]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/xfs/xfs_file.c
Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_ioctl.h"
35 #include "xfs_trace.h"
36
37 #include <linux/dcache.h>
38 #include <linux/falloc.h>
39
40 static const struct vm_operations_struct xfs_file_vm_ops;
41
42 /*
43 * Locking primitives for read and write IO paths to ensure we consistently use
44 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
45 */
46 static inline void
47 xfs_rw_ilock(
48 struct xfs_inode *ip,
49 int type)
50 {
51 if (type & XFS_IOLOCK_EXCL)
52 mutex_lock(&VFS_I(ip)->i_mutex);
53 xfs_ilock(ip, type);
54 }
55
56 static inline void
57 xfs_rw_iunlock(
58 struct xfs_inode *ip,
59 int type)
60 {
61 xfs_iunlock(ip, type);
62 if (type & XFS_IOLOCK_EXCL)
63 mutex_unlock(&VFS_I(ip)->i_mutex);
64 }
65
66 static inline void
67 xfs_rw_ilock_demote(
68 struct xfs_inode *ip,
69 int type)
70 {
71 xfs_ilock_demote(ip, type);
72 if (type & XFS_IOLOCK_EXCL)
73 mutex_unlock(&VFS_I(ip)->i_mutex);
74 }
75
76 /*
77 * xfs_iozero
78 *
79 * xfs_iozero clears the specified range of buffer supplied,
80 * and marks all the affected blocks as valid and modified. If
81 * an affected block is not allocated, it will be allocated. If
82 * an affected block is not completely overwritten, and is not
83 * valid before the operation, it will be read from disk before
84 * being partially zeroed.
85 */
86 STATIC int
87 xfs_iozero(
88 struct xfs_inode *ip, /* inode */
89 loff_t pos, /* offset in file */
90 size_t count) /* size of data to zero */
91 {
92 struct page *page;
93 struct address_space *mapping;
94 int status;
95
96 mapping = VFS_I(ip)->i_mapping;
97 do {
98 unsigned offset, bytes;
99 void *fsdata;
100
101 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
102 bytes = PAGE_CACHE_SIZE - offset;
103 if (bytes > count)
104 bytes = count;
105
106 status = pagecache_write_begin(NULL, mapping, pos, bytes,
107 AOP_FLAG_UNINTERRUPTIBLE,
108 &page, &fsdata);
109 if (status)
110 break;
111
112 zero_user(page, offset, bytes);
113
114 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
115 page, fsdata);
116 WARN_ON(status <= 0); /* can't return less than zero! */
117 pos += bytes;
118 count -= bytes;
119 status = 0;
120 } while (count);
121
122 return (-status);
123 }
124
125 /*
126 * Fsync operations on directories are much simpler than on regular files,
127 * as there is no file data to flush, and thus also no need for explicit
128 * cache flush operations, and there are no non-transaction metadata updates
129 * on directories either.
130 */
131 STATIC int
132 xfs_dir_fsync(
133 struct file *file,
134 loff_t start,
135 loff_t end,
136 int datasync)
137 {
138 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
139 struct xfs_mount *mp = ip->i_mount;
140 xfs_lsn_t lsn = 0;
141
142 trace_xfs_dir_fsync(ip);
143
144 xfs_ilock(ip, XFS_ILOCK_SHARED);
145 if (xfs_ipincount(ip))
146 lsn = ip->i_itemp->ili_last_lsn;
147 xfs_iunlock(ip, XFS_ILOCK_SHARED);
148
149 if (!lsn)
150 return 0;
151 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
152 }
153
154 STATIC int
155 xfs_file_fsync(
156 struct file *file,
157 loff_t start,
158 loff_t end,
159 int datasync)
160 {
161 struct inode *inode = file->f_mapping->host;
162 struct xfs_inode *ip = XFS_I(inode);
163 struct xfs_mount *mp = ip->i_mount;
164 int error = 0;
165 int log_flushed = 0;
166 xfs_lsn_t lsn = 0;
167
168 trace_xfs_file_fsync(ip);
169
170 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
171 if (error)
172 return error;
173
174 if (XFS_FORCED_SHUTDOWN(mp))
175 return -XFS_ERROR(EIO);
176
177 xfs_iflags_clear(ip, XFS_ITRUNCATED);
178
179 if (mp->m_flags & XFS_MOUNT_BARRIER) {
180 /*
181 * If we have an RT and/or log subvolume we need to make sure
182 * to flush the write cache the device used for file data
183 * first. This is to ensure newly written file data make
184 * it to disk before logging the new inode size in case of
185 * an extending write.
186 */
187 if (XFS_IS_REALTIME_INODE(ip))
188 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
189 else if (mp->m_logdev_targp != mp->m_ddev_targp)
190 xfs_blkdev_issue_flush(mp->m_ddev_targp);
191 }
192
193 /*
194 * All metadata updates are logged, which means that we just have
195 * to flush the log up to the latest LSN that touched the inode.
196 */
197 xfs_ilock(ip, XFS_ILOCK_SHARED);
198 if (xfs_ipincount(ip)) {
199 if (!datasync ||
200 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
201 lsn = ip->i_itemp->ili_last_lsn;
202 }
203 xfs_iunlock(ip, XFS_ILOCK_SHARED);
204
205 if (lsn)
206 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
207
208 /*
209 * If we only have a single device, and the log force about was
210 * a no-op we might have to flush the data device cache here.
211 * This can only happen for fdatasync/O_DSYNC if we were overwriting
212 * an already allocated file and thus do not have any metadata to
213 * commit.
214 */
215 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
216 mp->m_logdev_targp == mp->m_ddev_targp &&
217 !XFS_IS_REALTIME_INODE(ip) &&
218 !log_flushed)
219 xfs_blkdev_issue_flush(mp->m_ddev_targp);
220
221 return -error;
222 }
223
224 STATIC ssize_t
225 xfs_file_aio_read(
226 struct kiocb *iocb,
227 const struct iovec *iovp,
228 unsigned long nr_segs,
229 loff_t pos)
230 {
231 struct file *file = iocb->ki_filp;
232 struct inode *inode = file->f_mapping->host;
233 struct xfs_inode *ip = XFS_I(inode);
234 struct xfs_mount *mp = ip->i_mount;
235 size_t size = 0;
236 ssize_t ret = 0;
237 int ioflags = 0;
238 xfs_fsize_t n;
239
240 XFS_STATS_INC(xs_read_calls);
241
242 BUG_ON(iocb->ki_pos != pos);
243
244 if (unlikely(file->f_flags & O_DIRECT))
245 ioflags |= IO_ISDIRECT;
246 if (file->f_mode & FMODE_NOCMTIME)
247 ioflags |= IO_INVIS;
248
249 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
250 if (ret < 0)
251 return ret;
252
253 if (unlikely(ioflags & IO_ISDIRECT)) {
254 xfs_buftarg_t *target =
255 XFS_IS_REALTIME_INODE(ip) ?
256 mp->m_rtdev_targp : mp->m_ddev_targp;
257 if ((iocb->ki_pos & target->bt_smask) ||
258 (size & target->bt_smask)) {
259 if (iocb->ki_pos == i_size_read(inode))
260 return 0;
261 return -XFS_ERROR(EINVAL);
262 }
263 }
264
265 n = mp->m_super->s_maxbytes - iocb->ki_pos;
266 if (n <= 0 || size == 0)
267 return 0;
268
269 if (n < size)
270 size = n;
271
272 if (XFS_FORCED_SHUTDOWN(mp))
273 return -EIO;
274
275 /*
276 * Locking is a bit tricky here. If we take an exclusive lock
277 * for direct IO, we effectively serialise all new concurrent
278 * read IO to this file and block it behind IO that is currently in
279 * progress because IO in progress holds the IO lock shared. We only
280 * need to hold the lock exclusive to blow away the page cache, so
281 * only take lock exclusively if the page cache needs invalidation.
282 * This allows the normal direct IO case of no page cache pages to
283 * proceeed concurrently without serialisation.
284 */
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289
290 if (inode->i_mapping->nrpages) {
291 ret = -xfs_flushinval_pages(ip,
292 (iocb->ki_pos & PAGE_CACHE_MASK),
293 -1, FI_REMAPF_LOCKED);
294 if (ret) {
295 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
296 return ret;
297 }
298 }
299 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
300 }
301
302 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
303
304 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
305 if (ret > 0)
306 XFS_STATS_ADD(xs_read_bytes, ret);
307
308 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
309 return ret;
310 }
311
312 STATIC ssize_t
313 xfs_file_splice_read(
314 struct file *infilp,
315 loff_t *ppos,
316 struct pipe_inode_info *pipe,
317 size_t count,
318 unsigned int flags)
319 {
320 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
321 int ioflags = 0;
322 ssize_t ret;
323
324 XFS_STATS_INC(xs_read_calls);
325
326 if (infilp->f_mode & FMODE_NOCMTIME)
327 ioflags |= IO_INVIS;
328
329 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
330 return -EIO;
331
332 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
333
334 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
335
336 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
337 if (ret > 0)
338 XFS_STATS_ADD(xs_read_bytes, ret);
339
340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341 return ret;
342 }
343
344 /*
345 * xfs_file_splice_write() does not use xfs_rw_ilock() because
346 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
347 * couuld cause lock inversions between the aio_write path and the splice path
348 * if someone is doing concurrent splice(2) based writes and write(2) based
349 * writes to the same inode. The only real way to fix this is to re-implement
350 * the generic code here with correct locking orders.
351 */
352 STATIC ssize_t
353 xfs_file_splice_write(
354 struct pipe_inode_info *pipe,
355 struct file *outfilp,
356 loff_t *ppos,
357 size_t count,
358 unsigned int flags)
359 {
360 struct inode *inode = outfilp->f_mapping->host;
361 struct xfs_inode *ip = XFS_I(inode);
362 int ioflags = 0;
363 ssize_t ret;
364
365 XFS_STATS_INC(xs_write_calls);
366
367 if (outfilp->f_mode & FMODE_NOCMTIME)
368 ioflags |= IO_INVIS;
369
370 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
371 return -EIO;
372
373 xfs_ilock(ip, XFS_IOLOCK_EXCL);
374
375 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
376
377 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
378 if (ret > 0)
379 XFS_STATS_ADD(xs_write_bytes, ret);
380
381 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
382 return ret;
383 }
384
385 /*
386 * This routine is called to handle zeroing any space in the last block of the
387 * file that is beyond the EOF. We do this since the size is being increased
388 * without writing anything to that block and we don't want to read the
389 * garbage on the disk.
390 */
391 STATIC int /* error (positive) */
392 xfs_zero_last_block(
393 struct xfs_inode *ip,
394 xfs_fsize_t offset,
395 xfs_fsize_t isize)
396 {
397 struct xfs_mount *mp = ip->i_mount;
398 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
399 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
400 int zero_len;
401 int nimaps = 1;
402 int error = 0;
403 struct xfs_bmbt_irec imap;
404
405 xfs_ilock(ip, XFS_ILOCK_EXCL);
406 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
407 xfs_iunlock(ip, XFS_ILOCK_EXCL);
408 if (error)
409 return error;
410
411 ASSERT(nimaps > 0);
412
413 /*
414 * If the block underlying isize is just a hole, then there
415 * is nothing to zero.
416 */
417 if (imap.br_startblock == HOLESTARTBLOCK)
418 return 0;
419
420 zero_len = mp->m_sb.sb_blocksize - zero_offset;
421 if (isize + zero_len > offset)
422 zero_len = offset - isize;
423 return xfs_iozero(ip, isize, zero_len);
424 }
425
426 /*
427 * Zero any on disk space between the current EOF and the new, larger EOF.
428 *
429 * This handles the normal case of zeroing the remainder of the last block in
430 * the file and the unusual case of zeroing blocks out beyond the size of the
431 * file. This second case only happens with fixed size extents and when the
432 * system crashes before the inode size was updated but after blocks were
433 * allocated.
434 *
435 * Expects the iolock to be held exclusive, and will take the ilock internally.
436 */
437 int /* error (positive) */
438 xfs_zero_eof(
439 struct xfs_inode *ip,
440 xfs_off_t offset, /* starting I/O offset */
441 xfs_fsize_t isize) /* current inode size */
442 {
443 struct xfs_mount *mp = ip->i_mount;
444 xfs_fileoff_t start_zero_fsb;
445 xfs_fileoff_t end_zero_fsb;
446 xfs_fileoff_t zero_count_fsb;
447 xfs_fileoff_t last_fsb;
448 xfs_fileoff_t zero_off;
449 xfs_fsize_t zero_len;
450 int nimaps;
451 int error = 0;
452 struct xfs_bmbt_irec imap;
453
454 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
455 ASSERT(offset > isize);
456
457 /*
458 * First handle zeroing the block on which isize resides.
459 *
460 * We only zero a part of that block so it is handled specially.
461 */
462 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
463 error = xfs_zero_last_block(ip, offset, isize);
464 if (error)
465 return error;
466 }
467
468 /*
469 * Calculate the range between the new size and the old where blocks
470 * needing to be zeroed may exist.
471 *
472 * To get the block where the last byte in the file currently resides,
473 * we need to subtract one from the size and truncate back to a block
474 * boundary. We subtract 1 in case the size is exactly on a block
475 * boundary.
476 */
477 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
478 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
479 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
480 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
481 if (last_fsb == end_zero_fsb) {
482 /*
483 * The size was only incremented on its last block.
484 * We took care of that above, so just return.
485 */
486 return 0;
487 }
488
489 ASSERT(start_zero_fsb <= end_zero_fsb);
490 while (start_zero_fsb <= end_zero_fsb) {
491 nimaps = 1;
492 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
493
494 xfs_ilock(ip, XFS_ILOCK_EXCL);
495 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
496 &imap, &nimaps, 0);
497 xfs_iunlock(ip, XFS_ILOCK_EXCL);
498 if (error)
499 return error;
500
501 ASSERT(nimaps > 0);
502
503 if (imap.br_state == XFS_EXT_UNWRITTEN ||
504 imap.br_startblock == HOLESTARTBLOCK) {
505 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
506 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
507 continue;
508 }
509
510 /*
511 * There are blocks we need to zero.
512 */
513 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
514 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
515
516 if ((zero_off + zero_len) > offset)
517 zero_len = offset - zero_off;
518
519 error = xfs_iozero(ip, zero_off, zero_len);
520 if (error)
521 return error;
522
523 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
524 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
525 }
526
527 return 0;
528 }
529
530 /*
531 * Common pre-write limit and setup checks.
532 *
533 * Called with the iolocked held either shared and exclusive according to
534 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
535 * if called for a direct write beyond i_size.
536 */
537 STATIC ssize_t
538 xfs_file_aio_write_checks(
539 struct file *file,
540 loff_t *pos,
541 size_t *count,
542 int *iolock)
543 {
544 struct inode *inode = file->f_mapping->host;
545 struct xfs_inode *ip = XFS_I(inode);
546 int error = 0;
547
548 restart:
549 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
550 if (error)
551 return error;
552
553 /*
554 * If the offset is beyond the size of the file, we need to zero any
555 * blocks that fall between the existing EOF and the start of this
556 * write. If zeroing is needed and we are currently holding the
557 * iolock shared, we need to update it to exclusive which implies
558 * having to redo all checks before.
559 */
560 if (*pos > i_size_read(inode)) {
561 if (*iolock == XFS_IOLOCK_SHARED) {
562 xfs_rw_iunlock(ip, *iolock);
563 *iolock = XFS_IOLOCK_EXCL;
564 xfs_rw_ilock(ip, *iolock);
565 goto restart;
566 }
567 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
568 if (error)
569 return error;
570 }
571
572 /*
573 * Updating the timestamps will grab the ilock again from
574 * xfs_fs_dirty_inode, so we have to call it after dropping the
575 * lock above. Eventually we should look into a way to avoid
576 * the pointless lock roundtrip.
577 */
578 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
579 error = file_update_time(file);
580 if (error)
581 return error;
582 }
583
584 /*
585 * If we're writing the file then make sure to clear the setuid and
586 * setgid bits if the process is not being run by root. This keeps
587 * people from modifying setuid and setgid binaries.
588 */
589 return file_remove_suid(file);
590 }
591
592 /*
593 * xfs_file_dio_aio_write - handle direct IO writes
594 *
595 * Lock the inode appropriately to prepare for and issue a direct IO write.
596 * By separating it from the buffered write path we remove all the tricky to
597 * follow locking changes and looping.
598 *
599 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
600 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
601 * pages are flushed out.
602 *
603 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
604 * allowing them to be done in parallel with reads and other direct IO writes.
605 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
606 * needs to do sub-block zeroing and that requires serialisation against other
607 * direct IOs to the same block. In this case we need to serialise the
608 * submission of the unaligned IOs so that we don't get racing block zeroing in
609 * the dio layer. To avoid the problem with aio, we also need to wait for
610 * outstanding IOs to complete so that unwritten extent conversion is completed
611 * before we try to map the overlapping block. This is currently implemented by
612 * hitting it with a big hammer (i.e. inode_dio_wait()).
613 *
614 * Returns with locks held indicated by @iolock and errors indicated by
615 * negative return values.
616 */
617 STATIC ssize_t
618 xfs_file_dio_aio_write(
619 struct kiocb *iocb,
620 const struct iovec *iovp,
621 unsigned long nr_segs,
622 loff_t pos,
623 size_t ocount)
624 {
625 struct file *file = iocb->ki_filp;
626 struct address_space *mapping = file->f_mapping;
627 struct inode *inode = mapping->host;
628 struct xfs_inode *ip = XFS_I(inode);
629 struct xfs_mount *mp = ip->i_mount;
630 ssize_t ret = 0;
631 size_t count = ocount;
632 int unaligned_io = 0;
633 int iolock;
634 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
635 mp->m_rtdev_targp : mp->m_ddev_targp;
636
637 if ((pos & target->bt_smask) || (count & target->bt_smask))
638 return -XFS_ERROR(EINVAL);
639
640 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
641 unaligned_io = 1;
642
643 /*
644 * We don't need to take an exclusive lock unless there page cache needs
645 * to be invalidated or unaligned IO is being executed. We don't need to
646 * consider the EOF extension case here because
647 * xfs_file_aio_write_checks() will relock the inode as necessary for
648 * EOF zeroing cases and fill out the new inode size as appropriate.
649 */
650 if (unaligned_io || mapping->nrpages)
651 iolock = XFS_IOLOCK_EXCL;
652 else
653 iolock = XFS_IOLOCK_SHARED;
654 xfs_rw_ilock(ip, iolock);
655
656 /*
657 * Recheck if there are cached pages that need invalidate after we got
658 * the iolock to protect against other threads adding new pages while
659 * we were waiting for the iolock.
660 */
661 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
662 xfs_rw_iunlock(ip, iolock);
663 iolock = XFS_IOLOCK_EXCL;
664 xfs_rw_ilock(ip, iolock);
665 }
666
667 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
668 if (ret)
669 goto out;
670
671 if (mapping->nrpages) {
672 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
673 FI_REMAPF_LOCKED);
674 if (ret)
675 goto out;
676 }
677
678 /*
679 * If we are doing unaligned IO, wait for all other IO to drain,
680 * otherwise demote the lock if we had to flush cached pages
681 */
682 if (unaligned_io)
683 inode_dio_wait(inode);
684 else if (iolock == XFS_IOLOCK_EXCL) {
685 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
686 iolock = XFS_IOLOCK_SHARED;
687 }
688
689 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
690 ret = generic_file_direct_write(iocb, iovp,
691 &nr_segs, pos, &iocb->ki_pos, count, ocount);
692
693 out:
694 xfs_rw_iunlock(ip, iolock);
695
696 /* No fallback to buffered IO on errors for XFS. */
697 ASSERT(ret < 0 || ret == count);
698 return ret;
699 }
700
701 STATIC ssize_t
702 xfs_file_buffered_aio_write(
703 struct kiocb *iocb,
704 const struct iovec *iovp,
705 unsigned long nr_segs,
706 loff_t pos,
707 size_t ocount)
708 {
709 struct file *file = iocb->ki_filp;
710 struct address_space *mapping = file->f_mapping;
711 struct inode *inode = mapping->host;
712 struct xfs_inode *ip = XFS_I(inode);
713 ssize_t ret;
714 int enospc = 0;
715 int iolock = XFS_IOLOCK_EXCL;
716 size_t count = ocount;
717
718 xfs_rw_ilock(ip, iolock);
719
720 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
721 if (ret)
722 goto out;
723
724 /* We can write back this queue in page reclaim */
725 current->backing_dev_info = mapping->backing_dev_info;
726
727 write_retry:
728 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
729 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
730 pos, &iocb->ki_pos, count, ret);
731 /*
732 * if we just got an ENOSPC, flush the inode now we aren't holding any
733 * page locks and retry *once*
734 */
735 if (ret == -ENOSPC && !enospc) {
736 enospc = 1;
737 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
738 if (!ret)
739 goto write_retry;
740 }
741
742 current->backing_dev_info = NULL;
743 out:
744 xfs_rw_iunlock(ip, iolock);
745 return ret;
746 }
747
748 STATIC ssize_t
749 xfs_file_aio_write(
750 struct kiocb *iocb,
751 const struct iovec *iovp,
752 unsigned long nr_segs,
753 loff_t pos)
754 {
755 struct file *file = iocb->ki_filp;
756 struct address_space *mapping = file->f_mapping;
757 struct inode *inode = mapping->host;
758 struct xfs_inode *ip = XFS_I(inode);
759 ssize_t ret;
760 size_t ocount = 0;
761
762 XFS_STATS_INC(xs_write_calls);
763
764 BUG_ON(iocb->ki_pos != pos);
765
766 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
767 if (ret)
768 return ret;
769
770 if (ocount == 0)
771 return 0;
772
773 sb_start_write(inode->i_sb);
774
775 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
776 ret = -EIO;
777 goto out;
778 }
779
780 if (unlikely(file->f_flags & O_DIRECT))
781 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
782 else
783 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
784 ocount);
785
786 if (ret > 0) {
787 ssize_t err;
788
789 XFS_STATS_ADD(xs_write_bytes, ret);
790
791 /* Handle various SYNC-type writes */
792 err = generic_write_sync(file, pos, ret);
793 if (err < 0)
794 ret = err;
795 }
796
797 out:
798 sb_end_write(inode->i_sb);
799 return ret;
800 }
801
802 STATIC long
803 xfs_file_fallocate(
804 struct file *file,
805 int mode,
806 loff_t offset,
807 loff_t len)
808 {
809 struct inode *inode = file->f_path.dentry->d_inode;
810 long error;
811 loff_t new_size = 0;
812 xfs_flock64_t bf;
813 xfs_inode_t *ip = XFS_I(inode);
814 int cmd = XFS_IOC_RESVSP;
815 int attr_flags = XFS_ATTR_NOLOCK;
816
817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
818 return -EOPNOTSUPP;
819
820 bf.l_whence = 0;
821 bf.l_start = offset;
822 bf.l_len = len;
823
824 xfs_ilock(ip, XFS_IOLOCK_EXCL);
825
826 if (mode & FALLOC_FL_PUNCH_HOLE)
827 cmd = XFS_IOC_UNRESVSP;
828
829 /* check the new inode size is valid before allocating */
830 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
831 offset + len > i_size_read(inode)) {
832 new_size = offset + len;
833 error = inode_newsize_ok(inode, new_size);
834 if (error)
835 goto out_unlock;
836 }
837
838 if (file->f_flags & O_DSYNC)
839 attr_flags |= XFS_ATTR_SYNC;
840
841 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
842 if (error)
843 goto out_unlock;
844
845 /* Change file size if needed */
846 if (new_size) {
847 struct iattr iattr;
848
849 iattr.ia_valid = ATTR_SIZE;
850 iattr.ia_size = new_size;
851 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
852 }
853
854 out_unlock:
855 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
856 return error;
857 }
858
859
860 STATIC int
861 xfs_file_open(
862 struct inode *inode,
863 struct file *file)
864 {
865 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
866 return -EFBIG;
867 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
868 return -EIO;
869 return 0;
870 }
871
872 STATIC int
873 xfs_dir_open(
874 struct inode *inode,
875 struct file *file)
876 {
877 struct xfs_inode *ip = XFS_I(inode);
878 int mode;
879 int error;
880
881 error = xfs_file_open(inode, file);
882 if (error)
883 return error;
884
885 /*
886 * If there are any blocks, read-ahead block 0 as we're almost
887 * certain to have the next operation be a read there.
888 */
889 mode = xfs_ilock_map_shared(ip);
890 if (ip->i_d.di_nextents > 0)
891 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
892 xfs_iunlock(ip, mode);
893 return 0;
894 }
895
896 STATIC int
897 xfs_file_release(
898 struct inode *inode,
899 struct file *filp)
900 {
901 return -xfs_release(XFS_I(inode));
902 }
903
904 STATIC int
905 xfs_file_readdir(
906 struct file *filp,
907 void *dirent,
908 filldir_t filldir)
909 {
910 struct inode *inode = filp->f_path.dentry->d_inode;
911 xfs_inode_t *ip = XFS_I(inode);
912 int error;
913 size_t bufsize;
914
915 /*
916 * The Linux API doesn't pass down the total size of the buffer
917 * we read into down to the filesystem. With the filldir concept
918 * it's not needed for correct information, but the XFS dir2 leaf
919 * code wants an estimate of the buffer size to calculate it's
920 * readahead window and size the buffers used for mapping to
921 * physical blocks.
922 *
923 * Try to give it an estimate that's good enough, maybe at some
924 * point we can change the ->readdir prototype to include the
925 * buffer size. For now we use the current glibc buffer size.
926 */
927 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
928
929 error = xfs_readdir(ip, dirent, bufsize,
930 (xfs_off_t *)&filp->f_pos, filldir);
931 if (error)
932 return -error;
933 return 0;
934 }
935
936 STATIC int
937 xfs_file_mmap(
938 struct file *filp,
939 struct vm_area_struct *vma)
940 {
941 vma->vm_ops = &xfs_file_vm_ops;
942 vma->vm_flags |= VM_CAN_NONLINEAR;
943
944 file_accessed(filp);
945 return 0;
946 }
947
948 /*
949 * mmap()d file has taken write protection fault and is being made
950 * writable. We can set the page state up correctly for a writable
951 * page, which means we can do correct delalloc accounting (ENOSPC
952 * checking!) and unwritten extent mapping.
953 */
954 STATIC int
955 xfs_vm_page_mkwrite(
956 struct vm_area_struct *vma,
957 struct vm_fault *vmf)
958 {
959 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
960 }
961
962 STATIC loff_t
963 xfs_seek_data(
964 struct file *file,
965 loff_t start,
966 u32 type)
967 {
968 struct inode *inode = file->f_mapping->host;
969 struct xfs_inode *ip = XFS_I(inode);
970 struct xfs_mount *mp = ip->i_mount;
971 struct xfs_bmbt_irec map[2];
972 int nmap = 2;
973 loff_t uninitialized_var(offset);
974 xfs_fsize_t isize;
975 xfs_fileoff_t fsbno;
976 xfs_filblks_t end;
977 uint lock;
978 int error;
979
980 lock = xfs_ilock_map_shared(ip);
981
982 isize = i_size_read(inode);
983 if (start >= isize) {
984 error = ENXIO;
985 goto out_unlock;
986 }
987
988 fsbno = XFS_B_TO_FSBT(mp, start);
989
990 /*
991 * Try to read extents from the first block indicated
992 * by fsbno to the end block of the file.
993 */
994 end = XFS_B_TO_FSB(mp, isize);
995
996 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
997 XFS_BMAPI_ENTIRE);
998 if (error)
999 goto out_unlock;
1000
1001 /*
1002 * Treat unwritten extent as data extent since it might
1003 * contains dirty data in page cache.
1004 */
1005 if (map[0].br_startblock != HOLESTARTBLOCK) {
1006 offset = max_t(loff_t, start,
1007 XFS_FSB_TO_B(mp, map[0].br_startoff));
1008 } else {
1009 if (nmap == 1) {
1010 error = ENXIO;
1011 goto out_unlock;
1012 }
1013
1014 offset = max_t(loff_t, start,
1015 XFS_FSB_TO_B(mp, map[1].br_startoff));
1016 }
1017
1018 if (offset != file->f_pos)
1019 file->f_pos = offset;
1020
1021 out_unlock:
1022 xfs_iunlock_map_shared(ip, lock);
1023
1024 if (error)
1025 return -error;
1026 return offset;
1027 }
1028
1029 STATIC loff_t
1030 xfs_seek_hole(
1031 struct file *file,
1032 loff_t start,
1033 u32 type)
1034 {
1035 struct inode *inode = file->f_mapping->host;
1036 struct xfs_inode *ip = XFS_I(inode);
1037 struct xfs_mount *mp = ip->i_mount;
1038 loff_t uninitialized_var(offset);
1039 loff_t holeoff;
1040 xfs_fsize_t isize;
1041 xfs_fileoff_t fsbno;
1042 uint lock;
1043 int error;
1044
1045 if (XFS_FORCED_SHUTDOWN(mp))
1046 return -XFS_ERROR(EIO);
1047
1048 lock = xfs_ilock_map_shared(ip);
1049
1050 isize = i_size_read(inode);
1051 if (start >= isize) {
1052 error = ENXIO;
1053 goto out_unlock;
1054 }
1055
1056 fsbno = XFS_B_TO_FSBT(mp, start);
1057 error = xfs_bmap_first_unused(NULL, ip, 1, &fsbno, XFS_DATA_FORK);
1058 if (error)
1059 goto out_unlock;
1060
1061 holeoff = XFS_FSB_TO_B(mp, fsbno);
1062 if (holeoff <= start)
1063 offset = start;
1064 else {
1065 /*
1066 * xfs_bmap_first_unused() could return a value bigger than
1067 * isize if there are no more holes past the supplied offset.
1068 */
1069 offset = min_t(loff_t, holeoff, isize);
1070 }
1071
1072 if (offset != file->f_pos)
1073 file->f_pos = offset;
1074
1075 out_unlock:
1076 xfs_iunlock_map_shared(ip, lock);
1077
1078 if (error)
1079 return -error;
1080 return offset;
1081 }
1082
1083 STATIC loff_t
1084 xfs_file_llseek(
1085 struct file *file,
1086 loff_t offset,
1087 int origin)
1088 {
1089 switch (origin) {
1090 case SEEK_END:
1091 case SEEK_CUR:
1092 case SEEK_SET:
1093 return generic_file_llseek(file, offset, origin);
1094 case SEEK_DATA:
1095 return xfs_seek_data(file, offset, origin);
1096 case SEEK_HOLE:
1097 return xfs_seek_hole(file, offset, origin);
1098 default:
1099 return -EINVAL;
1100 }
1101 }
1102
1103 const struct file_operations xfs_file_operations = {
1104 .llseek = xfs_file_llseek,
1105 .read = do_sync_read,
1106 .write = do_sync_write,
1107 .aio_read = xfs_file_aio_read,
1108 .aio_write = xfs_file_aio_write,
1109 .splice_read = xfs_file_splice_read,
1110 .splice_write = xfs_file_splice_write,
1111 .unlocked_ioctl = xfs_file_ioctl,
1112 #ifdef CONFIG_COMPAT
1113 .compat_ioctl = xfs_file_compat_ioctl,
1114 #endif
1115 .mmap = xfs_file_mmap,
1116 .open = xfs_file_open,
1117 .release = xfs_file_release,
1118 .fsync = xfs_file_fsync,
1119 .fallocate = xfs_file_fallocate,
1120 };
1121
1122 const struct file_operations xfs_dir_file_operations = {
1123 .open = xfs_dir_open,
1124 .read = generic_read_dir,
1125 .readdir = xfs_file_readdir,
1126 .llseek = generic_file_llseek,
1127 .unlocked_ioctl = xfs_file_ioctl,
1128 #ifdef CONFIG_COMPAT
1129 .compat_ioctl = xfs_file_compat_ioctl,
1130 #endif
1131 .fsync = xfs_dir_fsync,
1132 };
1133
1134 static const struct vm_operations_struct xfs_file_vm_ops = {
1135 .fault = filemap_fault,
1136 .page_mkwrite = xfs_vm_page_mkwrite,
1137 };