero_file_space(ip, offset, len);
923 else
924 error = xfs_alloc_file_space(ip, offset, len,
925 XFS_BMAPI_PREALLOC);
926 if (error)
927 goto out_unlock;
928 }
929
930 if (file->f_flags & O_DSYNC)
931 flags |= XFS_PREALLOC_SYNC;
932
933 error = xfs_update_prealloc_flags(ip, flags);
934 if (error)
935 goto out_unlock;
936
937 /* Change file size if needed */
938 if (new_size) {
939 struct iattr iattr;
940
941 iattr.ia_valid = ATTR_SIZE;
942 iattr.ia_size = new_size;
943 error = xfs_setattr_size(ip, &iattr);
944 if (error)
945 goto out_unlock;
946 }
947
948 /*
949 * Perform hole insertion now that the file size has been
950 * updated so that if we crash during the operation we don't
951 * leave shifted extents past EOF and hence losing access to
952 * the data that is contained within them.
953 */
954 if (do_file_insert)
955 error = xfs_insert_file_space(ip, offset, len);
956
957 out_unlock:
958 xfs_iunlock(ip, iolock);
959 return error;
960 }
961
962
963 STATIC int
964 xfs_file_open(
965 struct inode *inode,
966 struct file *file)
967 {
968 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
969 return -EFBIG;
970 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
971 return -EIO;
972 return 0;
973 }
974
975 STATIC int
976 xfs_dir_open(
977 struct inode *inode,
978 struct file *file)
979 {
980 struct xfs_inode *ip = XFS_I(inode);
981 int mode;
982 int error;
983
984 error = xfs_file_open(inode, file);
985 if (error)
986 return error;
987
988 /*
989 * If there are any blocks, read-ahead block 0 as we're almost
990 * certain to have the next operation be a read there.
991 */
992 mode = xfs_ilock_data_map_shared(ip);
993 if (ip->i_d.di_nextents > 0)
994 xfs_dir3_data_readahead(ip, 0, -1);
995 xfs_iunlock(ip, mode);
996 return 0;
997 }
998
999 STATIC int
1000 xfs_file_release(
1001 struct inode *inode,
1002 struct file *filp)
1003 {
1004 return xfs_release(XFS_I(inode));
1005 }
1006
1007 STATIC int
1008 xfs_file_readdir(
1009 struct file *file,
1010 struct dir_context *ctx)
1011 {
1012 struct inode *inode = file_inode(file);
1013 xfs_inode_t *ip = XFS_I(inode);
1014 size_t bufsize;
1015
1016 /*
1017 * The Linux API doesn't pass down the total size of the buffer
1018 * we read into down to the filesystem. With the filldir concept
1019 * it's not needed for correct information, but the XFS dir2 leaf
1020 * code wants an estimate of the buffer size to calculate it's
1021 * readahead window and size the buffers used for mapping to
1022 * physical blocks.
1023 *
1024 * Try to give it an estimate that's good enough, maybe at some
1025 * point we can change the ->readdir prototype to include the
1026 * buffer size. For now we use the current glibc buffer size.
1027 */
1028 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1029
1030 return xfs_readdir(ip, ctx, bufsize);
1031 }
1032
1033 /*
1034 * This type is designed to indicate the type of offset we would like
1035 * to search from page cache for xfs_seek_hole_data().
1036 */
1037 enum {
1038 HOLE_OFF = 0,
1039 DATA_OFF,
1040 };
1041
1042 /*
1043 * Lookup the desired type of offset from the given page.
1044 *
1045 * On success, return true and the offset argument will point to the
1046 * start of the region that was found. Otherwise this function will
1047 * return false and keep the offset argument unchanged.
1048 */
1049 STATIC bool
1050 xfs_lookup_buffer_offset(
1051 struct page *page,
1052 loff_t *offset,
1053 unsigned int type)
1054 {
1055 loff_t lastoff = page_offset(page);
1056 bool found = false;
1057 struct buffer_head *bh, *head;
1058
1059 bh = head = page_buffers(page);
1060 do {
1061 /*
1062 * Unwritten extents that have data in the page
1063 * cache covering them can be identified by the
1064 * BH_Unwritten state flag. Pages with multiple
1065 * buffers might have a mix of holes, data and
1066 * unwritten extents - any buffer with valid
1067 * data in it should have BH_Uptodate flag set
1068 * on it.
1069 */
1070 if (buffer_unwritten(bh) ||
1071 buffer_uptodate(bh)) {
1072 if (type == DATA_OFF)
1073 found = true;
1074 } else {
1075 if (type == HOLE_OFF)
1076 found = true;
1077 }
1078
1079 if (found) {
1080 *offset = lastoff;
1081 break;
1082 }
1083 lastoff += bh->b_size;
1084 } while ((bh = bh->b_this_page) != head);
1085
1086 return found;
1087 }
1088
1089 /*
1090 * This routine is called to find out and return a data or hole offset
1091 * from the page cache for unwritten extents according to the desired
1092 * type for xfs_seek_hole_data().
1093 *
1094 * The argument offset is used to tell where we start to search from the
1095 * page cache. Map is used to figure out the end points of the range to
1096 * lookup pages.
1097 *
1098 * Return true if the desired type of offset was found, and the argument
1099 * offset is filled with that address. Otherwise, return false and keep
1100 * offset unchanged.
1101 */
1102 STATIC bool
1103 xfs_find_get_desired_pgoff(
1104 struct inode *inode,
1105 struct xfs_bmbt_irec *map,
1106 unsigned int type,
1107 loff_t *offset)
1108 {
1109 struct xfs_inode *ip = XFS_I(inode);
1110 struct xfs_mount *mp = ip->i_mount;
1111 struct pagevec pvec;
1112 pgoff_t index;
1113 pgoff_t end;
1114 loff_t endoff;
1115 loff_t startoff = *offset;
1116 loff_t lastoff = startoff;
1117 bool found = false;
1118
1119 pagevec_init(&pvec, 0);
1120
1121 index = startoff >> PAGE_SHIFT;
1122 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1123 end = endoff >> PAGE_SHIFT;
1124 do {
1125 int want;
1126 unsigned nr_pages;
1127 unsigned int i;
1128
1129 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1130 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1131 want);
1132 /*
1133 * No page mapped into given range. If we are searching holes
1134 * and if this is the first time we got into the loop, it means
1135 * that the given offset is landed in a hole, return it.
1136 *
1137 * If we have already stepped through some block buffers to find
1138 * holes but they all contains data. In this case, the last
1139 * offset is already updated and pointed to the end of the last
1140 * mapped page, if it does not reach the endpoint to search,
1141 * that means there should be a hole between them.
1142 */
1143 if (nr_pages == 0) {
1144 /* Data search found nothing */
1145 if (type == DATA_OFF)
1146 break;
1147
1148 ASSERT(type == HOLE_OFF);
1149 if (lastoff == startoff || lastoff < endoff) {
1150 found = true;
1151 *offset = lastoff;
1152 }
1153 break;
1154 }
1155
1156 /*
1157 * At lease we found one page. If this is the first time we
1158 * step into the loop, and if the first page index offset is
1159 * greater than the given search offset, a hole was found.
1160 */
1161 if (type == HOLE_OFF && lastoff == startoff &&
1162 lastoff < page_offset(pvec.pages[0])) {
1163 found = true;
1164 break;
1165 }
1166
1167 for (i = 0; i < nr_pages; i++) {
1168 struct page *page = pvec.pages[i];
1169 loff_t b_offset;
1170
1171 /*
1172 * At this point, the page may be truncated or
1173 * invalidated (changing page->mapping to NULL),
1174 * or even swizzled back from swapper_space to tmpfs
1175 * file mapping. However, page->index will not change
1176 * because we have a reference on the page.
1177 *
1178 * Searching done if the page index is out of range.
1179 * If the current offset is not reaches the end of
1180 * the specified search range, there should be a hole
1181 * between them.
1182 */
1183 if (page->index > end) {
1184 if (type == HOLE_OFF && lastoff < endoff) {
1185 *offset = lastoff;
1186 found = true;
1187 }
1188 goto out;
1189 }
1190
1191 lock_page(page);
1192 /*
1193 * Page truncated or invalidated(page->mapping == NULL).
1194 * We can freely skip it and proceed to check the next
1195 * page.
1196 */
1197 if (unlikely(page->mapping != inode->i_mapping)) {
1198 unlock_page(page);
1199 continue;
1200 }
1201
1202 if (!page_has_buffers(page)) {
1203 unlock_page(page);
1204 continue;
1205 }
1206
1207 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1208 if (found) {
1209 /*
1210 * The found offset may be less than the start
1211 * point to search if this is the first time to
1212 * come here.
1213 */
1214 *offset = max_t(loff_t, startoff, b_offset);
1215 unlock_page(page);
1216 goto out;
1217 }
1218
1219 /*
1220 * We either searching data but nothing was found, or
1221 * searching hole but found a data buffer. In either
1222 * case, probably the next page contains the desired
1223 * things, update the last offset to it so.
1224 */
1225 lastoff = page_offset(page) + PAGE_SIZE;
1226 unlock_page(page);
1227 }
1228
1229 /*
1230 * The number of returned pages less than our desired, search
1231 * done. In this case, nothing was found for searching data,
1232 * but we found a hole behind the last offset.
1233 */
1234 if (nr_pages < want) {
1235 if (type == HOLE_OFF) {
1236 *offset = lastoff;
1237 found = true;
1238 }
1239 break;
1240 }
1241
1242 index = pvec.pages[i - 1]->index + 1;
1243 pagevec_release(&pvec);
1244 } while (index <= end);
1245
1246 out:
1247 pagevec_release(&pvec);
1248 return found;
1249 }
1250
1251 /*
1252 * caller must lock inode with xfs_ilock_data_map_shared,
1253 * can we craft an appropriate ASSERT?
1254 *
1255 * end is because the VFS-level lseek interface is defined such that any
1256 * offset past i_size shall return -ENXIO, but we use this for quota code
1257 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1258 */
1259 loff_t
1260 __xfs_seek_hole_data(
1261 struct inode *inode,
1262 loff_t start,
1263 loff_t end,
1264 int whence)
1265 {
1266 struct xfs_inode *ip = XFS_I(inode);
1267 struct xfs_mount *mp = ip->i_mount;
1268 loff_t uninitialized_var(offset);
1269 xfs_fileoff_t fsbno;
1270 xfs_filblks_t lastbno;
1271 int error;
1272
1273 if (start >= end) {
1274 error = -ENXIO;
1275 goto out_error;
1276 }
1277
1278 /*
1279 * Try to read extents from the first block indicated
1280 * by fsbno to the end block of the file.
1281 */
1282 fsbno = XFS_B_TO_FSBT(mp, start);
1283 lastbno = XFS_B_TO_FSB(mp, end);
1284
1285 for (;;) {
1286 struct xfs_bmbt_irec map[2];
1287 int nmap = 2;
1288 unsigned int i;
1289
1290 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1291 XFS_BMAPI_ENTIRE);
1292 if (error)
1293 goto out_error;
1294
1295 /* No extents at given offset, must be beyond EOF */
1296 if (nmap == 0) {
1297 error = -ENXIO;
1298 goto out_error;
1299 }
1300
1301 for (i = 0; i < nmap; i++) {
1302 offset = max_t(loff_t, start,
1303 XFS_FSB_TO_B(mp, map[i].br_startoff));
1304
1305 /* Landed in the hole we wanted? */
1306 if (whence == SEEK_HOLE &&
1307 map[i].br_startblock == HOLESTARTBLOCK)
1308 goto out;
1309
1310 /* Landed in the data extent we wanted? */
1311 if (whence == SEEK_DATA &&
1312 (map[i].br_startblock == DELAYSTARTBLOCK ||
1313 (map[i].br_state == XFS_EXT_NORM &&
1314 !isnullstartblock(map[i].br_startblock))))
1315 goto out;
1316
1317 /*
1318 * Landed in an unwritten extent, try to search
1319 * for hole or data from page cache.
1320 */
1321 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1322 if (xfs_find_get_desired_pgoff(inode, &map[i],
1323 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1324 &offset))
1325 goto out;
1326 }
1327 }
1328
1329 /*
1330 * We only received one extent out of the two requested. This
1331 * means we've hit EOF and didn't find what we are looking for.
1332 */
1333 if (nmap == 1) {
1334 /*
1335 * If we were looking for a hole, set offset to
1336 * the end of the file (i.e., there is an implicit
1337 * hole at the end of any file).
1338 */
1339 if (whence == SEEK_HOLE) {
1340 offset = end;
1341 break;
1342 }
1343 /*
1344 * If we were looking for data, it's nowhere to be found
1345 */
1346 ASSERT(whence == SEEK_DATA);
1347 error = -ENXIO;
1348 goto out_error;
1349 }
1350
1351 ASSERT(i > 1);
1352
1353 /*
1354 * Nothing was found, proceed to the next round of search
1355 * if the next reading offset is not at or beyond EOF.
1356 */
1357 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1358 start = XFS_FSB_TO_B(mp, fsbno);
1359 if (start >= end) {
1360 if (whence == SEEK_HOLE) {
1361 offset = end;
1362 break;
1363 }
1364 ASSERT(whence == SEEK_DATA);
1365 error = -ENXIO;
1366 goto out_error;
1367 }
1368 }
1369
1370 out:
1371 /*
1372 * If at this point we have found the hole we wanted, the returned
1373 * offset may be bigger than the file size as it may be aligned to
1374 * page boundary for unwritten extents. We need to deal with this
1375 * situation in particular.
1376 */
1377 if (whence == SEEK_HOLE)
1378 offset = min_t(loff_t, offset, end);
1379
1380 return offset;
1381
1382 out_error:
1383 return error;
1384 }
1385
1386 STATIC loff_t
1387 xfs_seek_hole_data(
1388 struct file *file,
1389 loff_t start,
1390 int whence)
1391 {
1392 struct inode *inode = file->f_mapping->host;
1393 struct xfs_inode *ip = XFS_I(inode);
1394 struct xfs_mount *mp = ip->i_mount;
1395 uint lock;
1396 loff_t offset, end;
1397 int error = 0;
1398
1399 if (XFS_FORCED_SHUTDOWN(mp))
1400 return -EIO;
1401
1402 lock = xfs_ilock_data_map_shared(ip);
1403
1404 end = i_size_read(inode);
1405 offset = __xfs_seek_hole_data(inode, start, end, whence);
1406 if (offset < 0) {
1407 error = offset;
1408 goto out_unlock;
1409 }
1410
1411 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1412
1413 out_unlock:
1414 xfs_iunlock(ip, lock);
1415
1416 if (error)
1417 return error;
1418 return offset;
1419 }
1420
1421 STATIC loff_t
1422 xfs_file_llseek(
1423 struct file *file,
1424 loff_t offset,
1425 int whence)
1426 {
1427 switch (whence) {
1428 case SEEK_END:
1429 case SEEK_CUR:
1430 case SEEK_SET:
1431 return generic_file_llseek(file, offset, whence);
1432 case SEEK_HOLE:
1433 case SEEK_DATA:
1434 return xfs_seek_hole_data(file, offset, whence);
1435 default:
1436 return -EINVAL;
1437 }
1438 }
1439
1440 /*
1441 * Locking for serialisation of IO during page faults. This results in a lock
1442 * ordering of:
1443 *
1444 * mmap_sem (MM)
1445 * sb_start_pagefault(vfs, freeze)
1446 * i_mmaplock (XFS - truncate serialisation)
1447 * page_lock (MM)
1448 * i_lock (XFS - extent map serialisation)
1449 */
1450
1451 /*
1452 * mmap()d file has taken write protection fault and is being made writable. We
1453 * can set the page state up correctly for a writable page, which means we can
1454 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1455 * mapping.
1456 */
1457 STATIC int
1458 xfs_filemap_page_mkwrite(
1459 struct vm_area_struct *vma,
1460 struct vm_fault *vmf)
1461 {
1462 struct inode *inode = file_inode(vma->vm_file);
1463 int ret;
1464
1465 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1466
1467 sb_start_pagefault(inode->i_sb);
1468 file_update_time(vma->vm_file);
1469 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1470
1471 if (IS_DAX(inode)) {
1472 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1473 } else {
1474 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1475 ret = block_page_mkwrite_return(ret);
1476 }
1477
1478 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1479 sb_end_pagefault(inode->i_sb);
1480
1481 return ret;
1482 }
1483
1484 STATIC int
1485 xfs_filemap_fault(
1486 struct vm_area_struct *vma,
1487 struct vm_fault *vmf)
1488 {
1489 struct inode *inode = file_inode(vma->vm_file);
1490 int ret;
1491
1492 trace_xfs_filemap_fault(XFS_I(inode));
1493
1494 /* DAX can shortcut the normal fault path on write faults! */
1495 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1496 return xfs_filemap_page_mkwrite(vma, vmf);
1497
1498 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1499 if (IS_DAX(inode)) {
1500 /*
1501 * we do not want to trigger unwritten extent conversion on read
1502 * faults - that is unnecessary overhead and would also require
1503 * changes to xfs_get_blocks_direct() to map unwritten extent
1504 * ioend for conversion on read-only mappings.
1505 */
1506 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1507 } else
1508 ret = filemap_fault(vma, vmf);
1509 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1510
1511 return ret;
1512 }
1513
1514 /*
1515 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1516 * both read and write faults. Hence we need to handle both cases. There is no
1517 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1518 * handle both cases here. @flags carries the information on the type of fault
1519 * occuring.
1520 */
1521 STATIC int
1522 xfs_filemap_pmd_fault(
1523 struct vm_area_struct *vma,
1524 unsigned long addr,
1525 pmd_t *pmd,
1526 unsigned int flags)
1527 {
1528 struct inode *inode = file_inode(vma->vm_file);
1529 struct xfs_inode *ip = XFS_I(inode);
1530 int ret;
1531
1532 if (!IS_DAX(inode))
1533 return VM_FAULT_FALLBACK;
1534
1535 trace_xfs_filemap_pmd_fault(ip);
1536
1537 if (flags & FAULT_FLAG_WRITE) {
1538 sb_start_pagefault(inode->i_sb);
1539 file_update_time(vma->vm_file);
1540 }
1541
1542 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1543 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1544 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1545
1546 if (flags & FAULT_FLAG_WRITE)
1547 sb_end_pagefault(inode->i_sb);
1548
1549 return ret;
1550 }
1551
1552 /*
1553 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1554 * updates on write faults. In reality, it's need to serialise against
1555 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1556 * to ensure we serialise the fault barrier in place.
1557 */
1558 static int
1559 xfs_filemap_pfn_mkwrite(
1560 struct vm_area_struct *vma,
1561 struct vm_fault *vmf)
1562 {
1563
1564 struct inode *inode = file_inode(vma->vm_file);
1565 struct xfs_inode *ip = XFS_I(inode);
1566 int ret = VM_FAULT_NOPAGE;
1567 loff_t size;
1568
1569 trace_xfs_filemap_pfn_mkwrite(ip);
1570
1571 sb_start_pagefault(inode->i_sb);
1572 file_update_time(vma->vm_file);
1573
1574 /* check if the faulting page hasn't raced with truncate */
1575 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1576 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 if (vmf->pgoff >= size)
1578 ret = VM_FAULT_SIGBUS;
1579 else if (IS_DAX(inode))
1580 ret = dax_pfn_mkwrite(vma, vmf);
1581 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1582 sb_end_pagefault(inode->i_sb);
1583 return ret;
1584
1585 }
1586
1587 static const struct vm_operations_struct xfs_file_vm_ops = {
1588 .fault = xfs_filemap_fault,
1589 .pmd_fault = xfs_filemap_pmd_fault,
1590 .map_pages = filemap_map_pages,
1591 .page_mkwrite = xfs_filemap_page_mkwrite,
1592 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1593 };
1594
1595 STATIC int
1596 xfs_file_mmap(
1597 struct file *filp,
1598 struct vm_area_struct *vma)
1599 {
1600 file_accessed(filp);
1601 vma->vm_ops = &xfs_file_vm_ops;
1602 if (IS_DAX(file_inode(filp)))
1603 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1604 return 0;
1605 }
1606
1607 const struct file_operations xfs_file_operations = {
1608 .llseek = xfs_file_llseek,
1609 .read_iter = xfs_file_read_iter,
1610 .write_iter = xfs_file_write_iter,
1611 .splice_read = xfs_file_splice_read,
1612 .splice_write = iter_file_splice_write,
1613 .unlocked_ioctl = xfs_file_ioctl,
1614 #ifdef CONFIG_COMPAT
1615 .compat_ioctl = xfs_file_compat_ioctl,
1616 #endif
1617 .mmap = xfs_file_mmap,
1618 .open = xfs_file_open,
1619 .release = xfs_file_release,
1620 .fsync = xfs_file_fsync,
1621 .fallocate = xfs_file_fallocate,
1622 };
1623
1624 const struct file_operations xfs_dir_file_operations = {
1625 .open = xfs_dir_open,
1626 .read = generic_read_dir,
1627 .iterate_shared = xfs_file_readdir,
1628 .llseek = generic_file_llseek,
1629 .unlocked_ioctl = xfs_file_ioctl,
1630 #ifdef CONFIG_COMPAT
1631 .compat_ioctl = xfs_file_compat_ioctl,
1632 #endif
1633 .fsync = xfs_dir_fsync,
1634 };