]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
xfs: split direct I/O and DAX path
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
45
46 static const struct vm_operations_struct xfs_file_vm_ops;
47
48 /*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56 {
57 if (type & XFS_IOLOCK_EXCL)
58 inode_lock(VFS_I(ip));
59 xfs_ilock(ip, type);
60 }
61
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66 {
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 inode_unlock(VFS_I(ip));
70 }
71
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76 {
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 inode_unlock(VFS_I(ip));
80 }
81
82 /*
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
88 *
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
92 */
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98 {
99 struct page *page;
100 struct address_space *mapping;
101 int status = 0;
102
103
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
108
109 offset = (pos & (PAGE_SIZE -1)); /* Within page */
110 bytes = PAGE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
113
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
125
126 zero_user(page, offset, bytes);
127
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
132 }
133 pos += bytes;
134 count -= bytes;
135 } while (count);
136
137 return status;
138 }
139
140 int
141 xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
144 {
145 struct xfs_trans *tp;
146 int error;
147
148 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
149 0, 0, 0, &tp);
150 if (error)
151 return error;
152
153 xfs_ilock(ip, XFS_ILOCK_EXCL);
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155
156 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
157 VFS_I(ip)->i_mode &= ~S_ISUID;
158 if (VFS_I(ip)->i_mode & S_IXGRP)
159 VFS_I(ip)->i_mode &= ~S_ISGID;
160 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
161 }
162
163 if (flags & XFS_PREALLOC_SET)
164 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
165 if (flags & XFS_PREALLOC_CLEAR)
166 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
167
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 if (flags & XFS_PREALLOC_SYNC)
170 xfs_trans_set_sync(tp);
171 return xfs_trans_commit(tp);
172 }
173
174 /*
175 * Fsync operations on directories are much simpler than on regular files,
176 * as there is no file data to flush, and thus also no need for explicit
177 * cache flush operations, and there are no non-transaction metadata updates
178 * on directories either.
179 */
180 STATIC int
181 xfs_dir_fsync(
182 struct file *file,
183 loff_t start,
184 loff_t end,
185 int datasync)
186 {
187 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_lsn_t lsn = 0;
190
191 trace_xfs_dir_fsync(ip);
192
193 xfs_ilock(ip, XFS_ILOCK_SHARED);
194 if (xfs_ipincount(ip))
195 lsn = ip->i_itemp->ili_last_lsn;
196 xfs_iunlock(ip, XFS_ILOCK_SHARED);
197
198 if (!lsn)
199 return 0;
200 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
201 }
202
203 STATIC int
204 xfs_file_fsync(
205 struct file *file,
206 loff_t start,
207 loff_t end,
208 int datasync)
209 {
210 struct inode *inode = file->f_mapping->host;
211 struct xfs_inode *ip = XFS_I(inode);
212 struct xfs_mount *mp = ip->i_mount;
213 int error = 0;
214 int log_flushed = 0;
215 xfs_lsn_t lsn = 0;
216
217 trace_xfs_file_fsync(ip);
218
219 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
220 if (error)
221 return error;
222
223 if (XFS_FORCED_SHUTDOWN(mp))
224 return -EIO;
225
226 xfs_iflags_clear(ip, XFS_ITRUNCATED);
227
228 if (mp->m_flags & XFS_MOUNT_BARRIER) {
229 /*
230 * If we have an RT and/or log subvolume we need to make sure
231 * to flush the write cache the device used for file data
232 * first. This is to ensure newly written file data make
233 * it to disk before logging the new inode size in case of
234 * an extending write.
235 */
236 if (XFS_IS_REALTIME_INODE(ip))
237 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
238 else if (mp->m_logdev_targp != mp->m_ddev_targp)
239 xfs_blkdev_issue_flush(mp->m_ddev_targp);
240 }
241
242 /*
243 * All metadata updates are logged, which means that we just have to
244 * flush the log up to the latest LSN that touched the inode. If we have
245 * concurrent fsync/fdatasync() calls, we need them to all block on the
246 * log force before we clear the ili_fsync_fields field. This ensures
247 * that we don't get a racing sync operation that does not wait for the
248 * metadata to hit the journal before returning. If we race with
249 * clearing the ili_fsync_fields, then all that will happen is the log
250 * force will do nothing as the lsn will already be on disk. We can't
251 * race with setting ili_fsync_fields because that is done under
252 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
253 * until after the ili_fsync_fields is cleared.
254 */
255 xfs_ilock(ip, XFS_ILOCK_SHARED);
256 if (xfs_ipincount(ip)) {
257 if (!datasync ||
258 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 lsn = ip->i_itemp->ili_last_lsn;
260 }
261
262 if (lsn) {
263 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 ip->i_itemp->ili_fsync_fields = 0;
265 }
266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
267
268 /*
269 * If we only have a single device, and the log force about was
270 * a no-op we might have to flush the data device cache here.
271 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 * an already allocated file and thus do not have any metadata to
273 * commit.
274 */
275 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 mp->m_logdev_targp == mp->m_ddev_targp &&
277 !XFS_IS_REALTIME_INODE(ip) &&
278 !log_flushed)
279 xfs_blkdev_issue_flush(mp->m_ddev_targp);
280
281 return error;
282 }
283
284 STATIC ssize_t
285 xfs_file_dio_aio_read(
286 struct kiocb *iocb,
287 struct iov_iter *to)
288 {
289 struct address_space *mapping = iocb->ki_filp->f_mapping;
290 struct inode *inode = mapping->host;
291 struct xfs_inode *ip = XFS_I(inode);
292 loff_t isize = i_size_read(inode);
293 size_t count = iov_iter_count(to);
294 struct iov_iter data;
295 struct xfs_buftarg *target;
296 ssize_t ret = 0;
297
298 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
299
300 if (!count)
301 return 0; /* skip atime */
302
303 if (XFS_IS_REALTIME_INODE(ip))
304 target = ip->i_mount->m_rtdev_targp;
305 else
306 target = ip->i_mount->m_ddev_targp;
307
308 /* DIO must be aligned to device logical sector size */
309 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
310 if (iocb->ki_pos == isize)
311 return 0;
312 return -EINVAL;
313 }
314
315 /*
316 * Locking is a bit tricky here. If we take an exclusive lock for direct
317 * IO, we effectively serialise all new concurrent read IO to this file
318 * and block it behind IO that is currently in progress because IO in
319 * progress holds the IO lock shared. We only need to hold the lock
320 * exclusive to blow away the page cache, so only take lock exclusively
321 * if the page cache needs invalidation. This allows the normal direct
322 * IO case of no page cache pages to proceeed concurrently without
323 * serialisation.
324 */
325 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
326 if (mapping->nrpages) {
327 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
328 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
329
330 /*
331 * The generic dio code only flushes the range of the particular
332 * I/O. Because we take an exclusive lock here, this whole
333 * sequence is considerably more expensive for us. This has a
334 * noticeable performance impact for any file with cached pages,
335 * even when outside of the range of the particular I/O.
336 *
337 * Hence, amortize the cost of the lock against a full file
338 * flush and reduce the chances of repeated iolock cycles going
339 * forward.
340 */
341 if (mapping->nrpages) {
342 ret = filemap_write_and_wait(mapping);
343 if (ret) {
344 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
345 return ret;
346 }
347
348 /*
349 * Invalidate whole pages. This can return an error if
350 * we fail to invalidate a page, but this should never
351 * happen on XFS. Warn if it does fail.
352 */
353 ret = invalidate_inode_pages2(mapping);
354 WARN_ON_ONCE(ret);
355 ret = 0;
356 }
357 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
358 }
359
360 data = *to;
361 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
362 xfs_get_blocks_direct, NULL, NULL, 0);
363 if (ret > 0) {
364 iocb->ki_pos += ret;
365 iov_iter_advance(to, ret);
366 }
367 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
368
369 file_accessed(iocb->ki_filp);
370 return ret;
371 }
372
373 STATIC ssize_t
374 xfs_file_dax_read(
375 struct kiocb *iocb,
376 struct iov_iter *to)
377 {
378 struct address_space *mapping = iocb->ki_filp->f_mapping;
379 struct inode *inode = mapping->host;
380 struct xfs_inode *ip = XFS_I(inode);
381 struct iov_iter data = *to;
382 size_t count = iov_iter_count(to);
383 ssize_t ret = 0;
384
385 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
386
387 if (!count)
388 return 0; /* skip atime */
389
390 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
391 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
392 if (ret > 0) {
393 iocb->ki_pos += ret;
394 iov_iter_advance(to, ret);
395 }
396 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
397
398 file_accessed(iocb->ki_filp);
399 return ret;
400 }
401
402 STATIC ssize_t
403 xfs_file_buffered_aio_read(
404 struct kiocb *iocb,
405 struct iov_iter *to)
406 {
407 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
408 ssize_t ret;
409
410 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
411
412 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
413 ret = generic_file_read_iter(iocb, to);
414 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
415
416 return ret;
417 }
418
419 STATIC ssize_t
420 xfs_file_read_iter(
421 struct kiocb *iocb,
422 struct iov_iter *to)
423 {
424 struct inode *inode = file_inode(iocb->ki_filp);
425 struct xfs_mount *mp = XFS_I(inode)->i_mount;
426 ssize_t ret = 0;
427
428 XFS_STATS_INC(mp, xs_read_calls);
429
430 if (XFS_FORCED_SHUTDOWN(mp))
431 return -EIO;
432
433 if (IS_DAX(inode))
434 ret = xfs_file_dax_read(iocb, to);
435 else if (iocb->ki_flags & IOCB_DIRECT)
436 ret = xfs_file_dio_aio_read(iocb, to);
437 else
438 ret = xfs_file_buffered_aio_read(iocb, to);
439
440 if (ret > 0)
441 XFS_STATS_ADD(mp, xs_read_bytes, ret);
442 return ret;
443 }
444
445 STATIC ssize_t
446 xfs_file_splice_read(
447 struct file *infilp,
448 loff_t *ppos,
449 struct pipe_inode_info *pipe,
450 size_t count,
451 unsigned int flags)
452 {
453 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
454 ssize_t ret;
455
456 XFS_STATS_INC(ip->i_mount, xs_read_calls);
457
458 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
459 return -EIO;
460
461 trace_xfs_file_splice_read(ip, count, *ppos);
462
463 /*
464 * DAX inodes cannot ues the page cache for splice, so we have to push
465 * them through the VFS IO path. This means it goes through
466 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
467 * cannot lock the splice operation at this level for DAX inodes.
468 */
469 if (IS_DAX(VFS_I(ip))) {
470 ret = default_file_splice_read(infilp, ppos, pipe, count,
471 flags);
472 goto out;
473 }
474
475 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
476 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
477 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
478 out:
479 if (ret > 0)
480 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
481 return ret;
482 }
483
484 /*
485 * This routine is called to handle zeroing any space in the last block of the
486 * file that is beyond the EOF. We do this since the size is being increased
487 * without writing anything to that block and we don't want to read the
488 * garbage on the disk.
489 */
490 STATIC int /* error (positive) */
491 xfs_zero_last_block(
492 struct xfs_inode *ip,
493 xfs_fsize_t offset,
494 xfs_fsize_t isize,
495 bool *did_zeroing)
496 {
497 struct xfs_mount *mp = ip->i_mount;
498 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
499 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
500 int zero_len;
501 int nimaps = 1;
502 int error = 0;
503 struct xfs_bmbt_irec imap;
504
505 xfs_ilock(ip, XFS_ILOCK_EXCL);
506 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
507 xfs_iunlock(ip, XFS_ILOCK_EXCL);
508 if (error)
509 return error;
510
511 ASSERT(nimaps > 0);
512
513 /*
514 * If the block underlying isize is just a hole, then there
515 * is nothing to zero.
516 */
517 if (imap.br_startblock == HOLESTARTBLOCK)
518 return 0;
519
520 zero_len = mp->m_sb.sb_blocksize - zero_offset;
521 if (isize + zero_len > offset)
522 zero_len = offset - isize;
523 *did_zeroing = true;
524 return xfs_iozero(ip, isize, zero_len);
525 }
526
527 /*
528 * Zero any on disk space between the current EOF and the new, larger EOF.
529 *
530 * This handles the normal case of zeroing the remainder of the last block in
531 * the file and the unusual case of zeroing blocks out beyond the size of the
532 * file. This second case only happens with fixed size extents and when the
533 * system crashes before the inode size was updated but after blocks were
534 * allocated.
535 *
536 * Expects the iolock to be held exclusive, and will take the ilock internally.
537 */
538 int /* error (positive) */
539 xfs_zero_eof(
540 struct xfs_inode *ip,
541 xfs_off_t offset, /* starting I/O offset */
542 xfs_fsize_t isize, /* current inode size */
543 bool *did_zeroing)
544 {
545 struct xfs_mount *mp = ip->i_mount;
546 xfs_fileoff_t start_zero_fsb;
547 xfs_fileoff_t end_zero_fsb;
548 xfs_fileoff_t zero_count_fsb;
549 xfs_fileoff_t last_fsb;
550 xfs_fileoff_t zero_off;
551 xfs_fsize_t zero_len;
552 int nimaps;
553 int error = 0;
554 struct xfs_bmbt_irec imap;
555
556 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
557 ASSERT(offset > isize);
558
559 trace_xfs_zero_eof(ip, isize, offset - isize);
560
561 /*
562 * First handle zeroing the block on which isize resides.
563 *
564 * We only zero a part of that block so it is handled specially.
565 */
566 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
567 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
568 if (error)
569 return error;
570 }
571
572 /*
573 * Calculate the range between the new size and the old where blocks
574 * needing to be zeroed may exist.
575 *
576 * To get the block where the last byte in the file currently resides,
577 * we need to subtract one from the size and truncate back to a block
578 * boundary. We subtract 1 in case the size is exactly on a block
579 * boundary.
580 */
581 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
582 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
583 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
584 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
585 if (last_fsb == end_zero_fsb) {
586 /*
587 * The size was only incremented on its last block.
588 * We took care of that above, so just return.
589 */
590 return 0;
591 }
592
593 ASSERT(start_zero_fsb <= end_zero_fsb);
594 while (start_zero_fsb <= end_zero_fsb) {
595 nimaps = 1;
596 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
597
598 xfs_ilock(ip, XFS_ILOCK_EXCL);
599 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
600 &imap, &nimaps, 0);
601 xfs_iunlock(ip, XFS_ILOCK_EXCL);
602 if (error)
603 return error;
604
605 ASSERT(nimaps > 0);
606
607 if (imap.br_state == XFS_EXT_UNWRITTEN ||
608 imap.br_startblock == HOLESTARTBLOCK) {
609 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
610 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
611 continue;
612 }
613
614 /*
615 * There are blocks we need to zero.
616 */
617 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
618 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
619
620 if ((zero_off + zero_len) > offset)
621 zero_len = offset - zero_off;
622
623 error = xfs_iozero(ip, zero_off, zero_len);
624 if (error)
625 return error;
626
627 *did_zeroing = true;
628 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
629 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
630 }
631
632 return 0;
633 }
634
635 /*
636 * Common pre-write limit and setup checks.
637 *
638 * Called with the iolocked held either shared and exclusive according to
639 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
640 * if called for a direct write beyond i_size.
641 */
642 STATIC ssize_t
643 xfs_file_aio_write_checks(
644 struct kiocb *iocb,
645 struct iov_iter *from,
646 int *iolock)
647 {
648 struct file *file = iocb->ki_filp;
649 struct inode *inode = file->f_mapping->host;
650 struct xfs_inode *ip = XFS_I(inode);
651 ssize_t error = 0;
652 size_t count = iov_iter_count(from);
653 bool drained_dio = false;
654
655 restart:
656 error = generic_write_checks(iocb, from);
657 if (error <= 0)
658 return error;
659
660 error = xfs_break_layouts(inode, iolock, true);
661 if (error)
662 return error;
663
664 /* For changing security info in file_remove_privs() we need i_mutex */
665 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
666 xfs_rw_iunlock(ip, *iolock);
667 *iolock = XFS_IOLOCK_EXCL;
668 xfs_rw_ilock(ip, *iolock);
669 goto restart;
670 }
671 /*
672 * If the offset is beyond the size of the file, we need to zero any
673 * blocks that fall between the existing EOF and the start of this
674 * write. If zeroing is needed and we are currently holding the
675 * iolock shared, we need to update it to exclusive which implies
676 * having to redo all checks before.
677 *
678 * We need to serialise against EOF updates that occur in IO
679 * completions here. We want to make sure that nobody is changing the
680 * size while we do this check until we have placed an IO barrier (i.e.
681 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
682 * The spinlock effectively forms a memory barrier once we have the
683 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
684 * and hence be able to correctly determine if we need to run zeroing.
685 */
686 spin_lock(&ip->i_flags_lock);
687 if (iocb->ki_pos > i_size_read(inode)) {
688 bool zero = false;
689
690 spin_unlock(&ip->i_flags_lock);
691 if (!drained_dio) {
692 if (*iolock == XFS_IOLOCK_SHARED) {
693 xfs_rw_iunlock(ip, *iolock);
694 *iolock = XFS_IOLOCK_EXCL;
695 xfs_rw_ilock(ip, *iolock);
696 iov_iter_reexpand(from, count);
697 }
698 /*
699 * We now have an IO submission barrier in place, but
700 * AIO can do EOF updates during IO completion and hence
701 * we now need to wait for all of them to drain. Non-AIO
702 * DIO will have drained before we are given the
703 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
704 * no-op.
705 */
706 inode_dio_wait(inode);
707 drained_dio = true;
708 goto restart;
709 }
710 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
711 if (error)
712 return error;
713 } else
714 spin_unlock(&ip->i_flags_lock);
715
716 /*
717 * Updating the timestamps will grab the ilock again from
718 * xfs_fs_dirty_inode, so we have to call it after dropping the
719 * lock above. Eventually we should look into a way to avoid
720 * the pointless lock roundtrip.
721 */
722 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
723 error = file_update_time(file);
724 if (error)
725 return error;
726 }
727
728 /*
729 * If we're writing the file then make sure to clear the setuid and
730 * setgid bits if the process is not being run by root. This keeps
731 * people from modifying setuid and setgid binaries.
732 */
733 if (!IS_NOSEC(inode))
734 return file_remove_privs(file);
735 return 0;
736 }
737
738 /*
739 * xfs_file_dio_aio_write - handle direct IO writes
740 *
741 * Lock the inode appropriately to prepare for and issue a direct IO write.
742 * By separating it from the buffered write path we remove all the tricky to
743 * follow locking changes and looping.
744 *
745 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
746 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
747 * pages are flushed out.
748 *
749 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
750 * allowing them to be done in parallel with reads and other direct IO writes.
751 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
752 * needs to do sub-block zeroing and that requires serialisation against other
753 * direct IOs to the same block. In this case we need to serialise the
754 * submission of the unaligned IOs so that we don't get racing block zeroing in
755 * the dio layer. To avoid the problem with aio, we also need to wait for
756 * outstanding IOs to complete so that unwritten extent conversion is completed
757 * before we try to map the overlapping block. This is currently implemented by
758 * hitting it with a big hammer (i.e. inode_dio_wait()).
759 *
760 * Returns with locks held indicated by @iolock and errors indicated by
761 * negative return values.
762 */
763 STATIC ssize_t
764 xfs_file_dio_aio_write(
765 struct kiocb *iocb,
766 struct iov_iter *from)
767 {
768 struct file *file = iocb->ki_filp;
769 struct address_space *mapping = file->f_mapping;
770 struct inode *inode = mapping->host;
771 struct xfs_inode *ip = XFS_I(inode);
772 struct xfs_mount *mp = ip->i_mount;
773 ssize_t ret = 0;
774 int unaligned_io = 0;
775 int iolock;
776 size_t count = iov_iter_count(from);
777 loff_t end;
778 struct iov_iter data;
779 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
780 mp->m_rtdev_targp : mp->m_ddev_targp;
781
782 /* DIO must be aligned to device logical sector size */
783 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
784 return -EINVAL;
785
786 /* "unaligned" here means not aligned to a filesystem block */
787 if ((iocb->ki_pos & mp->m_blockmask) ||
788 ((iocb->ki_pos + count) & mp->m_blockmask))
789 unaligned_io = 1;
790
791 /*
792 * We don't need to take an exclusive lock unless there page cache needs
793 * to be invalidated or unaligned IO is being executed. We don't need to
794 * consider the EOF extension case here because
795 * xfs_file_aio_write_checks() will relock the inode as necessary for
796 * EOF zeroing cases and fill out the new inode size as appropriate.
797 */
798 if (unaligned_io || mapping->nrpages)
799 iolock = XFS_IOLOCK_EXCL;
800 else
801 iolock = XFS_IOLOCK_SHARED;
802 xfs_rw_ilock(ip, iolock);
803
804 /*
805 * Recheck if there are cached pages that need invalidate after we got
806 * the iolock to protect against other threads adding new pages while
807 * we were waiting for the iolock.
808 */
809 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
810 xfs_rw_iunlock(ip, iolock);
811 iolock = XFS_IOLOCK_EXCL;
812 xfs_rw_ilock(ip, iolock);
813 }
814
815 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
816 if (ret)
817 goto out;
818 count = iov_iter_count(from);
819 end = iocb->ki_pos + count - 1;
820
821 /*
822 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
823 */
824 if (mapping->nrpages) {
825 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
826 if (ret)
827 goto out;
828 /*
829 * Invalidate whole pages. This can return an error if we fail
830 * to invalidate a page, but this should never happen on XFS.
831 * Warn if it does fail.
832 */
833 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
834 WARN_ON_ONCE(ret);
835 ret = 0;
836 }
837
838 /*
839 * If we are doing unaligned IO, wait for all other IO to drain,
840 * otherwise demote the lock if we had to flush cached pages
841 */
842 if (unaligned_io)
843 inode_dio_wait(inode);
844 else if (iolock == XFS_IOLOCK_EXCL) {
845 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
846 iolock = XFS_IOLOCK_SHARED;
847 }
848
849 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
850
851 data = *from;
852 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
853 xfs_get_blocks_direct, xfs_end_io_direct_write,
854 NULL, DIO_ASYNC_EXTEND);
855
856 /* see generic_file_direct_write() for why this is necessary */
857 if (mapping->nrpages) {
858 invalidate_inode_pages2_range(mapping,
859 iocb->ki_pos >> PAGE_SHIFT,
860 end >> PAGE_SHIFT);
861 }
862
863 if (ret > 0) {
864 iocb->ki_pos += ret;
865 iov_iter_advance(from, ret);
866 }
867 out:
868 xfs_rw_iunlock(ip, iolock);
869
870 /*
871 * No fallback to buffered IO on errors for XFS, direct IO will either
872 * complete fully or fail.
873 */
874 ASSERT(ret < 0 || ret == count);
875 return ret;
876 }
877
878 STATIC ssize_t
879 xfs_file_dax_write(
880 struct kiocb *iocb,
881 struct iov_iter *from)
882 {
883 struct address_space *mapping = iocb->ki_filp->f_mapping;
884 struct inode *inode = mapping->host;
885 struct xfs_inode *ip = XFS_I(inode);
886 struct xfs_mount *mp = ip->i_mount;
887 ssize_t ret = 0;
888 int unaligned_io = 0;
889 int iolock;
890 struct iov_iter data;
891
892 /* "unaligned" here means not aligned to a filesystem block */
893 if ((iocb->ki_pos & mp->m_blockmask) ||
894 ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
895 unaligned_io = 1;
896 iolock = XFS_IOLOCK_EXCL;
897 } else if (mapping->nrpages) {
898 iolock = XFS_IOLOCK_EXCL;
899 } else {
900 iolock = XFS_IOLOCK_SHARED;
901 }
902 xfs_rw_ilock(ip, iolock);
903
904 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
905 if (ret)
906 goto out;
907
908 /*
909 * Yes, even DAX files can have page cache attached to them: A zeroed
910 * page is inserted into the pagecache when we have to serve a write
911 * fault on a hole. It should never be dirtied and can simply be
912 * dropped from the pagecache once we get real data for the page.
913 */
914 if (mapping->nrpages) {
915 ret = invalidate_inode_pages2(mapping);
916 WARN_ON_ONCE(ret);
917 }
918
919 if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
920 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
921 iolock = XFS_IOLOCK_SHARED;
922 }
923
924 trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
925
926 data = *from;
927 ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
928 xfs_end_io_direct_write, 0);
929 if (ret > 0) {
930 iocb->ki_pos += ret;
931 iov_iter_advance(from, ret);
932 }
933 out:
934 xfs_rw_iunlock(ip, iolock);
935 return ret;
936 }
937
938 STATIC ssize_t
939 xfs_file_buffered_aio_write(
940 struct kiocb *iocb,
941 struct iov_iter *from)
942 {
943 struct file *file = iocb->ki_filp;
944 struct address_space *mapping = file->f_mapping;
945 struct inode *inode = mapping->host;
946 struct xfs_inode *ip = XFS_I(inode);
947 ssize_t ret;
948 int enospc = 0;
949 int iolock = XFS_IOLOCK_EXCL;
950
951 xfs_rw_ilock(ip, iolock);
952
953 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
954 if (ret)
955 goto out;
956
957 /* We can write back this queue in page reclaim */
958 current->backing_dev_info = inode_to_bdi(inode);
959
960 write_retry:
961 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
962 ret = generic_perform_write(file, from, iocb->ki_pos);
963 if (likely(ret >= 0))
964 iocb->ki_pos += ret;
965
966 /*
967 * If we hit a space limit, try to free up some lingering preallocated
968 * space before returning an error. In the case of ENOSPC, first try to
969 * write back all dirty inodes to free up some of the excess reserved
970 * metadata space. This reduces the chances that the eofblocks scan
971 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
972 * also behaves as a filter to prevent too many eofblocks scans from
973 * running at the same time.
974 */
975 if (ret == -EDQUOT && !enospc) {
976 enospc = xfs_inode_free_quota_eofblocks(ip);
977 if (enospc)
978 goto write_retry;
979 } else if (ret == -ENOSPC && !enospc) {
980 struct xfs_eofblocks eofb = {0};
981
982 enospc = 1;
983 xfs_flush_inodes(ip->i_mount);
984 eofb.eof_scan_owner = ip->i_ino; /* for locking */
985 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
986 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
987 goto write_retry;
988 }
989
990 current->backing_dev_info = NULL;
991 out:
992 xfs_rw_iunlock(ip, iolock);
993 return ret;
994 }
995
996 STATIC ssize_t
997 xfs_file_write_iter(
998 struct kiocb *iocb,
999 struct iov_iter *from)
1000 {
1001 struct file *file = iocb->ki_filp;
1002 struct address_space *mapping = file->f_mapping;
1003 struct inode *inode = mapping->host;
1004 struct xfs_inode *ip = XFS_I(inode);
1005 ssize_t ret;
1006 size_t ocount = iov_iter_count(from);
1007
1008 XFS_STATS_INC(ip->i_mount, xs_write_calls);
1009
1010 if (ocount == 0)
1011 return 0;
1012
1013 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1014 return -EIO;
1015
1016 if (IS_DAX(inode))
1017 ret = xfs_file_dax_write(iocb, from);
1018 else if (iocb->ki_flags & IOCB_DIRECT)
1019 ret = xfs_file_dio_aio_write(iocb, from);
1020 else
1021 ret = xfs_file_buffered_aio_write(iocb, from);
1022
1023 if (ret > 0) {
1024 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
1025
1026 /* Handle various SYNC-type writes */
1027 ret = generic_write_sync(iocb, ret);
1028 }
1029 return ret;
1030 }
1031
1032 #define XFS_FALLOC_FL_SUPPORTED \
1033 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1034 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
1035 FALLOC_FL_INSERT_RANGE)
1036
1037 STATIC long
1038 xfs_file_fallocate(
1039 struct file *file,
1040 int mode,
1041 loff_t offset,
1042 loff_t len)
1043 {
1044 struct inode *inode = file_inode(file);
1045 struct xfs_inode *ip = XFS_I(inode);
1046 long error;
1047 enum xfs_prealloc_flags flags = 0;
1048 uint iolock = XFS_IOLOCK_EXCL;
1049 loff_t new_size = 0;
1050 bool do_file_insert = 0;
1051
1052 if (!S_ISREG(inode->i_mode))
1053 return -EINVAL;
1054 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1055 return -EOPNOTSUPP;
1056
1057 xfs_ilock(ip, iolock);
1058 error = xfs_break_layouts(inode, &iolock, false);
1059 if (error)
1060 goto out_unlock;
1061
1062 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1063 iolock |= XFS_MMAPLOCK_EXCL;
1064
1065 if (mode & FALLOC_FL_PUNCH_HOLE) {
1066 error = xfs_free_file_space(ip, offset, len);
1067 if (error)
1068 goto out_unlock;
1069 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1070 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
1071
1072 if (offset & blksize_mask || len & blksize_mask) {
1073 error = -EINVAL;
1074 goto out_unlock;
1075 }
1076
1077 /*
1078 * There is no need to overlap collapse range with EOF,
1079 * in which case it is effectively a truncate operation
1080 */
1081 if (offset + len >= i_size_read(inode)) {
1082 error = -EINVAL;
1083 goto out_unlock;
1084 }
1085
1086 new_size = i_size_read(inode) - len;
1087
1088 error = xfs_collapse_file_space(ip, offset, len);
1089 if (error)
1090 goto out_unlock;
1091 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1092 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
1093
1094 new_size = i_size_read(inode) + len;
1095 if (offset & blksize_mask || len & blksize_mask) {
1096 error = -EINVAL;
1097 goto out_unlock;
1098 }
1099
1100 /* check the new inode size does not wrap through zero */
1101 if (new_size > inode->i_sb->s_maxbytes) {
1102 error = -EFBIG;
1103 goto out_unlock;
1104 }
1105
1106 /* Offset should be less than i_size */
1107 if (offset >= i_size_read(inode)) {
1108 error = -EINVAL;
1109 goto out_unlock;
1110 }
1111 do_file_insert = 1;
1112 } else {
1113 flags |= XFS_PREALLOC_SET;
1114
1115 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1116 offset + len > i_size_read(inode)) {
1117 new_size = offset + len;
1118 error = inode_newsize_ok(inode, new_size);
1119 if (error)
1120 goto out_unlock;
1121 }
1122
1123 if (mode & FALLOC_FL_ZERO_RANGE)
1124 error = xfs_zero_file_space(ip, offset, len);
1125 else
1126 error = xfs_alloc_file_space(ip, offset, len,
1127 XFS_BMAPI_PREALLOC);
1128 if (error)
1129 goto out_unlock;
1130 }
1131
1132 if (file->f_flags & O_DSYNC)
1133 flags |= XFS_PREALLOC_SYNC;
1134
1135 error = xfs_update_prealloc_flags(ip, flags);
1136 if (error)
1137 goto out_unlock;
1138
1139 /* Change file size if needed */
1140 if (new_size) {
1141 struct iattr iattr;
1142
1143 iattr.ia_valid = ATTR_SIZE;
1144 iattr.ia_size = new_size;
1145 error = xfs_setattr_size(ip, &iattr);
1146 if (error)
1147 goto out_unlock;
1148 }
1149
1150 /*
1151 * Perform hole insertion now that the file size has been
1152 * updated so that if we crash during the operation we don't
1153 * leave shifted extents past EOF and hence losing access to
1154 * the data that is contained within them.
1155 */
1156 if (do_file_insert)
1157 error = xfs_insert_file_space(ip, offset, len);
1158
1159 out_unlock:
1160 xfs_iunlock(ip, iolock);
1161 return error;
1162 }
1163
1164
1165 STATIC int
1166 xfs_file_open(
1167 struct inode *inode,
1168 struct file *file)
1169 {
1170 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1171 return -EFBIG;
1172 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1173 return -EIO;
1174 return 0;
1175 }
1176
1177 STATIC int
1178 xfs_dir_open(
1179 struct inode *inode,
1180 struct file *file)
1181 {
1182 struct xfs_inode *ip = XFS_I(inode);
1183 int mode;
1184 int error;
1185
1186 error = xfs_file_open(inode, file);
1187 if (error)
1188 return error;
1189
1190 /*
1191 * If there are any blocks, read-ahead block 0 as we're almost
1192 * certain to have the next operation be a read there.
1193 */
1194 mode = xfs_ilock_data_map_shared(ip);
1195 if (ip->i_d.di_nextents > 0)
1196 xfs_dir3_data_readahead(ip, 0, -1);
1197 xfs_iunlock(ip, mode);
1198 return 0;
1199 }
1200
1201 STATIC int
1202 xfs_file_release(
1203 struct inode *inode,
1204 struct file *filp)
1205 {
1206 return xfs_release(XFS_I(inode));
1207 }
1208
1209 STATIC int
1210 xfs_file_readdir(
1211 struct file *file,
1212 struct dir_context *ctx)
1213 {
1214 struct inode *inode = file_inode(file);
1215 xfs_inode_t *ip = XFS_I(inode);
1216 size_t bufsize;
1217
1218 /*
1219 * The Linux API doesn't pass down the total size of the buffer
1220 * we read into down to the filesystem. With the filldir concept
1221 * it's not needed for correct information, but the XFS dir2 leaf
1222 * code wants an estimate of the buffer size to calculate it's
1223 * readahead window and size the buffers used for mapping to
1224 * physical blocks.
1225 *
1226 * Try to give it an estimate that's good enough, maybe at some
1227 * point we can change the ->readdir prototype to include the
1228 * buffer size. For now we use the current glibc buffer size.
1229 */
1230 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1231
1232 return xfs_readdir(ip, ctx, bufsize);
1233 }
1234
1235 /*
1236 * This type is designed to indicate the type of offset we would like
1237 * to search from page cache for xfs_seek_hole_data().
1238 */
1239 enum {
1240 HOLE_OFF = 0,
1241 DATA_OFF,
1242 };
1243
1244 /*
1245 * Lookup the desired type of offset from the given page.
1246 *
1247 * On success, return true and the offset argument will point to the
1248 * start of the region that was found. Otherwise this function will
1249 * return false and keep the offset argument unchanged.
1250 */
1251 STATIC bool
1252 xfs_lookup_buffer_offset(
1253 struct page *page,
1254 loff_t *offset,
1255 unsigned int type)
1256 {
1257 loff_t lastoff = page_offset(page);
1258 bool found = false;
1259 struct buffer_head *bh, *head;
1260
1261 bh = head = page_buffers(page);
1262 do {
1263 /*
1264 * Unwritten extents that have data in the page
1265 * cache covering them can be identified by the
1266 * BH_Unwritten state flag. Pages with multiple
1267 * buffers might have a mix of holes, data and
1268 * unwritten extents - any buffer with valid
1269 * data in it should have BH_Uptodate flag set
1270 * on it.
1271 */
1272 if (buffer_unwritten(bh) ||
1273 buffer_uptodate(bh)) {
1274 if (type == DATA_OFF)
1275 found = true;
1276 } else {
1277 if (type == HOLE_OFF)
1278 found = true;
1279 }
1280
1281 if (found) {
1282 *offset = lastoff;
1283 break;
1284 }
1285 lastoff += bh->b_size;
1286 } while ((bh = bh->b_this_page) != head);
1287
1288 return found;
1289 }
1290
1291 /*
1292 * This routine is called to find out and return a data or hole offset
1293 * from the page cache for unwritten extents according to the desired
1294 * type for xfs_seek_hole_data().
1295 *
1296 * The argument offset is used to tell where we start to search from the
1297 * page cache. Map is used to figure out the end points of the range to
1298 * lookup pages.
1299 *
1300 * Return true if the desired type of offset was found, and the argument
1301 * offset is filled with that address. Otherwise, return false and keep
1302 * offset unchanged.
1303 */
1304 STATIC bool
1305 xfs_find_get_desired_pgoff(
1306 struct inode *inode,
1307 struct xfs_bmbt_irec *map,
1308 unsigned int type,
1309 loff_t *offset)
1310 {
1311 struct xfs_inode *ip = XFS_I(inode);
1312 struct xfs_mount *mp = ip->i_mount;
1313 struct pagevec pvec;
1314 pgoff_t index;
1315 pgoff_t end;
1316 loff_t endoff;
1317 loff_t startoff = *offset;
1318 loff_t lastoff = startoff;
1319 bool found = false;
1320
1321 pagevec_init(&pvec, 0);
1322
1323 index = startoff >> PAGE_SHIFT;
1324 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1325 end = endoff >> PAGE_SHIFT;
1326 do {
1327 int want;
1328 unsigned nr_pages;
1329 unsigned int i;
1330
1331 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1332 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1333 want);
1334 /*
1335 * No page mapped into given range. If we are searching holes
1336 * and if this is the first time we got into the loop, it means
1337 * that the given offset is landed in a hole, return it.
1338 *
1339 * If we have already stepped through some block buffers to find
1340 * holes but they all contains data. In this case, the last
1341 * offset is already updated and pointed to the end of the last
1342 * mapped page, if it does not reach the endpoint to search,
1343 * that means there should be a hole between them.
1344 */
1345 if (nr_pages == 0) {
1346 /* Data search found nothing */
1347 if (type == DATA_OFF)
1348 break;
1349
1350 ASSERT(type == HOLE_OFF);
1351 if (lastoff == startoff || lastoff < endoff) {
1352 found = true;
1353 *offset = lastoff;
1354 }
1355 break;
1356 }
1357
1358 /*
1359 * At lease we found one page. If this is the first time we
1360 * step into the loop, and if the first page index offset is
1361 * greater than the given search offset, a hole was found.
1362 */
1363 if (type == HOLE_OFF && lastoff == startoff &&
1364 lastoff < page_offset(pvec.pages[0])) {
1365 found = true;
1366 break;
1367 }
1368
1369 for (i = 0; i < nr_pages; i++) {
1370 struct page *page = pvec.pages[i];
1371 loff_t b_offset;
1372
1373 /*
1374 * At this point, the page may be truncated or
1375 * invalidated (changing page->mapping to NULL),
1376 * or even swizzled back from swapper_space to tmpfs
1377 * file mapping. However, page->index will not change
1378 * because we have a reference on the page.
1379 *
1380 * Searching done if the page index is out of range.
1381 * If the current offset is not reaches the end of
1382 * the specified search range, there should be a hole
1383 * between them.
1384 */
1385 if (page->index > end) {
1386 if (type == HOLE_OFF && lastoff < endoff) {
1387 *offset = lastoff;
1388 found = true;
1389 }
1390 goto out;
1391 }
1392
1393 lock_page(page);
1394 /*
1395 * Page truncated or invalidated(page->mapping == NULL).
1396 * We can freely skip it and proceed to check the next
1397 * page.
1398 */
1399 if (unlikely(page->mapping != inode->i_mapping)) {
1400 unlock_page(page);
1401 continue;
1402 }
1403
1404 if (!page_has_buffers(page)) {
1405 unlock_page(page);
1406 continue;
1407 }
1408
1409 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1410 if (found) {
1411 /*
1412 * The found offset may be less than the start
1413 * point to search if this is the first time to
1414 * come here.
1415 */
1416 *offset = max_t(loff_t, startoff, b_offset);
1417 unlock_page(page);
1418 goto out;
1419 }
1420
1421 /*
1422 * We either searching data but nothing was found, or
1423 * searching hole but found a data buffer. In either
1424 * case, probably the next page contains the desired
1425 * things, update the last offset to it so.
1426 */
1427 lastoff = page_offset(page) + PAGE_SIZE;
1428 unlock_page(page);
1429 }
1430
1431 /*
1432 * The number of returned pages less than our desired, search
1433 * done. In this case, nothing was found for searching data,
1434 * but we found a hole behind the last offset.
1435 */
1436 if (nr_pages < want) {
1437 if (type == HOLE_OFF) {
1438 *offset = lastoff;
1439 found = true;
1440 }
1441 break;
1442 }
1443
1444 index = pvec.pages[i - 1]->index + 1;
1445 pagevec_release(&pvec);
1446 } while (index <= end);
1447
1448 out:
1449 pagevec_release(&pvec);
1450 return found;
1451 }
1452
1453 /*
1454 * caller must lock inode with xfs_ilock_data_map_shared,
1455 * can we craft an appropriate ASSERT?
1456 *
1457 * end is because the VFS-level lseek interface is defined such that any
1458 * offset past i_size shall return -ENXIO, but we use this for quota code
1459 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1460 */
1461 loff_t
1462 __xfs_seek_hole_data(
1463 struct inode *inode,
1464 loff_t start,
1465 loff_t end,
1466 int whence)
1467 {
1468 struct xfs_inode *ip = XFS_I(inode);
1469 struct xfs_mount *mp = ip->i_mount;
1470 loff_t uninitialized_var(offset);
1471 xfs_fileoff_t fsbno;
1472 xfs_filblks_t lastbno;
1473 int error;
1474
1475 if (start >= end) {
1476 error = -ENXIO;
1477 goto out_error;
1478 }
1479
1480 /*
1481 * Try to read extents from the first block indicated
1482 * by fsbno to the end block of the file.
1483 */
1484 fsbno = XFS_B_TO_FSBT(mp, start);
1485 lastbno = XFS_B_TO_FSB(mp, end);
1486
1487 for (;;) {
1488 struct xfs_bmbt_irec map[2];
1489 int nmap = 2;
1490 unsigned int i;
1491
1492 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1493 XFS_BMAPI_ENTIRE);
1494 if (error)
1495 goto out_error;
1496
1497 /* No extents at given offset, must be beyond EOF */
1498 if (nmap == 0) {
1499 error = -ENXIO;
1500 goto out_error;
1501 }
1502
1503 for (i = 0; i < nmap; i++) {
1504 offset = max_t(loff_t, start,
1505 XFS_FSB_TO_B(mp, map[i].br_startoff));
1506
1507 /* Landed in the hole we wanted? */
1508 if (whence == SEEK_HOLE &&
1509 map[i].br_startblock == HOLESTARTBLOCK)
1510 goto out;
1511
1512 /* Landed in the data extent we wanted? */
1513 if (whence == SEEK_DATA &&
1514 (map[i].br_startblock == DELAYSTARTBLOCK ||
1515 (map[i].br_state == XFS_EXT_NORM &&
1516 !isnullstartblock(map[i].br_startblock))))
1517 goto out;
1518
1519 /*
1520 * Landed in an unwritten extent, try to search
1521 * for hole or data from page cache.
1522 */
1523 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1524 if (xfs_find_get_desired_pgoff(inode, &map[i],
1525 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1526 &offset))
1527 goto out;
1528 }
1529 }
1530
1531 /*
1532 * We only received one extent out of the two requested. This
1533 * means we've hit EOF and didn't find what we are looking for.
1534 */
1535 if (nmap == 1) {
1536 /*
1537 * If we were looking for a hole, set offset to
1538 * the end of the file (i.e., there is an implicit
1539 * hole at the end of any file).
1540 */
1541 if (whence == SEEK_HOLE) {
1542 offset = end;
1543 break;
1544 }
1545 /*
1546 * If we were looking for data, it's nowhere to be found
1547 */
1548 ASSERT(whence == SEEK_DATA);
1549 error = -ENXIO;
1550 goto out_error;
1551 }
1552
1553 ASSERT(i > 1);
1554
1555 /*
1556 * Nothing was found, proceed to the next round of search
1557 * if the next reading offset is not at or beyond EOF.
1558 */
1559 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1560 start = XFS_FSB_TO_B(mp, fsbno);
1561 if (start >= end) {
1562 if (whence == SEEK_HOLE) {
1563 offset = end;
1564 break;
1565 }
1566 ASSERT(whence == SEEK_DATA);
1567 error = -ENXIO;
1568 goto out_error;
1569 }
1570 }
1571
1572 out:
1573 /*
1574 * If at this point we have found the hole we wanted, the returned
1575 * offset may be bigger than the file size as it may be aligned to
1576 * page boundary for unwritten extents. We need to deal with this
1577 * situation in particular.
1578 */
1579 if (whence == SEEK_HOLE)
1580 offset = min_t(loff_t, offset, end);
1581
1582 return offset;
1583
1584 out_error:
1585 return error;
1586 }
1587
1588 STATIC loff_t
1589 xfs_seek_hole_data(
1590 struct file *file,
1591 loff_t start,
1592 int whence)
1593 {
1594 struct inode *inode = file->f_mapping->host;
1595 struct xfs_inode *ip = XFS_I(inode);
1596 struct xfs_mount *mp = ip->i_mount;
1597 uint lock;
1598 loff_t offset, end;
1599 int error = 0;
1600
1601 if (XFS_FORCED_SHUTDOWN(mp))
1602 return -EIO;
1603
1604 lock = xfs_ilock_data_map_shared(ip);
1605
1606 end = i_size_read(inode);
1607 offset = __xfs_seek_hole_data(inode, start, end, whence);
1608 if (offset < 0) {
1609 error = offset;
1610 goto out_unlock;
1611 }
1612
1613 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1614
1615 out_unlock:
1616 xfs_iunlock(ip, lock);
1617
1618 if (error)
1619 return error;
1620 return offset;
1621 }
1622
1623 STATIC loff_t
1624 xfs_file_llseek(
1625 struct file *file,
1626 loff_t offset,
1627 int whence)
1628 {
1629 switch (whence) {
1630 case SEEK_END:
1631 case SEEK_CUR:
1632 case SEEK_SET:
1633 return generic_file_llseek(file, offset, whence);
1634 case SEEK_HOLE:
1635 case SEEK_DATA:
1636 return xfs_seek_hole_data(file, offset, whence);
1637 default:
1638 return -EINVAL;
1639 }
1640 }
1641
1642 /*
1643 * Locking for serialisation of IO during page faults. This results in a lock
1644 * ordering of:
1645 *
1646 * mmap_sem (MM)
1647 * sb_start_pagefault(vfs, freeze)
1648 * i_mmaplock (XFS - truncate serialisation)
1649 * page_lock (MM)
1650 * i_lock (XFS - extent map serialisation)
1651 */
1652
1653 /*
1654 * mmap()d file has taken write protection fault and is being made writable. We
1655 * can set the page state up correctly for a writable page, which means we can
1656 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1657 * mapping.
1658 */
1659 STATIC int
1660 xfs_filemap_page_mkwrite(
1661 struct vm_area_struct *vma,
1662 struct vm_fault *vmf)
1663 {
1664 struct inode *inode = file_inode(vma->vm_file);
1665 int ret;
1666
1667 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1668
1669 sb_start_pagefault(inode->i_sb);
1670 file_update_time(vma->vm_file);
1671 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1672
1673 if (IS_DAX(inode)) {
1674 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1675 } else {
1676 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1677 ret = block_page_mkwrite_return(ret);
1678 }
1679
1680 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1681 sb_end_pagefault(inode->i_sb);
1682
1683 return ret;
1684 }
1685
1686 STATIC int
1687 xfs_filemap_fault(
1688 struct vm_area_struct *vma,
1689 struct vm_fault *vmf)
1690 {
1691 struct inode *inode = file_inode(vma->vm_file);
1692 int ret;
1693
1694 trace_xfs_filemap_fault(XFS_I(inode));
1695
1696 /* DAX can shortcut the normal fault path on write faults! */
1697 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1698 return xfs_filemap_page_mkwrite(vma, vmf);
1699
1700 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1701 if (IS_DAX(inode)) {
1702 /*
1703 * we do not want to trigger unwritten extent conversion on read
1704 * faults - that is unnecessary overhead and would also require
1705 * changes to xfs_get_blocks_direct() to map unwritten extent
1706 * ioend for conversion on read-only mappings.
1707 */
1708 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1709 } else
1710 ret = filemap_fault(vma, vmf);
1711 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1712
1713 return ret;
1714 }
1715
1716 /*
1717 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1718 * both read and write faults. Hence we need to handle both cases. There is no
1719 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1720 * handle both cases here. @flags carries the information on the type of fault
1721 * occuring.
1722 */
1723 STATIC int
1724 xfs_filemap_pmd_fault(
1725 struct vm_area_struct *vma,
1726 unsigned long addr,
1727 pmd_t *pmd,
1728 unsigned int flags)
1729 {
1730 struct inode *inode = file_inode(vma->vm_file);
1731 struct xfs_inode *ip = XFS_I(inode);
1732 int ret;
1733
1734 if (!IS_DAX(inode))
1735 return VM_FAULT_FALLBACK;
1736
1737 trace_xfs_filemap_pmd_fault(ip);
1738
1739 if (flags & FAULT_FLAG_WRITE) {
1740 sb_start_pagefault(inode->i_sb);
1741 file_update_time(vma->vm_file);
1742 }
1743
1744 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1745 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1746 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1747
1748 if (flags & FAULT_FLAG_WRITE)
1749 sb_end_pagefault(inode->i_sb);
1750
1751 return ret;
1752 }
1753
1754 /*
1755 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1756 * updates on write faults. In reality, it's need to serialise against
1757 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1758 * to ensure we serialise the fault barrier in place.
1759 */
1760 static int
1761 xfs_filemap_pfn_mkwrite(
1762 struct vm_area_struct *vma,
1763 struct vm_fault *vmf)
1764 {
1765
1766 struct inode *inode = file_inode(vma->vm_file);
1767 struct xfs_inode *ip = XFS_I(inode);
1768 int ret = VM_FAULT_NOPAGE;
1769 loff_t size;
1770
1771 trace_xfs_filemap_pfn_mkwrite(ip);
1772
1773 sb_start_pagefault(inode->i_sb);
1774 file_update_time(vma->vm_file);
1775
1776 /* check if the faulting page hasn't raced with truncate */
1777 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1778 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1779 if (vmf->pgoff >= size)
1780 ret = VM_FAULT_SIGBUS;
1781 else if (IS_DAX(inode))
1782 ret = dax_pfn_mkwrite(vma, vmf);
1783 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1784 sb_end_pagefault(inode->i_sb);
1785 return ret;
1786
1787 }
1788
1789 static const struct vm_operations_struct xfs_file_vm_ops = {
1790 .fault = xfs_filemap_fault,
1791 .pmd_fault = xfs_filemap_pmd_fault,
1792 .map_pages = filemap_map_pages,
1793 .page_mkwrite = xfs_filemap_page_mkwrite,
1794 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1795 };
1796
1797 STATIC int
1798 xfs_file_mmap(
1799 struct file *filp,
1800 struct vm_area_struct *vma)
1801 {
1802 file_accessed(filp);
1803 vma->vm_ops = &xfs_file_vm_ops;
1804 if (IS_DAX(file_inode(filp)))
1805 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1806 return 0;
1807 }
1808
1809 const struct file_operations xfs_file_operations = {
1810 .llseek = xfs_file_llseek,
1811 .read_iter = xfs_file_read_iter,
1812 .write_iter = xfs_file_write_iter,
1813 .splice_read = xfs_file_splice_read,
1814 .splice_write = iter_file_splice_write,
1815 .unlocked_ioctl = xfs_file_ioctl,
1816 #ifdef CONFIG_COMPAT
1817 .compat_ioctl = xfs_file_compat_ioctl,
1818 #endif
1819 .mmap = xfs_file_mmap,
1820 .open = xfs_file_open,
1821 .release = xfs_file_release,
1822 .fsync = xfs_file_fsync,
1823 .fallocate = xfs_file_fallocate,
1824 };
1825
1826 const struct file_operations xfs_dir_file_operations = {
1827 .open = xfs_dir_open,
1828 .read = generic_read_dir,
1829 .iterate_shared = xfs_file_readdir,
1830 .llseek = generic_file_llseek,
1831 .unlocked_ioctl = xfs_file_ioctl,
1832 #ifdef CONFIG_COMPAT
1833 .compat_ioctl = xfs_file_compat_ioctl,
1834 #endif
1835 .fsync = xfs_dir_fsync,
1836 };