]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/xfs/xfs_file.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
53 */
54 int
55 xfs_zero_range(
56 struct xfs_inode *ip,
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
60 {
61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
62 }
63
64 int
65 xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68 {
69 struct xfs_trans *tp;
70 int error;
71
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
75 return error;
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
95 return xfs_trans_commit(tp);
96 }
97
98 /*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104 STATIC int
105 xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110 {
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
125 }
126
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
133 {
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 int error = 0;
138 int log_flushed = 0;
139 xfs_lsn_t lsn = 0;
140
141 trace_xfs_file_fsync(ip);
142
143 error = file_write_and_wait_range(file, start, end);
144 if (error)
145 return error;
146
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -EIO;
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
162
163 /*
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
182
183 if (lsn) {
184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
188
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
199
200 return error;
201 }
202
203 STATIC ssize_t
204 xfs_file_dio_aio_read(
205 struct kiocb *iocb,
206 struct iov_iter *to)
207 {
208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
209 size_t count = iov_iter_count(to);
210 ssize_t ret;
211
212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
213
214 if (!count)
215 return 0; /* skip atime */
216
217 file_accessed(iocb->ki_filp);
218
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
222
223 return ret;
224 }
225
226 static noinline ssize_t
227 xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230 {
231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 if (iocb->ki_flags & IOCB_NOWAIT)
242 return -EAGAIN;
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247
248 file_accessed(iocb->ki_filp);
249 return ret;
250 }
251
252 STATIC ssize_t
253 xfs_file_buffered_aio_read(
254 struct kiocb *iocb,
255 struct iov_iter *to)
256 {
257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
258 ssize_t ret;
259
260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
261
262 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
263 if (iocb->ki_flags & IOCB_NOWAIT)
264 return -EAGAIN;
265 xfs_ilock(ip, XFS_IOLOCK_SHARED);
266 }
267 ret = generic_file_read_iter(iocb, to);
268 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
269
270 return ret;
271 }
272
273 STATIC ssize_t
274 xfs_file_read_iter(
275 struct kiocb *iocb,
276 struct iov_iter *to)
277 {
278 struct inode *inode = file_inode(iocb->ki_filp);
279 struct xfs_mount *mp = XFS_I(inode)->i_mount;
280 ssize_t ret = 0;
281
282 XFS_STATS_INC(mp, xs_read_calls);
283
284 if (XFS_FORCED_SHUTDOWN(mp))
285 return -EIO;
286
287 if (IS_DAX(inode))
288 ret = xfs_file_dax_read(iocb, to);
289 else if (iocb->ki_flags & IOCB_DIRECT)
290 ret = xfs_file_dio_aio_read(iocb, to);
291 else
292 ret = xfs_file_buffered_aio_read(iocb, to);
293
294 if (ret > 0)
295 XFS_STATS_ADD(mp, xs_read_bytes, ret);
296 return ret;
297 }
298
299 /*
300 * Zero any on disk space between the current EOF and the new, larger EOF.
301 *
302 * This handles the normal case of zeroing the remainder of the last block in
303 * the file and the unusual case of zeroing blocks out beyond the size of the
304 * file. This second case only happens with fixed size extents and when the
305 * system crashes before the inode size was updated but after blocks were
306 * allocated.
307 *
308 * Expects the iolock to be held exclusive, and will take the ilock internally.
309 */
310 int /* error (positive) */
311 xfs_zero_eof(
312 struct xfs_inode *ip,
313 xfs_off_t offset, /* starting I/O offset */
314 xfs_fsize_t isize, /* current inode size */
315 bool *did_zeroing)
316 {
317 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
318 ASSERT(offset > isize);
319
320 trace_xfs_zero_eof(ip, isize, offset - isize);
321 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
322 }
323
324 /*
325 * Common pre-write limit and setup checks.
326 *
327 * Called with the iolocked held either shared and exclusive according to
328 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
329 * if called for a direct write beyond i_size.
330 */
331 STATIC ssize_t
332 xfs_file_aio_write_checks(
333 struct kiocb *iocb,
334 struct iov_iter *from,
335 int *iolock)
336 {
337 struct file *file = iocb->ki_filp;
338 struct inode *inode = file->f_mapping->host;
339 struct xfs_inode *ip = XFS_I(inode);
340 ssize_t error = 0;
341 size_t count = iov_iter_count(from);
342 bool drained_dio = false;
343
344 restart:
345 error = generic_write_checks(iocb, from);
346 if (error <= 0)
347 return error;
348
349 error = xfs_break_layouts(inode, iolock);
350 if (error)
351 return error;
352
353 /*
354 * For changing security info in file_remove_privs() we need i_rwsem
355 * exclusively.
356 */
357 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
358 xfs_iunlock(ip, *iolock);
359 *iolock = XFS_IOLOCK_EXCL;
360 xfs_ilock(ip, *iolock);
361 goto restart;
362 }
363 /*
364 * If the offset is beyond the size of the file, we need to zero any
365 * blocks that fall between the existing EOF and the start of this
366 * write. If zeroing is needed and we are currently holding the
367 * iolock shared, we need to update it to exclusive which implies
368 * having to redo all checks before.
369 *
370 * We need to serialise against EOF updates that occur in IO
371 * completions here. We want to make sure that nobody is changing the
372 * size while we do this check until we have placed an IO barrier (i.e.
373 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
374 * The spinlock effectively forms a memory barrier once we have the
375 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
376 * and hence be able to correctly determine if we need to run zeroing.
377 */
378 spin_lock(&ip->i_flags_lock);
379 if (iocb->ki_pos > i_size_read(inode)) {
380 bool zero = false;
381
382 spin_unlock(&ip->i_flags_lock);
383 if (!drained_dio) {
384 if (*iolock == XFS_IOLOCK_SHARED) {
385 xfs_iunlock(ip, *iolock);
386 *iolock = XFS_IOLOCK_EXCL;
387 xfs_ilock(ip, *iolock);
388 iov_iter_reexpand(from, count);
389 }
390 /*
391 * We now have an IO submission barrier in place, but
392 * AIO can do EOF updates during IO completion and hence
393 * we now need to wait for all of them to drain. Non-AIO
394 * DIO will have drained before we are given the
395 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
396 * no-op.
397 */
398 inode_dio_wait(inode);
399 drained_dio = true;
400 goto restart;
401 }
402 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
403 if (error)
404 return error;
405 } else
406 spin_unlock(&ip->i_flags_lock);
407
408 /*
409 * Updating the timestamps will grab the ilock again from
410 * xfs_fs_dirty_inode, so we have to call it after dropping the
411 * lock above. Eventually we should look into a way to avoid
412 * the pointless lock roundtrip.
413 */
414 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
415 error = file_update_time(file);
416 if (error)
417 return error;
418 }
419
420 /*
421 * If we're writing the file then make sure to clear the setuid and
422 * setgid bits if the process is not being run by root. This keeps
423 * people from modifying setuid and setgid binaries.
424 */
425 if (!IS_NOSEC(inode))
426 return file_remove_privs(file);
427 return 0;
428 }
429
430 static int
431 xfs_dio_write_end_io(
432 struct kiocb *iocb,
433 ssize_t size,
434 unsigned flags)
435 {
436 struct inode *inode = file_inode(iocb->ki_filp);
437 struct xfs_inode *ip = XFS_I(inode);
438 loff_t offset = iocb->ki_pos;
439 bool update_size = false;
440 int error = 0;
441
442 trace_xfs_end_io_direct_write(ip, offset, size);
443
444 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
445 return -EIO;
446
447 if (size <= 0)
448 return size;
449
450 /*
451 * We need to update the in-core inode size here so that we don't end up
452 * with the on-disk inode size being outside the in-core inode size. We
453 * have no other method of updating EOF for AIO, so always do it here
454 * if necessary.
455 *
456 * We need to lock the test/set EOF update as we can be racing with
457 * other IO completions here to update the EOF. Failing to serialise
458 * here can result in EOF moving backwards and Bad Things Happen when
459 * that occurs.
460 */
461 spin_lock(&ip->i_flags_lock);
462 if (offset + size > i_size_read(inode)) {
463 i_size_write(inode, offset + size);
464 update_size = true;
465 }
466 spin_unlock(&ip->i_flags_lock);
467
468 if (flags & IOMAP_DIO_COW) {
469 error = xfs_reflink_end_cow(ip, offset, size);
470 if (error)
471 return error;
472 }
473
474 if (flags & IOMAP_DIO_UNWRITTEN)
475 error = xfs_iomap_write_unwritten(ip, offset, size);
476 else if (update_size)
477 error = xfs_setfilesize(ip, offset, size);
478
479 return error;
480 }
481
482 /*
483 * xfs_file_dio_aio_write - handle direct IO writes
484 *
485 * Lock the inode appropriately to prepare for and issue a direct IO write.
486 * By separating it from the buffered write path we remove all the tricky to
487 * follow locking changes and looping.
488 *
489 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
490 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
491 * pages are flushed out.
492 *
493 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
494 * allowing them to be done in parallel with reads and other direct IO writes.
495 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
496 * needs to do sub-block zeroing and that requires serialisation against other
497 * direct IOs to the same block. In this case we need to serialise the
498 * submission of the unaligned IOs so that we don't get racing block zeroing in
499 * the dio layer. To avoid the problem with aio, we also need to wait for
500 * outstanding IOs to complete so that unwritten extent conversion is completed
501 * before we try to map the overlapping block. This is currently implemented by
502 * hitting it with a big hammer (i.e. inode_dio_wait()).
503 *
504 * Returns with locks held indicated by @iolock and errors indicated by
505 * negative return values.
506 */
507 STATIC ssize_t
508 xfs_file_dio_aio_write(
509 struct kiocb *iocb,
510 struct iov_iter *from)
511 {
512 struct file *file = iocb->ki_filp;
513 struct address_space *mapping = file->f_mapping;
514 struct inode *inode = mapping->host;
515 struct xfs_inode *ip = XFS_I(inode);
516 struct xfs_mount *mp = ip->i_mount;
517 ssize_t ret = 0;
518 int unaligned_io = 0;
519 int iolock;
520 size_t count = iov_iter_count(from);
521 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
522 mp->m_rtdev_targp : mp->m_ddev_targp;
523
524 /* DIO must be aligned to device logical sector size */
525 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
526 return -EINVAL;
527
528 /*
529 * Don't take the exclusive iolock here unless the I/O is unaligned to
530 * the file system block size. We don't need to consider the EOF
531 * extension case here because xfs_file_aio_write_checks() will relock
532 * the inode as necessary for EOF zeroing cases and fill out the new
533 * inode size as appropriate.
534 */
535 if ((iocb->ki_pos & mp->m_blockmask) ||
536 ((iocb->ki_pos + count) & mp->m_blockmask)) {
537 unaligned_io = 1;
538
539 /*
540 * We can't properly handle unaligned direct I/O to reflink
541 * files yet, as we can't unshare a partial block.
542 */
543 if (xfs_is_reflink_inode(ip)) {
544 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
545 return -EREMCHG;
546 }
547 iolock = XFS_IOLOCK_EXCL;
548 } else {
549 iolock = XFS_IOLOCK_SHARED;
550 }
551
552 if (!xfs_ilock_nowait(ip, iolock)) {
553 if (iocb->ki_flags & IOCB_NOWAIT)
554 return -EAGAIN;
555 xfs_ilock(ip, iolock);
556 }
557
558 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
559 if (ret)
560 goto out;
561 count = iov_iter_count(from);
562
563 /*
564 * If we are doing unaligned IO, wait for all other IO to drain,
565 * otherwise demote the lock if we had to take the exclusive lock
566 * for other reasons in xfs_file_aio_write_checks.
567 */
568 if (unaligned_io) {
569 /* If we are going to wait for other DIO to finish, bail */
570 if (iocb->ki_flags & IOCB_NOWAIT) {
571 if (atomic_read(&inode->i_dio_count))
572 return -EAGAIN;
573 } else {
574 inode_dio_wait(inode);
575 }
576 } else if (iolock == XFS_IOLOCK_EXCL) {
577 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
578 iolock = XFS_IOLOCK_SHARED;
579 }
580
581 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
582 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
583 out:
584 xfs_iunlock(ip, iolock);
585
586 /*
587 * No fallback to buffered IO on errors for XFS, direct IO will either
588 * complete fully or fail.
589 */
590 ASSERT(ret < 0 || ret == count);
591 return ret;
592 }
593
594 static noinline ssize_t
595 xfs_file_dax_write(
596 struct kiocb *iocb,
597 struct iov_iter *from)
598 {
599 struct inode *inode = iocb->ki_filp->f_mapping->host;
600 struct xfs_inode *ip = XFS_I(inode);
601 int iolock = XFS_IOLOCK_EXCL;
602 ssize_t ret, error = 0;
603 size_t count;
604 loff_t pos;
605
606 if (!xfs_ilock_nowait(ip, iolock)) {
607 if (iocb->ki_flags & IOCB_NOWAIT)
608 return -EAGAIN;
609 xfs_ilock(ip, iolock);
610 }
611
612 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
613 if (ret)
614 goto out;
615
616 pos = iocb->ki_pos;
617 count = iov_iter_count(from);
618
619 trace_xfs_file_dax_write(ip, count, pos);
620 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
621 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
622 i_size_write(inode, iocb->ki_pos);
623 error = xfs_setfilesize(ip, pos, ret);
624 }
625 out:
626 xfs_iunlock(ip, iolock);
627 return error ? error : ret;
628 }
629
630 STATIC ssize_t
631 xfs_file_buffered_aio_write(
632 struct kiocb *iocb,
633 struct iov_iter *from)
634 {
635 struct file *file = iocb->ki_filp;
636 struct address_space *mapping = file->f_mapping;
637 struct inode *inode = mapping->host;
638 struct xfs_inode *ip = XFS_I(inode);
639 ssize_t ret;
640 int enospc = 0;
641 int iolock;
642
643 if (iocb->ki_flags & IOCB_NOWAIT)
644 return -EOPNOTSUPP;
645
646 write_retry:
647 iolock = XFS_IOLOCK_EXCL;
648 xfs_ilock(ip, iolock);
649
650 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
651 if (ret)
652 goto out;
653
654 /* We can write back this queue in page reclaim */
655 current->backing_dev_info = inode_to_bdi(inode);
656
657 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
658 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
659 if (likely(ret >= 0))
660 iocb->ki_pos += ret;
661
662 /*
663 * If we hit a space limit, try to free up some lingering preallocated
664 * space before returning an error. In the case of ENOSPC, first try to
665 * write back all dirty inodes to free up some of the excess reserved
666 * metadata space. This reduces the chances that the eofblocks scan
667 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
668 * also behaves as a filter to prevent too many eofblocks scans from
669 * running at the same time.
670 */
671 if (ret == -EDQUOT && !enospc) {
672 xfs_iunlock(ip, iolock);
673 enospc = xfs_inode_free_quota_eofblocks(ip);
674 if (enospc)
675 goto write_retry;
676 enospc = xfs_inode_free_quota_cowblocks(ip);
677 if (enospc)
678 goto write_retry;
679 iolock = 0;
680 } else if (ret == -ENOSPC && !enospc) {
681 struct xfs_eofblocks eofb = {0};
682
683 enospc = 1;
684 xfs_flush_inodes(ip->i_mount);
685
686 xfs_iunlock(ip, iolock);
687 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
688 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
689 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
690 goto write_retry;
691 }
692
693 current->backing_dev_info = NULL;
694 out:
695 if (iolock)
696 xfs_iunlock(ip, iolock);
697 return ret;
698 }
699
700 STATIC ssize_t
701 xfs_file_write_iter(
702 struct kiocb *iocb,
703 struct iov_iter *from)
704 {
705 struct file *file = iocb->ki_filp;
706 struct address_space *mapping = file->f_mapping;
707 struct inode *inode = mapping->host;
708 struct xfs_inode *ip = XFS_I(inode);
709 ssize_t ret;
710 size_t ocount = iov_iter_count(from);
711
712 XFS_STATS_INC(ip->i_mount, xs_write_calls);
713
714 if (ocount == 0)
715 return 0;
716
717 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
718 return -EIO;
719
720 if (IS_DAX(inode))
721 ret = xfs_file_dax_write(iocb, from);
722 else if (iocb->ki_flags & IOCB_DIRECT) {
723 /*
724 * Allow a directio write to fall back to a buffered
725 * write *only* in the case that we're doing a reflink
726 * CoW. In all other directio scenarios we do not
727 * allow an operation to fall back to buffered mode.
728 */
729 ret = xfs_file_dio_aio_write(iocb, from);
730 if (ret == -EREMCHG)
731 goto buffered;
732 } else {
733 buffered:
734 ret = xfs_file_buffered_aio_write(iocb, from);
735 }
736
737 if (ret > 0) {
738 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
739
740 /* Handle various SYNC-type writes */
741 ret = generic_write_sync(iocb, ret);
742 }
743 return ret;
744 }
745
746 #define XFS_FALLOC_FL_SUPPORTED \
747 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
748 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
749 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
750
751 STATIC long
752 xfs_file_fallocate(
753 struct file *file,
754 int mode,
755 loff_t offset,
756 loff_t len)
757 {
758 struct inode *inode = file_inode(file);
759 struct xfs_inode *ip = XFS_I(inode);
760 long error;
761 enum xfs_prealloc_flags flags = 0;
762 uint iolock = XFS_IOLOCK_EXCL;
763 loff_t new_size = 0;
764 bool do_file_insert = 0;
765
766 if (!S_ISREG(inode->i_mode))
767 return -EINVAL;
768 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
769 return -EOPNOTSUPP;
770
771 xfs_ilock(ip, iolock);
772 error = xfs_break_layouts(inode, &iolock);
773 if (error)
774 goto out_unlock;
775
776 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
777 iolock |= XFS_MMAPLOCK_EXCL;
778
779 if (mode & FALLOC_FL_PUNCH_HOLE) {
780 error = xfs_free_file_space(ip, offset, len);
781 if (error)
782 goto out_unlock;
783 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
784 unsigned int blksize_mask = i_blocksize(inode) - 1;
785
786 if (offset & blksize_mask || len & blksize_mask) {
787 error = -EINVAL;
788 goto out_unlock;
789 }
790
791 /*
792 * There is no need to overlap collapse range with EOF,
793 * in which case it is effectively a truncate operation
794 */
795 if (offset + len >= i_size_read(inode)) {
796 error = -EINVAL;
797 goto out_unlock;
798 }
799
800 new_size = i_size_read(inode) - len;
801
802 error = xfs_collapse_file_space(ip, offset, len);
803 if (error)
804 goto out_unlock;
805 } else if (mode & FALLOC_FL_INSERT_RANGE) {
806 unsigned int blksize_mask = i_blocksize(inode) - 1;
807
808 new_size = i_size_read(inode) + len;
809 if (offset & blksize_mask || len & blksize_mask) {
810 error = -EINVAL;
811 goto out_unlock;
812 }
813
814 /* check the new inode size does not wrap through zero */
815 if (new_size > inode->i_sb->s_maxbytes) {
816 error = -EFBIG;
817 goto out_unlock;
818 }
819
820 /* Offset should be less than i_size */
821 if (offset >= i_size_read(inode)) {
822 error = -EINVAL;
823 goto out_unlock;
824 }
825 do_file_insert = 1;
826 } else {
827 flags |= XFS_PREALLOC_SET;
828
829 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
830 offset + len > i_size_read(inode)) {
831 new_size = offset + len;
832 error = inode_newsize_ok(inode, new_size);
833 if (error)
834 goto out_unlock;
835 }
836
837 if (mode & FALLOC_FL_ZERO_RANGE)
838 error = xfs_zero_file_space(ip, offset, len);
839 else {
840 if (mode & FALLOC_FL_UNSHARE_RANGE) {
841 error = xfs_reflink_unshare(ip, offset, len);
842 if (error)
843 goto out_unlock;
844 }
845 error = xfs_alloc_file_space(ip, offset, len,
846 XFS_BMAPI_PREALLOC);
847 }
848 if (error)
849 goto out_unlock;
850 }
851
852 if (file->f_flags & O_DSYNC)
853 flags |= XFS_PREALLOC_SYNC;
854
855 error = xfs_update_prealloc_flags(ip, flags);
856 if (error)
857 goto out_unlock;
858
859 /* Change file size if needed */
860 if (new_size) {
861 struct iattr iattr;
862
863 iattr.ia_valid = ATTR_SIZE;
864 iattr.ia_size = new_size;
865 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
866 if (error)
867 goto out_unlock;
868 }
869
870 /*
871 * Perform hole insertion now that the file size has been
872 * updated so that if we crash during the operation we don't
873 * leave shifted extents past EOF and hence losing access to
874 * the data that is contained within them.
875 */
876 if (do_file_insert)
877 error = xfs_insert_file_space(ip, offset, len);
878
879 out_unlock:
880 xfs_iunlock(ip, iolock);
881 return error;
882 }
883
884 STATIC int
885 xfs_file_clone_range(
886 struct file *file_in,
887 loff_t pos_in,
888 struct file *file_out,
889 loff_t pos_out,
890 u64 len)
891 {
892 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
893 len, false);
894 }
895
896 STATIC ssize_t
897 xfs_file_dedupe_range(
898 struct file *src_file,
899 u64 loff,
900 u64 len,
901 struct file *dst_file,
902 u64 dst_loff)
903 {
904 int error;
905
906 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
907 len, true);
908 if (error)
909 return error;
910 return len;
911 }
912
913 STATIC int
914 xfs_file_open(
915 struct inode *inode,
916 struct file *file)
917 {
918 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
919 return -EFBIG;
920 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
921 return -EIO;
922 file->f_mode |= FMODE_NOWAIT;
923 return 0;
924 }
925
926 STATIC int
927 xfs_dir_open(
928 struct inode *inode,
929 struct file *file)
930 {
931 struct xfs_inode *ip = XFS_I(inode);
932 int mode;
933 int error;
934
935 error = xfs_file_open(inode, file);
936 if (error)
937 return error;
938
939 /*
940 * If there are any blocks, read-ahead block 0 as we're almost
941 * certain to have the next operation be a read there.
942 */
943 mode = xfs_ilock_data_map_shared(ip);
944 if (ip->i_d.di_nextents > 0)
945 error = xfs_dir3_data_readahead(ip, 0, -1);
946 xfs_iunlock(ip, mode);
947 return error;
948 }
949
950 STATIC int
951 xfs_file_release(
952 struct inode *inode,
953 struct file *filp)
954 {
955 return xfs_release(XFS_I(inode));
956 }
957
958 STATIC int
959 xfs_file_readdir(
960 struct file *file,
961 struct dir_context *ctx)
962 {
963 struct inode *inode = file_inode(file);
964 xfs_inode_t *ip = XFS_I(inode);
965 size_t bufsize;
966
967 /*
968 * The Linux API doesn't pass down the total size of the buffer
969 * we read into down to the filesystem. With the filldir concept
970 * it's not needed for correct information, but the XFS dir2 leaf
971 * code wants an estimate of the buffer size to calculate it's
972 * readahead window and size the buffers used for mapping to
973 * physical blocks.
974 *
975 * Try to give it an estimate that's good enough, maybe at some
976 * point we can change the ->readdir prototype to include the
977 * buffer size. For now we use the current glibc buffer size.
978 */
979 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
980
981 return xfs_readdir(NULL, ip, ctx, bufsize);
982 }
983
984 STATIC loff_t
985 xfs_file_llseek(
986 struct file *file,
987 loff_t offset,
988 int whence)
989 {
990 struct inode *inode = file->f_mapping->host;
991
992 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
993 return -EIO;
994
995 switch (whence) {
996 default:
997 return generic_file_llseek(file, offset, whence);
998 case SEEK_HOLE:
999 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1000 break;
1001 case SEEK_DATA:
1002 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1003 break;
1004 }
1005
1006 if (offset < 0)
1007 return offset;
1008 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1009 }
1010
1011 /*
1012 * Locking for serialisation of IO during page faults. This results in a lock
1013 * ordering of:
1014 *
1015 * mmap_sem (MM)
1016 * sb_start_pagefault(vfs, freeze)
1017 * i_mmaplock (XFS - truncate serialisation)
1018 * page_lock (MM)
1019 * i_lock (XFS - extent map serialisation)
1020 */
1021 static int
1022 __xfs_filemap_fault(
1023 struct vm_fault *vmf,
1024 enum page_entry_size pe_size,
1025 bool write_fault)
1026 {
1027 struct inode *inode = file_inode(vmf->vma->vm_file);
1028 struct xfs_inode *ip = XFS_I(inode);
1029 int ret;
1030
1031 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1032
1033 if (write_fault) {
1034 sb_start_pagefault(inode->i_sb);
1035 file_update_time(vmf->vma->vm_file);
1036 }
1037
1038 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1039 if (IS_DAX(inode)) {
1040 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
1041 } else {
1042 if (write_fault)
1043 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1044 else
1045 ret = filemap_fault(vmf);
1046 }
1047 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1048
1049 if (write_fault)
1050 sb_end_pagefault(inode->i_sb);
1051 return ret;
1052 }
1053
1054 static int
1055 xfs_filemap_fault(
1056 struct vm_fault *vmf)
1057 {
1058 /* DAX can shortcut the normal fault path on write faults! */
1059 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1060 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1061 (vmf->flags & FAULT_FLAG_WRITE));
1062 }
1063
1064 static int
1065 xfs_filemap_huge_fault(
1066 struct vm_fault *vmf,
1067 enum page_entry_size pe_size)
1068 {
1069 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1070 return VM_FAULT_FALLBACK;
1071
1072 /* DAX can shortcut the normal fault path on write faults! */
1073 return __xfs_filemap_fault(vmf, pe_size,
1074 (vmf->flags & FAULT_FLAG_WRITE));
1075 }
1076
1077 static int
1078 xfs_filemap_page_mkwrite(
1079 struct vm_fault *vmf)
1080 {
1081 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1082 }
1083
1084 /*
1085 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1086 * updates on write faults. In reality, it's need to serialise against
1087 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1088 * to ensure we serialise the fault barrier in place.
1089 */
1090 static int
1091 xfs_filemap_pfn_mkwrite(
1092 struct vm_fault *vmf)
1093 {
1094
1095 struct inode *inode = file_inode(vmf->vma->vm_file);
1096 struct xfs_inode *ip = XFS_I(inode);
1097 int ret = VM_FAULT_NOPAGE;
1098 loff_t size;
1099
1100 trace_xfs_filemap_pfn_mkwrite(ip);
1101
1102 sb_start_pagefault(inode->i_sb);
1103 file_update_time(vmf->vma->vm_file);
1104
1105 /* check if the faulting page hasn't raced with truncate */
1106 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1107 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1108 if (vmf->pgoff >= size)
1109 ret = VM_FAULT_SIGBUS;
1110 else if (IS_DAX(inode))
1111 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
1112 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1113 sb_end_pagefault(inode->i_sb);
1114 return ret;
1115
1116 }
1117
1118 static const struct vm_operations_struct xfs_file_vm_ops = {
1119 .fault = xfs_filemap_fault,
1120 .huge_fault = xfs_filemap_huge_fault,
1121 .map_pages = filemap_map_pages,
1122 .page_mkwrite = xfs_filemap_page_mkwrite,
1123 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1124 };
1125
1126 STATIC int
1127 xfs_file_mmap(
1128 struct file *filp,
1129 struct vm_area_struct *vma)
1130 {
1131 file_accessed(filp);
1132 vma->vm_ops = &xfs_file_vm_ops;
1133 if (IS_DAX(file_inode(filp)))
1134 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1135 return 0;
1136 }
1137
1138 const struct file_operations xfs_file_operations = {
1139 .llseek = xfs_file_llseek,
1140 .read_iter = xfs_file_read_iter,
1141 .write_iter = xfs_file_write_iter,
1142 .splice_read = generic_file_splice_read,
1143 .splice_write = iter_file_splice_write,
1144 .unlocked_ioctl = xfs_file_ioctl,
1145 #ifdef CONFIG_COMPAT
1146 .compat_ioctl = xfs_file_compat_ioctl,
1147 #endif
1148 .mmap = xfs_file_mmap,
1149 .open = xfs_file_open,
1150 .release = xfs_file_release,
1151 .fsync = xfs_file_fsync,
1152 .get_unmapped_area = thp_get_unmapped_area,
1153 .fallocate = xfs_file_fallocate,
1154 .clone_file_range = xfs_file_clone_range,
1155 .dedupe_file_range = xfs_file_dedupe_range,
1156 };
1157
1158 const struct file_operations xfs_dir_file_operations = {
1159 .open = xfs_dir_open,
1160 .read = generic_read_dir,
1161 .iterate_shared = xfs_file_readdir,
1162 .llseek = generic_file_llseek,
1163 .unlocked_ioctl = xfs_file_ioctl,
1164 #ifdef CONFIG_COMPAT
1165 .compat_ioctl = xfs_file_compat_ioctl,
1166 #endif
1167 .fsync = xfs_dir_fsync,
1168 };