]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_file.c
f7abff8c16ca7361d3e32f1842ae1daed15e651e
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
41
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46
47 static const struct vm_operations_struct xfs_file_vm_ops;
48
49 /*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53 static inline void
54 xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57 {
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61 }
62
63 static inline void
64 xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67 {
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71 }
72
73 static inline void
74 xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77 {
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81 }
82
83 /*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98 {
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130 }
131
132 /*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138 STATIC int
139 xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144 {
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160
161 STATIC int
162 xfs_file_fsync(
163 struct file *file,
164 loff_t start,
165 loff_t end,
166 int datasync)
167 {
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
170 struct xfs_mount *mp = ip->i_mount;
171 int error = 0;
172 int log_flushed = 0;
173 xfs_lsn_t lsn = 0;
174
175 trace_xfs_file_fsync(ip);
176
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
181 if (XFS_FORCED_SHUTDOWN(mp))
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
200 /*
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
211
212 if (lsn)
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
227
228 return -error;
229 }
230
231 STATIC ssize_t
232 xfs_file_aio_read(
233 struct kiocb *iocb,
234 const struct iovec *iovp,
235 unsigned long nr_segs,
236 loff_t pos)
237 {
238 struct file *file = iocb->ki_filp;
239 struct inode *inode = file->f_mapping->host;
240 struct xfs_inode *ip = XFS_I(inode);
241 struct xfs_mount *mp = ip->i_mount;
242 size_t size = 0;
243 ssize_t ret = 0;
244 int ioflags = 0;
245 xfs_fsize_t n;
246
247 XFS_STATS_INC(xs_read_calls);
248
249 BUG_ON(iocb->ki_pos != pos);
250
251 if (unlikely(file->f_flags & O_DIRECT))
252 ioflags |= IO_ISDIRECT;
253 if (file->f_mode & FMODE_NOCMTIME)
254 ioflags |= IO_INVIS;
255
256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 if (ret < 0)
258 return ret;
259
260 if (unlikely(ioflags & IO_ISDIRECT)) {
261 xfs_buftarg_t *target =
262 XFS_IS_REALTIME_INODE(ip) ?
263 mp->m_rtdev_targp : mp->m_ddev_targp;
264 /* DIO must be aligned to device logical sector size */
265 if ((pos | size) & target->bt_logical_sectormask) {
266 if (pos == i_size_read(inode))
267 return 0;
268 return -XFS_ERROR(EINVAL);
269 }
270 }
271
272 n = mp->m_super->s_maxbytes - pos;
273 if (n <= 0 || size == 0)
274 return 0;
275
276 if (n < size)
277 size = n;
278
279 if (XFS_FORCED_SHUTDOWN(mp))
280 return -EIO;
281
282 /*
283 * Locking is a bit tricky here. If we take an exclusive lock
284 * for direct IO, we effectively serialise all new concurrent
285 * read IO to this file and block it behind IO that is currently in
286 * progress because IO in progress holds the IO lock shared. We only
287 * need to hold the lock exclusive to blow away the page cache, so
288 * only take lock exclusively if the page cache needs invalidation.
289 * This allows the normal direct IO case of no page cache pages to
290 * proceeed concurrently without serialisation.
291 */
292 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
293 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
294 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
295 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
296
297 if (inode->i_mapping->nrpages) {
298 ret = -filemap_write_and_wait_range(
299 VFS_I(ip)->i_mapping,
300 pos, -1);
301 if (ret) {
302 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
303 return ret;
304 }
305 truncate_pagecache_range(VFS_I(ip), pos, -1);
306 }
307 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
308 }
309
310 trace_xfs_file_read(ip, size, pos, ioflags);
311
312 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
313 if (ret > 0)
314 XFS_STATS_ADD(xs_read_bytes, ret);
315
316 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
317 return ret;
318 }
319
320 STATIC ssize_t
321 xfs_file_splice_read(
322 struct file *infilp,
323 loff_t *ppos,
324 struct pipe_inode_info *pipe,
325 size_t count,
326 unsigned int flags)
327 {
328 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
329 int ioflags = 0;
330 ssize_t ret;
331
332 XFS_STATS_INC(xs_read_calls);
333
334 if (infilp->f_mode & FMODE_NOCMTIME)
335 ioflags |= IO_INVIS;
336
337 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
338 return -EIO;
339
340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
341
342 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
343
344 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
345 if (ret > 0)
346 XFS_STATS_ADD(xs_read_bytes, ret);
347
348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349 return ret;
350 }
351
352 /*
353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
355 * couuld cause lock inversions between the aio_write path and the splice path
356 * if someone is doing concurrent splice(2) based writes and write(2) based
357 * writes to the same inode. The only real way to fix this is to re-implement
358 * the generic code here with correct locking orders.
359 */
360 STATIC ssize_t
361 xfs_file_splice_write(
362 struct pipe_inode_info *pipe,
363 struct file *outfilp,
364 loff_t *ppos,
365 size_t count,
366 unsigned int flags)
367 {
368 struct inode *inode = outfilp->f_mapping->host;
369 struct xfs_inode *ip = XFS_I(inode);
370 int ioflags = 0;
371 ssize_t ret;
372
373 XFS_STATS_INC(xs_write_calls);
374
375 if (outfilp->f_mode & FMODE_NOCMTIME)
376 ioflags |= IO_INVIS;
377
378 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
379 return -EIO;
380
381 xfs_ilock(ip, XFS_IOLOCK_EXCL);
382
383 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
384
385 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
386 if (ret > 0)
387 XFS_STATS_ADD(xs_write_bytes, ret);
388
389 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
390 return ret;
391 }
392
393 /*
394 * This routine is called to handle zeroing any space in the last block of the
395 * file that is beyond the EOF. We do this since the size is being increased
396 * without writing anything to that block and we don't want to read the
397 * garbage on the disk.
398 */
399 STATIC int /* error (positive) */
400 xfs_zero_last_block(
401 struct xfs_inode *ip,
402 xfs_fsize_t offset,
403 xfs_fsize_t isize)
404 {
405 struct xfs_mount *mp = ip->i_mount;
406 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
407 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
408 int zero_len;
409 int nimaps = 1;
410 int error = 0;
411 struct xfs_bmbt_irec imap;
412
413 xfs_ilock(ip, XFS_ILOCK_EXCL);
414 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
415 xfs_iunlock(ip, XFS_ILOCK_EXCL);
416 if (error)
417 return error;
418
419 ASSERT(nimaps > 0);
420
421 /*
422 * If the block underlying isize is just a hole, then there
423 * is nothing to zero.
424 */
425 if (imap.br_startblock == HOLESTARTBLOCK)
426 return 0;
427
428 zero_len = mp->m_sb.sb_blocksize - zero_offset;
429 if (isize + zero_len > offset)
430 zero_len = offset - isize;
431 return xfs_iozero(ip, isize, zero_len);
432 }
433
434 /*
435 * Zero any on disk space between the current EOF and the new, larger EOF.
436 *
437 * This handles the normal case of zeroing the remainder of the last block in
438 * the file and the unusual case of zeroing blocks out beyond the size of the
439 * file. This second case only happens with fixed size extents and when the
440 * system crashes before the inode size was updated but after blocks were
441 * allocated.
442 *
443 * Expects the iolock to be held exclusive, and will take the ilock internally.
444 */
445 int /* error (positive) */
446 xfs_zero_eof(
447 struct xfs_inode *ip,
448 xfs_off_t offset, /* starting I/O offset */
449 xfs_fsize_t isize) /* current inode size */
450 {
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
461
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 ASSERT(offset > isize);
464
465 /*
466 * First handle zeroing the block on which isize resides.
467 *
468 * We only zero a part of that block so it is handled specially.
469 */
470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 error = xfs_zero_last_block(ip, offset, isize);
472 if (error)
473 return error;
474 }
475
476 /*
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
479 *
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
484 */
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
490 /*
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
493 */
494 return 0;
495 }
496
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
501
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
507 return error;
508
509 ASSERT(nimaps > 0);
510
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
516 }
517
518 /*
519 * There are blocks we need to zero.
520 */
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
526
527 error = xfs_iozero(ip, zero_off, zero_len);
528 if (error)
529 return error;
530
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
533 }
534
535 return 0;
536 }
537
538 /*
539 * Common pre-write limit and setup checks.
540 *
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
544 */
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 struct file *file,
548 loff_t *pos,
549 size_t *count,
550 int *iolock)
551 {
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
554 int error = 0;
555
556 restart:
557 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
558 if (error)
559 return error;
560
561 /*
562 * If the offset is beyond the size of the file, we need to zero any
563 * blocks that fall between the existing EOF and the start of this
564 * write. If zeroing is needed and we are currently holding the
565 * iolock shared, we need to update it to exclusive which implies
566 * having to redo all checks before.
567 */
568 if (*pos > i_size_read(inode)) {
569 if (*iolock == XFS_IOLOCK_SHARED) {
570 xfs_rw_iunlock(ip, *iolock);
571 *iolock = XFS_IOLOCK_EXCL;
572 xfs_rw_ilock(ip, *iolock);
573 goto restart;
574 }
575 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
576 if (error)
577 return error;
578 }
579
580 /*
581 * Updating the timestamps will grab the ilock again from
582 * xfs_fs_dirty_inode, so we have to call it after dropping the
583 * lock above. Eventually we should look into a way to avoid
584 * the pointless lock roundtrip.
585 */
586 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
587 error = file_update_time(file);
588 if (error)
589 return error;
590 }
591
592 /*
593 * If we're writing the file then make sure to clear the setuid and
594 * setgid bits if the process is not being run by root. This keeps
595 * people from modifying setuid and setgid binaries.
596 */
597 return file_remove_suid(file);
598 }
599
600 /*
601 * xfs_file_dio_aio_write - handle direct IO writes
602 *
603 * Lock the inode appropriately to prepare for and issue a direct IO write.
604 * By separating it from the buffered write path we remove all the tricky to
605 * follow locking changes and looping.
606 *
607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
609 * pages are flushed out.
610 *
611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
612 * allowing them to be done in parallel with reads and other direct IO writes.
613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
614 * needs to do sub-block zeroing and that requires serialisation against other
615 * direct IOs to the same block. In this case we need to serialise the
616 * submission of the unaligned IOs so that we don't get racing block zeroing in
617 * the dio layer. To avoid the problem with aio, we also need to wait for
618 * outstanding IOs to complete so that unwritten extent conversion is completed
619 * before we try to map the overlapping block. This is currently implemented by
620 * hitting it with a big hammer (i.e. inode_dio_wait()).
621 *
622 * Returns with locks held indicated by @iolock and errors indicated by
623 * negative return values.
624 */
625 STATIC ssize_t
626 xfs_file_dio_aio_write(
627 struct kiocb *iocb,
628 const struct iovec *iovp,
629 unsigned long nr_segs,
630 loff_t pos,
631 size_t ocount)
632 {
633 struct file *file = iocb->ki_filp;
634 struct address_space *mapping = file->f_mapping;
635 struct inode *inode = mapping->host;
636 struct xfs_inode *ip = XFS_I(inode);
637 struct xfs_mount *mp = ip->i_mount;
638 ssize_t ret = 0;
639 size_t count = ocount;
640 int unaligned_io = 0;
641 int iolock;
642 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
643 mp->m_rtdev_targp : mp->m_ddev_targp;
644
645 /* DIO must be aligned to device logical sector size */
646 if ((pos | count) & target->bt_logical_sectormask)
647 return -XFS_ERROR(EINVAL);
648
649 /* "unaligned" here means not aligned to a filesystem block */
650 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
651 unaligned_io = 1;
652
653 /*
654 * We don't need to take an exclusive lock unless there page cache needs
655 * to be invalidated or unaligned IO is being executed. We don't need to
656 * consider the EOF extension case here because
657 * xfs_file_aio_write_checks() will relock the inode as necessary for
658 * EOF zeroing cases and fill out the new inode size as appropriate.
659 */
660 if (unaligned_io || mapping->nrpages)
661 iolock = XFS_IOLOCK_EXCL;
662 else
663 iolock = XFS_IOLOCK_SHARED;
664 xfs_rw_ilock(ip, iolock);
665
666 /*
667 * Recheck if there are cached pages that need invalidate after we got
668 * the iolock to protect against other threads adding new pages while
669 * we were waiting for the iolock.
670 */
671 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
672 xfs_rw_iunlock(ip, iolock);
673 iolock = XFS_IOLOCK_EXCL;
674 xfs_rw_ilock(ip, iolock);
675 }
676
677 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
678 if (ret)
679 goto out;
680
681 if (mapping->nrpages) {
682 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
683 pos, -1);
684 if (ret)
685 goto out;
686 truncate_pagecache_range(VFS_I(ip), pos, -1);
687 }
688
689 /*
690 * If we are doing unaligned IO, wait for all other IO to drain,
691 * otherwise demote the lock if we had to flush cached pages
692 */
693 if (unaligned_io)
694 inode_dio_wait(inode);
695 else if (iolock == XFS_IOLOCK_EXCL) {
696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
697 iolock = XFS_IOLOCK_SHARED;
698 }
699
700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 ret = generic_file_direct_write(iocb, iovp,
702 &nr_segs, pos, &iocb->ki_pos, count, ocount);
703
704 out:
705 xfs_rw_iunlock(ip, iolock);
706
707 /* No fallback to buffered IO on errors for XFS. */
708 ASSERT(ret < 0 || ret == count);
709 return ret;
710 }
711
712 STATIC ssize_t
713 xfs_file_buffered_aio_write(
714 struct kiocb *iocb,
715 const struct iovec *iovp,
716 unsigned long nr_segs,
717 loff_t pos,
718 size_t ocount)
719 {
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
723 struct xfs_inode *ip = XFS_I(inode);
724 ssize_t ret;
725 int enospc = 0;
726 int iolock = XFS_IOLOCK_EXCL;
727 size_t count = ocount;
728
729 xfs_rw_ilock(ip, iolock);
730
731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
732 if (ret)
733 goto out;
734
735 /* We can write back this queue in page reclaim */
736 current->backing_dev_info = mapping->backing_dev_info;
737
738 write_retry:
739 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
740 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
741 pos, &iocb->ki_pos, count, 0);
742
743 /*
744 * If we just got an ENOSPC, try to write back all dirty inodes to
745 * convert delalloc space to free up some of the excess reserved
746 * metadata space.
747 */
748 if (ret == -ENOSPC && !enospc) {
749 enospc = 1;
750 xfs_flush_inodes(ip->i_mount);
751 goto write_retry;
752 }
753
754 current->backing_dev_info = NULL;
755 out:
756 xfs_rw_iunlock(ip, iolock);
757 return ret;
758 }
759
760 STATIC ssize_t
761 xfs_file_aio_write(
762 struct kiocb *iocb,
763 const struct iovec *iovp,
764 unsigned long nr_segs,
765 loff_t pos)
766 {
767 struct file *file = iocb->ki_filp;
768 struct address_space *mapping = file->f_mapping;
769 struct inode *inode = mapping->host;
770 struct xfs_inode *ip = XFS_I(inode);
771 ssize_t ret;
772 size_t ocount = 0;
773
774 XFS_STATS_INC(xs_write_calls);
775
776 BUG_ON(iocb->ki_pos != pos);
777
778 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
779 if (ret)
780 return ret;
781
782 if (ocount == 0)
783 return 0;
784
785 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
786 ret = -EIO;
787 goto out;
788 }
789
790 if (unlikely(file->f_flags & O_DIRECT))
791 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
792 else
793 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
794 ocount);
795
796 if (ret > 0) {
797 ssize_t err;
798
799 XFS_STATS_ADD(xs_write_bytes, ret);
800
801 /* Handle various SYNC-type writes */
802 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
803 if (err < 0)
804 ret = err;
805 }
806
807 out:
808 return ret;
809 }
810
811 STATIC long
812 xfs_file_fallocate(
813 struct file *file,
814 int mode,
815 loff_t offset,
816 loff_t len)
817 {
818 struct inode *inode = file_inode(file);
819 struct xfs_inode *ip = XFS_I(inode);
820 struct xfs_trans *tp;
821 long error;
822 loff_t new_size = 0;
823
824 if (!S_ISREG(inode->i_mode))
825 return -EINVAL;
826 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
827 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
828 return -EOPNOTSUPP;
829
830 xfs_ilock(ip, XFS_IOLOCK_EXCL);
831 if (mode & FALLOC_FL_PUNCH_HOLE) {
832 error = xfs_free_file_space(ip, offset, len);
833 if (error)
834 goto out_unlock;
835 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
836 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
837
838 if (offset & blksize_mask || len & blksize_mask) {
839 error = -EINVAL;
840 goto out_unlock;
841 }
842
843 ASSERT(offset + len < i_size_read(inode));
844 new_size = i_size_read(inode) - len;
845
846 error = xfs_collapse_file_space(ip, offset, len);
847 if (error)
848 goto out_unlock;
849 } else {
850 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
851 offset + len > i_size_read(inode)) {
852 new_size = offset + len;
853 error = -inode_newsize_ok(inode, new_size);
854 if (error)
855 goto out_unlock;
856 }
857
858 if (mode & FALLOC_FL_ZERO_RANGE)
859 error = xfs_zero_file_space(ip, offset, len);
860 else
861 error = xfs_alloc_file_space(ip, offset, len,
862 XFS_BMAPI_PREALLOC);
863 if (error)
864 goto out_unlock;
865 }
866
867 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
868 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
869 if (error) {
870 xfs_trans_cancel(tp, 0);
871 goto out_unlock;
872 }
873
874 xfs_ilock(ip, XFS_ILOCK_EXCL);
875 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
876 ip->i_d.di_mode &= ~S_ISUID;
877 if (ip->i_d.di_mode & S_IXGRP)
878 ip->i_d.di_mode &= ~S_ISGID;
879
880 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
881 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
882
883 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
884 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
885
886 if (file->f_flags & O_DSYNC)
887 xfs_trans_set_sync(tp);
888 error = xfs_trans_commit(tp, 0);
889 if (error)
890 goto out_unlock;
891
892 /* Change file size if needed */
893 if (new_size) {
894 struct iattr iattr;
895
896 iattr.ia_valid = ATTR_SIZE;
897 iattr.ia_size = new_size;
898 error = xfs_setattr_size(ip, &iattr);
899 }
900
901 out_unlock:
902 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
903 return -error;
904 }
905
906
907 STATIC int
908 xfs_file_open(
909 struct inode *inode,
910 struct file *file)
911 {
912 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
913 return -EFBIG;
914 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
915 return -EIO;
916 return 0;
917 }
918
919 STATIC int
920 xfs_dir_open(
921 struct inode *inode,
922 struct file *file)
923 {
924 struct xfs_inode *ip = XFS_I(inode);
925 int mode;
926 int error;
927
928 error = xfs_file_open(inode, file);
929 if (error)
930 return error;
931
932 /*
933 * If there are any blocks, read-ahead block 0 as we're almost
934 * certain to have the next operation be a read there.
935 */
936 mode = xfs_ilock_data_map_shared(ip);
937 if (ip->i_d.di_nextents > 0)
938 xfs_dir3_data_readahead(NULL, ip, 0, -1);
939 xfs_iunlock(ip, mode);
940 return 0;
941 }
942
943 STATIC int
944 xfs_file_release(
945 struct inode *inode,
946 struct file *filp)
947 {
948 return -xfs_release(XFS_I(inode));
949 }
950
951 STATIC int
952 xfs_file_readdir(
953 struct file *file,
954 struct dir_context *ctx)
955 {
956 struct inode *inode = file_inode(file);
957 xfs_inode_t *ip = XFS_I(inode);
958 int error;
959 size_t bufsize;
960
961 /*
962 * The Linux API doesn't pass down the total size of the buffer
963 * we read into down to the filesystem. With the filldir concept
964 * it's not needed for correct information, but the XFS dir2 leaf
965 * code wants an estimate of the buffer size to calculate it's
966 * readahead window and size the buffers used for mapping to
967 * physical blocks.
968 *
969 * Try to give it an estimate that's good enough, maybe at some
970 * point we can change the ->readdir prototype to include the
971 * buffer size. For now we use the current glibc buffer size.
972 */
973 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
974
975 error = xfs_readdir(ip, ctx, bufsize);
976 if (error)
977 return -error;
978 return 0;
979 }
980
981 STATIC int
982 xfs_file_mmap(
983 struct file *filp,
984 struct vm_area_struct *vma)
985 {
986 vma->vm_ops = &xfs_file_vm_ops;
987
988 file_accessed(filp);
989 return 0;
990 }
991
992 /*
993 * mmap()d file has taken write protection fault and is being made
994 * writable. We can set the page state up correctly for a writable
995 * page, which means we can do correct delalloc accounting (ENOSPC
996 * checking!) and unwritten extent mapping.
997 */
998 STATIC int
999 xfs_vm_page_mkwrite(
1000 struct vm_area_struct *vma,
1001 struct vm_fault *vmf)
1002 {
1003 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1004 }
1005
1006 /*
1007 * This type is designed to indicate the type of offset we would like
1008 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1009 */
1010 enum {
1011 HOLE_OFF = 0,
1012 DATA_OFF,
1013 };
1014
1015 /*
1016 * Lookup the desired type of offset from the given page.
1017 *
1018 * On success, return true and the offset argument will point to the
1019 * start of the region that was found. Otherwise this function will
1020 * return false and keep the offset argument unchanged.
1021 */
1022 STATIC bool
1023 xfs_lookup_buffer_offset(
1024 struct page *page,
1025 loff_t *offset,
1026 unsigned int type)
1027 {
1028 loff_t lastoff = page_offset(page);
1029 bool found = false;
1030 struct buffer_head *bh, *head;
1031
1032 bh = head = page_buffers(page);
1033 do {
1034 /*
1035 * Unwritten extents that have data in the page
1036 * cache covering them can be identified by the
1037 * BH_Unwritten state flag. Pages with multiple
1038 * buffers might have a mix of holes, data and
1039 * unwritten extents - any buffer with valid
1040 * data in it should have BH_Uptodate flag set
1041 * on it.
1042 */
1043 if (buffer_unwritten(bh) ||
1044 buffer_uptodate(bh)) {
1045 if (type == DATA_OFF)
1046 found = true;
1047 } else {
1048 if (type == HOLE_OFF)
1049 found = true;
1050 }
1051
1052 if (found) {
1053 *offset = lastoff;
1054 break;
1055 }
1056 lastoff += bh->b_size;
1057 } while ((bh = bh->b_this_page) != head);
1058
1059 return found;
1060 }
1061
1062 /*
1063 * This routine is called to find out and return a data or hole offset
1064 * from the page cache for unwritten extents according to the desired
1065 * type for xfs_seek_data() or xfs_seek_hole().
1066 *
1067 * The argument offset is used to tell where we start to search from the
1068 * page cache. Map is used to figure out the end points of the range to
1069 * lookup pages.
1070 *
1071 * Return true if the desired type of offset was found, and the argument
1072 * offset is filled with that address. Otherwise, return false and keep
1073 * offset unchanged.
1074 */
1075 STATIC bool
1076 xfs_find_get_desired_pgoff(
1077 struct inode *inode,
1078 struct xfs_bmbt_irec *map,
1079 unsigned int type,
1080 loff_t *offset)
1081 {
1082 struct xfs_inode *ip = XFS_I(inode);
1083 struct xfs_mount *mp = ip->i_mount;
1084 struct pagevec pvec;
1085 pgoff_t index;
1086 pgoff_t end;
1087 loff_t endoff;
1088 loff_t startoff = *offset;
1089 loff_t lastoff = startoff;
1090 bool found = false;
1091
1092 pagevec_init(&pvec, 0);
1093
1094 index = startoff >> PAGE_CACHE_SHIFT;
1095 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1096 end = endoff >> PAGE_CACHE_SHIFT;
1097 do {
1098 int want;
1099 unsigned nr_pages;
1100 unsigned int i;
1101
1102 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1103 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1104 want);
1105 /*
1106 * No page mapped into given range. If we are searching holes
1107 * and if this is the first time we got into the loop, it means
1108 * that the given offset is landed in a hole, return it.
1109 *
1110 * If we have already stepped through some block buffers to find
1111 * holes but they all contains data. In this case, the last
1112 * offset is already updated and pointed to the end of the last
1113 * mapped page, if it does not reach the endpoint to search,
1114 * that means there should be a hole between them.
1115 */
1116 if (nr_pages == 0) {
1117 /* Data search found nothing */
1118 if (type == DATA_OFF)
1119 break;
1120
1121 ASSERT(type == HOLE_OFF);
1122 if (lastoff == startoff || lastoff < endoff) {
1123 found = true;
1124 *offset = lastoff;
1125 }
1126 break;
1127 }
1128
1129 /*
1130 * At lease we found one page. If this is the first time we
1131 * step into the loop, and if the first page index offset is
1132 * greater than the given search offset, a hole was found.
1133 */
1134 if (type == HOLE_OFF && lastoff == startoff &&
1135 lastoff < page_offset(pvec.pages[0])) {
1136 found = true;
1137 break;
1138 }
1139
1140 for (i = 0; i < nr_pages; i++) {
1141 struct page *page = pvec.pages[i];
1142 loff_t b_offset;
1143
1144 /*
1145 * At this point, the page may be truncated or
1146 * invalidated (changing page->mapping to NULL),
1147 * or even swizzled back from swapper_space to tmpfs
1148 * file mapping. However, page->index will not change
1149 * because we have a reference on the page.
1150 *
1151 * Searching done if the page index is out of range.
1152 * If the current offset is not reaches the end of
1153 * the specified search range, there should be a hole
1154 * between them.
1155 */
1156 if (page->index > end) {
1157 if (type == HOLE_OFF && lastoff < endoff) {
1158 *offset = lastoff;
1159 found = true;
1160 }
1161 goto out;
1162 }
1163
1164 lock_page(page);
1165 /*
1166 * Page truncated or invalidated(page->mapping == NULL).
1167 * We can freely skip it and proceed to check the next
1168 * page.
1169 */
1170 if (unlikely(page->mapping != inode->i_mapping)) {
1171 unlock_page(page);
1172 continue;
1173 }
1174
1175 if (!page_has_buffers(page)) {
1176 unlock_page(page);
1177 continue;
1178 }
1179
1180 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1181 if (found) {
1182 /*
1183 * The found offset may be less than the start
1184 * point to search if this is the first time to
1185 * come here.
1186 */
1187 *offset = max_t(loff_t, startoff, b_offset);
1188 unlock_page(page);
1189 goto out;
1190 }
1191
1192 /*
1193 * We either searching data but nothing was found, or
1194 * searching hole but found a data buffer. In either
1195 * case, probably the next page contains the desired
1196 * things, update the last offset to it so.
1197 */
1198 lastoff = page_offset(page) + PAGE_SIZE;
1199 unlock_page(page);
1200 }
1201
1202 /*
1203 * The number of returned pages less than our desired, search
1204 * done. In this case, nothing was found for searching data,
1205 * but we found a hole behind the last offset.
1206 */
1207 if (nr_pages < want) {
1208 if (type == HOLE_OFF) {
1209 *offset = lastoff;
1210 found = true;
1211 }
1212 break;
1213 }
1214
1215 index = pvec.pages[i - 1]->index + 1;
1216 pagevec_release(&pvec);
1217 } while (index <= end);
1218
1219 out:
1220 pagevec_release(&pvec);
1221 return found;
1222 }
1223
1224 STATIC loff_t
1225 xfs_seek_data(
1226 struct file *file,
1227 loff_t start)
1228 {
1229 struct inode *inode = file->f_mapping->host;
1230 struct xfs_inode *ip = XFS_I(inode);
1231 struct xfs_mount *mp = ip->i_mount;
1232 loff_t uninitialized_var(offset);
1233 xfs_fsize_t isize;
1234 xfs_fileoff_t fsbno;
1235 xfs_filblks_t end;
1236 uint lock;
1237 int error;
1238
1239 lock = xfs_ilock_data_map_shared(ip);
1240
1241 isize = i_size_read(inode);
1242 if (start >= isize) {
1243 error = ENXIO;
1244 goto out_unlock;
1245 }
1246
1247 /*
1248 * Try to read extents from the first block indicated
1249 * by fsbno to the end block of the file.
1250 */
1251 fsbno = XFS_B_TO_FSBT(mp, start);
1252 end = XFS_B_TO_FSB(mp, isize);
1253 for (;;) {
1254 struct xfs_bmbt_irec map[2];
1255 int nmap = 2;
1256 unsigned int i;
1257
1258 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1259 XFS_BMAPI_ENTIRE);
1260 if (error)
1261 goto out_unlock;
1262
1263 /* No extents at given offset, must be beyond EOF */
1264 if (nmap == 0) {
1265 error = ENXIO;
1266 goto out_unlock;
1267 }
1268
1269 for (i = 0; i < nmap; i++) {
1270 offset = max_t(loff_t, start,
1271 XFS_FSB_TO_B(mp, map[i].br_startoff));
1272
1273 /* Landed in a data extent */
1274 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1275 (map[i].br_state == XFS_EXT_NORM &&
1276 !isnullstartblock(map[i].br_startblock)))
1277 goto out;
1278
1279 /*
1280 * Landed in an unwritten extent, try to search data
1281 * from page cache.
1282 */
1283 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1284 if (xfs_find_get_desired_pgoff(inode, &map[i],
1285 DATA_OFF, &offset))
1286 goto out;
1287 }
1288 }
1289
1290 /*
1291 * map[0] is hole or its an unwritten extent but
1292 * without data in page cache. Probably means that
1293 * we are reading after EOF if nothing in map[1].
1294 */
1295 if (nmap == 1) {
1296 error = ENXIO;
1297 goto out_unlock;
1298 }
1299
1300 ASSERT(i > 1);
1301
1302 /*
1303 * Nothing was found, proceed to the next round of search
1304 * if reading offset not beyond or hit EOF.
1305 */
1306 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1307 start = XFS_FSB_TO_B(mp, fsbno);
1308 if (start >= isize) {
1309 error = ENXIO;
1310 goto out_unlock;
1311 }
1312 }
1313
1314 out:
1315 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1316
1317 out_unlock:
1318 xfs_iunlock(ip, lock);
1319
1320 if (error)
1321 return -error;
1322 return offset;
1323 }
1324
1325 STATIC loff_t
1326 xfs_seek_hole(
1327 struct file *file,
1328 loff_t start)
1329 {
1330 struct inode *inode = file->f_mapping->host;
1331 struct xfs_inode *ip = XFS_I(inode);
1332 struct xfs_mount *mp = ip->i_mount;
1333 loff_t uninitialized_var(offset);
1334 xfs_fsize_t isize;
1335 xfs_fileoff_t fsbno;
1336 xfs_filblks_t end;
1337 uint lock;
1338 int error;
1339
1340 if (XFS_FORCED_SHUTDOWN(mp))
1341 return -XFS_ERROR(EIO);
1342
1343 lock = xfs_ilock_data_map_shared(ip);
1344
1345 isize = i_size_read(inode);
1346 if (start >= isize) {
1347 error = ENXIO;
1348 goto out_unlock;
1349 }
1350
1351 fsbno = XFS_B_TO_FSBT(mp, start);
1352 end = XFS_B_TO_FSB(mp, isize);
1353
1354 for (;;) {
1355 struct xfs_bmbt_irec map[2];
1356 int nmap = 2;
1357 unsigned int i;
1358
1359 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1360 XFS_BMAPI_ENTIRE);
1361 if (error)
1362 goto out_unlock;
1363
1364 /* No extents at given offset, must be beyond EOF */
1365 if (nmap == 0) {
1366 error = ENXIO;
1367 goto out_unlock;
1368 }
1369
1370 for (i = 0; i < nmap; i++) {
1371 offset = max_t(loff_t, start,
1372 XFS_FSB_TO_B(mp, map[i].br_startoff));
1373
1374 /* Landed in a hole */
1375 if (map[i].br_startblock == HOLESTARTBLOCK)
1376 goto out;
1377
1378 /*
1379 * Landed in an unwritten extent, try to search hole
1380 * from page cache.
1381 */
1382 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1383 if (xfs_find_get_desired_pgoff(inode, &map[i],
1384 HOLE_OFF, &offset))
1385 goto out;
1386 }
1387 }
1388
1389 /*
1390 * map[0] contains data or its unwritten but contains
1391 * data in page cache, probably means that we are
1392 * reading after EOF. We should fix offset to point
1393 * to the end of the file(i.e., there is an implicit
1394 * hole at the end of any file).
1395 */
1396 if (nmap == 1) {
1397 offset = isize;
1398 break;
1399 }
1400
1401 ASSERT(i > 1);
1402
1403 /*
1404 * Both mappings contains data, proceed to the next round of
1405 * search if the current reading offset not beyond or hit EOF.
1406 */
1407 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1408 start = XFS_FSB_TO_B(mp, fsbno);
1409 if (start >= isize) {
1410 offset = isize;
1411 break;
1412 }
1413 }
1414
1415 out:
1416 /*
1417 * At this point, we must have found a hole. However, the returned
1418 * offset may be bigger than the file size as it may be aligned to
1419 * page boundary for unwritten extents, we need to deal with this
1420 * situation in particular.
1421 */
1422 offset = min_t(loff_t, offset, isize);
1423 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1424
1425 out_unlock:
1426 xfs_iunlock(ip, lock);
1427
1428 if (error)
1429 return -error;
1430 return offset;
1431 }
1432
1433 STATIC loff_t
1434 xfs_file_llseek(
1435 struct file *file,
1436 loff_t offset,
1437 int origin)
1438 {
1439 switch (origin) {
1440 case SEEK_END:
1441 case SEEK_CUR:
1442 case SEEK_SET:
1443 return generic_file_llseek(file, offset, origin);
1444 case SEEK_DATA:
1445 return xfs_seek_data(file, offset);
1446 case SEEK_HOLE:
1447 return xfs_seek_hole(file, offset);
1448 default:
1449 return -EINVAL;
1450 }
1451 }
1452
1453 const struct file_operations xfs_file_operations = {
1454 .llseek = xfs_file_llseek,
1455 .read = do_sync_read,
1456 .write = do_sync_write,
1457 .aio_read = xfs_file_aio_read,
1458 .aio_write = xfs_file_aio_write,
1459 .splice_read = xfs_file_splice_read,
1460 .splice_write = xfs_file_splice_write,
1461 .unlocked_ioctl = xfs_file_ioctl,
1462 #ifdef CONFIG_COMPAT
1463 .compat_ioctl = xfs_file_compat_ioctl,
1464 #endif
1465 .mmap = xfs_file_mmap,
1466 .open = xfs_file_open,
1467 .release = xfs_file_release,
1468 .fsync = xfs_file_fsync,
1469 .fallocate = xfs_file_fallocate,
1470 };
1471
1472 const struct file_operations xfs_dir_file_operations = {
1473 .open = xfs_dir_open,
1474 .read = generic_read_dir,
1475 .iterate = xfs_file_readdir,
1476 .llseek = generic_file_llseek,
1477 .unlocked_ioctl = xfs_file_ioctl,
1478 #ifdef CONFIG_COMPAT
1479 .compat_ioctl = xfs_file_compat_ioctl,
1480 #endif
1481 .fsync = xfs_dir_fsync,
1482 };
1483
1484 static const struct vm_operations_struct xfs_file_vm_ops = {
1485 .fault = filemap_fault,
1486 .page_mkwrite = xfs_vm_page_mkwrite,
1487 .remap_pages = generic_file_remap_pages,
1488 };