]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/xfs_ialloc.c
Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_error.h"
36 #include "xfs_bmap.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_dinode.h"
43 #include "xfs_trace.h"
44
45
46 /*
47 * Allocation group level functions.
48 */
49 static inline int
50 xfs_ialloc_cluster_alignment(
51 xfs_alloc_arg_t *args)
52 {
53 if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
54 args->mp->m_sb.sb_inoalignmt >=
55 XFS_B_TO_FSBT(args->mp, args->mp->m_inode_cluster_size))
56 return args->mp->m_sb.sb_inoalignmt;
57 return 1;
58 }
59
60 /*
61 * Lookup a record by ino in the btree given by cur.
62 */
63 int /* error */
64 xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69 {
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_freecount = 0;
72 cur->bc_rec.i.ir_free = 0;
73 return xfs_btree_lookup(cur, dir, stat);
74 }
75
76 /*
77 * Update the record referred to by cur to the value given.
78 * This either works (return 0) or gets an EFSCORRUPTED error.
79 */
80 STATIC int /* error */
81 xfs_inobt_update(
82 struct xfs_btree_cur *cur, /* btree cursor */
83 xfs_inobt_rec_incore_t *irec) /* btree record */
84 {
85 union xfs_btree_rec rec;
86
87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
88 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
89 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
90 return xfs_btree_update(cur, &rec);
91 }
92
93 /*
94 * Get the data from the pointed-to record.
95 */
96 int /* error */
97 xfs_inobt_get_rec(
98 struct xfs_btree_cur *cur, /* btree cursor */
99 xfs_inobt_rec_incore_t *irec, /* btree record */
100 int *stat) /* output: success/failure */
101 {
102 union xfs_btree_rec *rec;
103 int error;
104
105 error = xfs_btree_get_rec(cur, &rec, stat);
106 if (!error && *stat == 1) {
107 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
108 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
109 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
110 }
111 return error;
112 }
113
114 /*
115 * Verify that the number of free inodes in the AGI is correct.
116 */
117 #ifdef DEBUG
118 STATIC int
119 xfs_check_agi_freecount(
120 struct xfs_btree_cur *cur,
121 struct xfs_agi *agi)
122 {
123 if (cur->bc_nlevels == 1) {
124 xfs_inobt_rec_incore_t rec;
125 int freecount = 0;
126 int error;
127 int i;
128
129 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
130 if (error)
131 return error;
132
133 do {
134 error = xfs_inobt_get_rec(cur, &rec, &i);
135 if (error)
136 return error;
137
138 if (i) {
139 freecount += rec.ir_freecount;
140 error = xfs_btree_increment(cur, 0, &i);
141 if (error)
142 return error;
143 }
144 } while (i == 1);
145
146 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
147 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
148 }
149 return 0;
150 }
151 #else
152 #define xfs_check_agi_freecount(cur, agi) 0
153 #endif
154
155 /*
156 * Initialise a new set of inodes. When called without a transaction context
157 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
158 * than logging them (which in a transaction context puts them into the AIL
159 * for writeback rather than the xfsbufd queue).
160 */
161 int
162 xfs_ialloc_inode_init(
163 struct xfs_mount *mp,
164 struct xfs_trans *tp,
165 struct list_head *buffer_list,
166 xfs_agnumber_t agno,
167 xfs_agblock_t agbno,
168 xfs_agblock_t length,
169 unsigned int gen)
170 {
171 struct xfs_buf *fbuf;
172 struct xfs_dinode *free;
173 int nbufs, blks_per_cluster, inodes_per_cluster;
174 int version;
175 int i, j;
176 xfs_daddr_t d;
177 xfs_ino_t ino = 0;
178
179 /*
180 * Loop over the new block(s), filling in the inodes. For small block
181 * sizes, manipulate the inodes in buffers which are multiples of the
182 * blocks size.
183 */
184 blks_per_cluster = xfs_icluster_size_fsb(mp);
185 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
186 nbufs = length / blks_per_cluster;
187
188 /*
189 * Figure out what version number to use in the inodes we create. If
190 * the superblock version has caught up to the one that supports the new
191 * inode format, then use the new inode version. Otherwise use the old
192 * version so that old kernels will continue to be able to use the file
193 * system.
194 *
195 * For v3 inodes, we also need to write the inode number into the inode,
196 * so calculate the first inode number of the chunk here as
197 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
198 * across multiple filesystem blocks (such as a cluster) and so cannot
199 * be used in the cluster buffer loop below.
200 *
201 * Further, because we are writing the inode directly into the buffer
202 * and calculating a CRC on the entire inode, we have ot log the entire
203 * inode so that the entire range the CRC covers is present in the log.
204 * That means for v3 inode we log the entire buffer rather than just the
205 * inode cores.
206 */
207 if (xfs_sb_version_hascrc(&mp->m_sb)) {
208 version = 3;
209 ino = XFS_AGINO_TO_INO(mp, agno,
210 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
211
212 /*
213 * log the initialisation that is about to take place as an
214 * logical operation. This means the transaction does not
215 * need to log the physical changes to the inode buffers as log
216 * recovery will know what initialisation is actually needed.
217 * Hence we only need to log the buffers as "ordered" buffers so
218 * they track in the AIL as if they were physically logged.
219 */
220 if (tp)
221 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
222 mp->m_sb.sb_inodesize, length, gen);
223 } else if (xfs_sb_version_hasnlink(&mp->m_sb))
224 version = 2;
225 else
226 version = 1;
227
228 for (j = 0; j < nbufs; j++) {
229 /*
230 * Get the block.
231 */
232 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
233 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
234 mp->m_bsize * blks_per_cluster,
235 XBF_UNMAPPED);
236 if (!fbuf)
237 return ENOMEM;
238
239 /* Initialize the inode buffers and log them appropriately. */
240 fbuf->b_ops = &xfs_inode_buf_ops;
241 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
242 for (i = 0; i < inodes_per_cluster; i++) {
243 int ioffset = i << mp->m_sb.sb_inodelog;
244 uint isize = xfs_dinode_size(version);
245
246 free = xfs_make_iptr(mp, fbuf, i);
247 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
248 free->di_version = version;
249 free->di_gen = cpu_to_be32(gen);
250 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
251
252 if (version == 3) {
253 free->di_ino = cpu_to_be64(ino);
254 ino++;
255 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
256 xfs_dinode_calc_crc(mp, free);
257 } else if (tp) {
258 /* just log the inode core */
259 xfs_trans_log_buf(tp, fbuf, ioffset,
260 ioffset + isize - 1);
261 }
262 }
263
264 if (tp) {
265 /*
266 * Mark the buffer as an inode allocation buffer so it
267 * sticks in AIL at the point of this allocation
268 * transaction. This ensures the they are on disk before
269 * the tail of the log can be moved past this
270 * transaction (i.e. by preventing relogging from moving
271 * it forward in the log).
272 */
273 xfs_trans_inode_alloc_buf(tp, fbuf);
274 if (version == 3) {
275 /*
276 * Mark the buffer as ordered so that they are
277 * not physically logged in the transaction but
278 * still tracked in the AIL as part of the
279 * transaction and pin the log appropriately.
280 */
281 xfs_trans_ordered_buf(tp, fbuf);
282 xfs_trans_log_buf(tp, fbuf, 0,
283 BBTOB(fbuf->b_length) - 1);
284 }
285 } else {
286 fbuf->b_flags |= XBF_DONE;
287 xfs_buf_delwri_queue(fbuf, buffer_list);
288 xfs_buf_relse(fbuf);
289 }
290 }
291 return 0;
292 }
293
294 /*
295 * Allocate new inodes in the allocation group specified by agbp.
296 * Return 0 for success, else error code.
297 */
298 STATIC int /* error code or 0 */
299 xfs_ialloc_ag_alloc(
300 xfs_trans_t *tp, /* transaction pointer */
301 xfs_buf_t *agbp, /* alloc group buffer */
302 int *alloc)
303 {
304 xfs_agi_t *agi; /* allocation group header */
305 xfs_alloc_arg_t args; /* allocation argument structure */
306 xfs_btree_cur_t *cur; /* inode btree cursor */
307 xfs_agnumber_t agno;
308 int error;
309 int i;
310 xfs_agino_t newino; /* new first inode's number */
311 xfs_agino_t newlen; /* new number of inodes */
312 xfs_agino_t thisino; /* current inode number, for loop */
313 int isaligned = 0; /* inode allocation at stripe unit */
314 /* boundary */
315 struct xfs_perag *pag;
316
317 memset(&args, 0, sizeof(args));
318 args.tp = tp;
319 args.mp = tp->t_mountp;
320
321 /*
322 * Locking will ensure that we don't have two callers in here
323 * at one time.
324 */
325 newlen = args.mp->m_ialloc_inos;
326 if (args.mp->m_maxicount &&
327 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
328 return XFS_ERROR(ENOSPC);
329 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
330 /*
331 * First try to allocate inodes contiguous with the last-allocated
332 * chunk of inodes. If the filesystem is striped, this will fill
333 * an entire stripe unit with inodes.
334 */
335 agi = XFS_BUF_TO_AGI(agbp);
336 newino = be32_to_cpu(agi->agi_newino);
337 agno = be32_to_cpu(agi->agi_seqno);
338 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
339 args.mp->m_ialloc_blks;
340 if (likely(newino != NULLAGINO &&
341 (args.agbno < be32_to_cpu(agi->agi_length)))) {
342 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
343 args.type = XFS_ALLOCTYPE_THIS_BNO;
344 args.prod = 1;
345
346 /*
347 * We need to take into account alignment here to ensure that
348 * we don't modify the free list if we fail to have an exact
349 * block. If we don't have an exact match, and every oher
350 * attempt allocation attempt fails, we'll end up cancelling
351 * a dirty transaction and shutting down.
352 *
353 * For an exact allocation, alignment must be 1,
354 * however we need to take cluster alignment into account when
355 * fixing up the freelist. Use the minalignslop field to
356 * indicate that extra blocks might be required for alignment,
357 * but not to use them in the actual exact allocation.
358 */
359 args.alignment = 1;
360 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
361
362 /* Allow space for the inode btree to split. */
363 args.minleft = args.mp->m_in_maxlevels - 1;
364 if ((error = xfs_alloc_vextent(&args)))
365 return error;
366 } else
367 args.fsbno = NULLFSBLOCK;
368
369 if (unlikely(args.fsbno == NULLFSBLOCK)) {
370 /*
371 * Set the alignment for the allocation.
372 * If stripe alignment is turned on then align at stripe unit
373 * boundary.
374 * If the cluster size is smaller than a filesystem block
375 * then we're doing I/O for inodes in filesystem block size
376 * pieces, so don't need alignment anyway.
377 */
378 isaligned = 0;
379 if (args.mp->m_sinoalign) {
380 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
381 args.alignment = args.mp->m_dalign;
382 isaligned = 1;
383 } else
384 args.alignment = xfs_ialloc_cluster_alignment(&args);
385 /*
386 * Need to figure out where to allocate the inode blocks.
387 * Ideally they should be spaced out through the a.g.
388 * For now, just allocate blocks up front.
389 */
390 args.agbno = be32_to_cpu(agi->agi_root);
391 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
392 /*
393 * Allocate a fixed-size extent of inodes.
394 */
395 args.type = XFS_ALLOCTYPE_NEAR_BNO;
396 args.prod = 1;
397 /*
398 * Allow space for the inode btree to split.
399 */
400 args.minleft = args.mp->m_in_maxlevels - 1;
401 if ((error = xfs_alloc_vextent(&args)))
402 return error;
403 }
404
405 /*
406 * If stripe alignment is turned on, then try again with cluster
407 * alignment.
408 */
409 if (isaligned && args.fsbno == NULLFSBLOCK) {
410 args.type = XFS_ALLOCTYPE_NEAR_BNO;
411 args.agbno = be32_to_cpu(agi->agi_root);
412 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
413 args.alignment = xfs_ialloc_cluster_alignment(&args);
414 if ((error = xfs_alloc_vextent(&args)))
415 return error;
416 }
417
418 if (args.fsbno == NULLFSBLOCK) {
419 *alloc = 0;
420 return 0;
421 }
422 ASSERT(args.len == args.minlen);
423
424 /*
425 * Stamp and write the inode buffers.
426 *
427 * Seed the new inode cluster with a random generation number. This
428 * prevents short-term reuse of generation numbers if a chunk is
429 * freed and then immediately reallocated. We use random numbers
430 * rather than a linear progression to prevent the next generation
431 * number from being easily guessable.
432 */
433 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
434 args.len, prandom_u32());
435
436 if (error)
437 return error;
438 /*
439 * Convert the results.
440 */
441 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
442 be32_add_cpu(&agi->agi_count, newlen);
443 be32_add_cpu(&agi->agi_freecount, newlen);
444 pag = xfs_perag_get(args.mp, agno);
445 pag->pagi_freecount += newlen;
446 xfs_perag_put(pag);
447 agi->agi_newino = cpu_to_be32(newino);
448
449 /*
450 * Insert records describing the new inode chunk into the btree.
451 */
452 cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
453 for (thisino = newino;
454 thisino < newino + newlen;
455 thisino += XFS_INODES_PER_CHUNK) {
456 cur->bc_rec.i.ir_startino = thisino;
457 cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
458 cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
459 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
460 if (error) {
461 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
462 return error;
463 }
464 ASSERT(i == 0);
465 error = xfs_btree_insert(cur, &i);
466 if (error) {
467 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
468 return error;
469 }
470 ASSERT(i == 1);
471 }
472 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
473 /*
474 * Log allocation group header fields
475 */
476 xfs_ialloc_log_agi(tp, agbp,
477 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
478 /*
479 * Modify/log superblock values for inode count and inode free count.
480 */
481 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
482 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
483 *alloc = 1;
484 return 0;
485 }
486
487 STATIC xfs_agnumber_t
488 xfs_ialloc_next_ag(
489 xfs_mount_t *mp)
490 {
491 xfs_agnumber_t agno;
492
493 spin_lock(&mp->m_agirotor_lock);
494 agno = mp->m_agirotor;
495 if (++mp->m_agirotor >= mp->m_maxagi)
496 mp->m_agirotor = 0;
497 spin_unlock(&mp->m_agirotor_lock);
498
499 return agno;
500 }
501
502 /*
503 * Select an allocation group to look for a free inode in, based on the parent
504 * inode and the mode. Return the allocation group buffer.
505 */
506 STATIC xfs_agnumber_t
507 xfs_ialloc_ag_select(
508 xfs_trans_t *tp, /* transaction pointer */
509 xfs_ino_t parent, /* parent directory inode number */
510 umode_t mode, /* bits set to indicate file type */
511 int okalloc) /* ok to allocate more space */
512 {
513 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
514 xfs_agnumber_t agno; /* current ag number */
515 int flags; /* alloc buffer locking flags */
516 xfs_extlen_t ineed; /* blocks needed for inode allocation */
517 xfs_extlen_t longest = 0; /* longest extent available */
518 xfs_mount_t *mp; /* mount point structure */
519 int needspace; /* file mode implies space allocated */
520 xfs_perag_t *pag; /* per allocation group data */
521 xfs_agnumber_t pagno; /* parent (starting) ag number */
522 int error;
523
524 /*
525 * Files of these types need at least one block if length > 0
526 * (and they won't fit in the inode, but that's hard to figure out).
527 */
528 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
529 mp = tp->t_mountp;
530 agcount = mp->m_maxagi;
531 if (S_ISDIR(mode))
532 pagno = xfs_ialloc_next_ag(mp);
533 else {
534 pagno = XFS_INO_TO_AGNO(mp, parent);
535 if (pagno >= agcount)
536 pagno = 0;
537 }
538
539 ASSERT(pagno < agcount);
540
541 /*
542 * Loop through allocation groups, looking for one with a little
543 * free space in it. Note we don't look for free inodes, exactly.
544 * Instead, we include whether there is a need to allocate inodes
545 * to mean that blocks must be allocated for them,
546 * if none are currently free.
547 */
548 agno = pagno;
549 flags = XFS_ALLOC_FLAG_TRYLOCK;
550 for (;;) {
551 pag = xfs_perag_get(mp, agno);
552 if (!pag->pagi_inodeok) {
553 xfs_ialloc_next_ag(mp);
554 goto nextag;
555 }
556
557 if (!pag->pagi_init) {
558 error = xfs_ialloc_pagi_init(mp, tp, agno);
559 if (error)
560 goto nextag;
561 }
562
563 if (pag->pagi_freecount) {
564 xfs_perag_put(pag);
565 return agno;
566 }
567
568 if (!okalloc)
569 goto nextag;
570
571 if (!pag->pagf_init) {
572 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
573 if (error)
574 goto nextag;
575 }
576
577 /*
578 * Is there enough free space for the file plus a block of
579 * inodes? (if we need to allocate some)?
580 */
581 ineed = mp->m_ialloc_blks;
582 longest = pag->pagf_longest;
583 if (!longest)
584 longest = pag->pagf_flcount > 0;
585
586 if (pag->pagf_freeblks >= needspace + ineed &&
587 longest >= ineed) {
588 xfs_perag_put(pag);
589 return agno;
590 }
591 nextag:
592 xfs_perag_put(pag);
593 /*
594 * No point in iterating over the rest, if we're shutting
595 * down.
596 */
597 if (XFS_FORCED_SHUTDOWN(mp))
598 return NULLAGNUMBER;
599 agno++;
600 if (agno >= agcount)
601 agno = 0;
602 if (agno == pagno) {
603 if (flags == 0)
604 return NULLAGNUMBER;
605 flags = 0;
606 }
607 }
608 }
609
610 /*
611 * Try to retrieve the next record to the left/right from the current one.
612 */
613 STATIC int
614 xfs_ialloc_next_rec(
615 struct xfs_btree_cur *cur,
616 xfs_inobt_rec_incore_t *rec,
617 int *done,
618 int left)
619 {
620 int error;
621 int i;
622
623 if (left)
624 error = xfs_btree_decrement(cur, 0, &i);
625 else
626 error = xfs_btree_increment(cur, 0, &i);
627
628 if (error)
629 return error;
630 *done = !i;
631 if (i) {
632 error = xfs_inobt_get_rec(cur, rec, &i);
633 if (error)
634 return error;
635 XFS_WANT_CORRUPTED_RETURN(i == 1);
636 }
637
638 return 0;
639 }
640
641 STATIC int
642 xfs_ialloc_get_rec(
643 struct xfs_btree_cur *cur,
644 xfs_agino_t agino,
645 xfs_inobt_rec_incore_t *rec,
646 int *done)
647 {
648 int error;
649 int i;
650
651 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
652 if (error)
653 return error;
654 *done = !i;
655 if (i) {
656 error = xfs_inobt_get_rec(cur, rec, &i);
657 if (error)
658 return error;
659 XFS_WANT_CORRUPTED_RETURN(i == 1);
660 }
661
662 return 0;
663 }
664
665 /*
666 * Allocate an inode.
667 *
668 * The caller selected an AG for us, and made sure that free inodes are
669 * available.
670 */
671 STATIC int
672 xfs_dialloc_ag(
673 struct xfs_trans *tp,
674 struct xfs_buf *agbp,
675 xfs_ino_t parent,
676 xfs_ino_t *inop)
677 {
678 struct xfs_mount *mp = tp->t_mountp;
679 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
680 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
681 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
682 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
683 struct xfs_perag *pag;
684 struct xfs_btree_cur *cur, *tcur;
685 struct xfs_inobt_rec_incore rec, trec;
686 xfs_ino_t ino;
687 int error;
688 int offset;
689 int i, j;
690
691 pag = xfs_perag_get(mp, agno);
692
693 ASSERT(pag->pagi_init);
694 ASSERT(pag->pagi_inodeok);
695 ASSERT(pag->pagi_freecount > 0);
696
697 restart_pagno:
698 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
699 /*
700 * If pagino is 0 (this is the root inode allocation) use newino.
701 * This must work because we've just allocated some.
702 */
703 if (!pagino)
704 pagino = be32_to_cpu(agi->agi_newino);
705
706 error = xfs_check_agi_freecount(cur, agi);
707 if (error)
708 goto error0;
709
710 /*
711 * If in the same AG as the parent, try to get near the parent.
712 */
713 if (pagno == agno) {
714 int doneleft; /* done, to the left */
715 int doneright; /* done, to the right */
716 int searchdistance = 10;
717
718 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
719 if (error)
720 goto error0;
721 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
722
723 error = xfs_inobt_get_rec(cur, &rec, &j);
724 if (error)
725 goto error0;
726 XFS_WANT_CORRUPTED_GOTO(j == 1, error0);
727
728 if (rec.ir_freecount > 0) {
729 /*
730 * Found a free inode in the same chunk
731 * as the parent, done.
732 */
733 goto alloc_inode;
734 }
735
736
737 /*
738 * In the same AG as parent, but parent's chunk is full.
739 */
740
741 /* duplicate the cursor, search left & right simultaneously */
742 error = xfs_btree_dup_cursor(cur, &tcur);
743 if (error)
744 goto error0;
745
746 /*
747 * Skip to last blocks looked up if same parent inode.
748 */
749 if (pagino != NULLAGINO &&
750 pag->pagl_pagino == pagino &&
751 pag->pagl_leftrec != NULLAGINO &&
752 pag->pagl_rightrec != NULLAGINO) {
753 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
754 &trec, &doneleft);
755 if (error)
756 goto error1;
757
758 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
759 &rec, &doneright);
760 if (error)
761 goto error1;
762 } else {
763 /* search left with tcur, back up 1 record */
764 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
765 if (error)
766 goto error1;
767
768 /* search right with cur, go forward 1 record. */
769 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
770 if (error)
771 goto error1;
772 }
773
774 /*
775 * Loop until we find an inode chunk with a free inode.
776 */
777 while (!doneleft || !doneright) {
778 int useleft; /* using left inode chunk this time */
779
780 if (!--searchdistance) {
781 /*
782 * Not in range - save last search
783 * location and allocate a new inode
784 */
785 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
786 pag->pagl_leftrec = trec.ir_startino;
787 pag->pagl_rightrec = rec.ir_startino;
788 pag->pagl_pagino = pagino;
789 goto newino;
790 }
791
792 /* figure out the closer block if both are valid. */
793 if (!doneleft && !doneright) {
794 useleft = pagino -
795 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
796 rec.ir_startino - pagino;
797 } else {
798 useleft = !doneleft;
799 }
800
801 /* free inodes to the left? */
802 if (useleft && trec.ir_freecount) {
803 rec = trec;
804 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
805 cur = tcur;
806
807 pag->pagl_leftrec = trec.ir_startino;
808 pag->pagl_rightrec = rec.ir_startino;
809 pag->pagl_pagino = pagino;
810 goto alloc_inode;
811 }
812
813 /* free inodes to the right? */
814 if (!useleft && rec.ir_freecount) {
815 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
816
817 pag->pagl_leftrec = trec.ir_startino;
818 pag->pagl_rightrec = rec.ir_startino;
819 pag->pagl_pagino = pagino;
820 goto alloc_inode;
821 }
822
823 /* get next record to check */
824 if (useleft) {
825 error = xfs_ialloc_next_rec(tcur, &trec,
826 &doneleft, 1);
827 } else {
828 error = xfs_ialloc_next_rec(cur, &rec,
829 &doneright, 0);
830 }
831 if (error)
832 goto error1;
833 }
834
835 /*
836 * We've reached the end of the btree. because
837 * we are only searching a small chunk of the
838 * btree each search, there is obviously free
839 * inodes closer to the parent inode than we
840 * are now. restart the search again.
841 */
842 pag->pagl_pagino = NULLAGINO;
843 pag->pagl_leftrec = NULLAGINO;
844 pag->pagl_rightrec = NULLAGINO;
845 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
846 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
847 goto restart_pagno;
848 }
849
850 /*
851 * In a different AG from the parent.
852 * See if the most recently allocated block has any free.
853 */
854 newino:
855 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
856 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
857 XFS_LOOKUP_EQ, &i);
858 if (error)
859 goto error0;
860
861 if (i == 1) {
862 error = xfs_inobt_get_rec(cur, &rec, &j);
863 if (error)
864 goto error0;
865
866 if (j == 1 && rec.ir_freecount > 0) {
867 /*
868 * The last chunk allocated in the group
869 * still has a free inode.
870 */
871 goto alloc_inode;
872 }
873 }
874 }
875
876 /*
877 * None left in the last group, search the whole AG
878 */
879 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
880 if (error)
881 goto error0;
882 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
883
884 for (;;) {
885 error = xfs_inobt_get_rec(cur, &rec, &i);
886 if (error)
887 goto error0;
888 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
889 if (rec.ir_freecount > 0)
890 break;
891 error = xfs_btree_increment(cur, 0, &i);
892 if (error)
893 goto error0;
894 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
895 }
896
897 alloc_inode:
898 offset = xfs_lowbit64(rec.ir_free);
899 ASSERT(offset >= 0);
900 ASSERT(offset < XFS_INODES_PER_CHUNK);
901 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
902 XFS_INODES_PER_CHUNK) == 0);
903 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
904 rec.ir_free &= ~XFS_INOBT_MASK(offset);
905 rec.ir_freecount--;
906 error = xfs_inobt_update(cur, &rec);
907 if (error)
908 goto error0;
909 be32_add_cpu(&agi->agi_freecount, -1);
910 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
911 pag->pagi_freecount--;
912
913 error = xfs_check_agi_freecount(cur, agi);
914 if (error)
915 goto error0;
916
917 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
918 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
919 xfs_perag_put(pag);
920 *inop = ino;
921 return 0;
922 error1:
923 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
924 error0:
925 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
926 xfs_perag_put(pag);
927 return error;
928 }
929
930 /*
931 * Allocate an inode on disk.
932 *
933 * Mode is used to tell whether the new inode will need space, and whether it
934 * is a directory.
935 *
936 * This function is designed to be called twice if it has to do an allocation
937 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
938 * If an inode is available without having to performn an allocation, an inode
939 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
940 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
941 * The caller should then commit the current transaction, allocate a
942 * new transaction, and call xfs_dialloc() again, passing in the previous value
943 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
944 * buffer is locked across the two calls, the second call is guaranteed to have
945 * a free inode available.
946 *
947 * Once we successfully pick an inode its number is returned and the on-disk
948 * data structures are updated. The inode itself is not read in, since doing so
949 * would break ordering constraints with xfs_reclaim.
950 */
951 int
952 xfs_dialloc(
953 struct xfs_trans *tp,
954 xfs_ino_t parent,
955 umode_t mode,
956 int okalloc,
957 struct xfs_buf **IO_agbp,
958 xfs_ino_t *inop)
959 {
960 struct xfs_mount *mp = tp->t_mountp;
961 struct xfs_buf *agbp;
962 xfs_agnumber_t agno;
963 int error;
964 int ialloced;
965 int noroom = 0;
966 xfs_agnumber_t start_agno;
967 struct xfs_perag *pag;
968
969 if (*IO_agbp) {
970 /*
971 * If the caller passes in a pointer to the AGI buffer,
972 * continue where we left off before. In this case, we
973 * know that the allocation group has free inodes.
974 */
975 agbp = *IO_agbp;
976 goto out_alloc;
977 }
978
979 /*
980 * We do not have an agbp, so select an initial allocation
981 * group for inode allocation.
982 */
983 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
984 if (start_agno == NULLAGNUMBER) {
985 *inop = NULLFSINO;
986 return 0;
987 }
988
989 /*
990 * If we have already hit the ceiling of inode blocks then clear
991 * okalloc so we scan all available agi structures for a free
992 * inode.
993 */
994 if (mp->m_maxicount &&
995 mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) {
996 noroom = 1;
997 okalloc = 0;
998 }
999
1000 /*
1001 * Loop until we find an allocation group that either has free inodes
1002 * or in which we can allocate some inodes. Iterate through the
1003 * allocation groups upward, wrapping at the end.
1004 */
1005 agno = start_agno;
1006 for (;;) {
1007 pag = xfs_perag_get(mp, agno);
1008 if (!pag->pagi_inodeok) {
1009 xfs_ialloc_next_ag(mp);
1010 goto nextag;
1011 }
1012
1013 if (!pag->pagi_init) {
1014 error = xfs_ialloc_pagi_init(mp, tp, agno);
1015 if (error)
1016 goto out_error;
1017 }
1018
1019 /*
1020 * Do a first racy fast path check if this AG is usable.
1021 */
1022 if (!pag->pagi_freecount && !okalloc)
1023 goto nextag;
1024
1025 /*
1026 * Then read in the AGI buffer and recheck with the AGI buffer
1027 * lock held.
1028 */
1029 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1030 if (error)
1031 goto out_error;
1032
1033 if (pag->pagi_freecount) {
1034 xfs_perag_put(pag);
1035 goto out_alloc;
1036 }
1037
1038 if (!okalloc)
1039 goto nextag_relse_buffer;
1040
1041
1042 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1043 if (error) {
1044 xfs_trans_brelse(tp, agbp);
1045
1046 if (error != ENOSPC)
1047 goto out_error;
1048
1049 xfs_perag_put(pag);
1050 *inop = NULLFSINO;
1051 return 0;
1052 }
1053
1054 if (ialloced) {
1055 /*
1056 * We successfully allocated some inodes, return
1057 * the current context to the caller so that it
1058 * can commit the current transaction and call
1059 * us again where we left off.
1060 */
1061 ASSERT(pag->pagi_freecount > 0);
1062 xfs_perag_put(pag);
1063
1064 *IO_agbp = agbp;
1065 *inop = NULLFSINO;
1066 return 0;
1067 }
1068
1069 nextag_relse_buffer:
1070 xfs_trans_brelse(tp, agbp);
1071 nextag:
1072 xfs_perag_put(pag);
1073 if (++agno == mp->m_sb.sb_agcount)
1074 agno = 0;
1075 if (agno == start_agno) {
1076 *inop = NULLFSINO;
1077 return noroom ? ENOSPC : 0;
1078 }
1079 }
1080
1081 out_alloc:
1082 *IO_agbp = NULL;
1083 return xfs_dialloc_ag(tp, agbp, parent, inop);
1084 out_error:
1085 xfs_perag_put(pag);
1086 return XFS_ERROR(error);
1087 }
1088
1089 /*
1090 * Free disk inode. Carefully avoids touching the incore inode, all
1091 * manipulations incore are the caller's responsibility.
1092 * The on-disk inode is not changed by this operation, only the
1093 * btree (free inode mask) is changed.
1094 */
1095 int
1096 xfs_difree(
1097 xfs_trans_t *tp, /* transaction pointer */
1098 xfs_ino_t inode, /* inode to be freed */
1099 xfs_bmap_free_t *flist, /* extents to free */
1100 int *delete, /* set if inode cluster was deleted */
1101 xfs_ino_t *first_ino) /* first inode in deleted cluster */
1102 {
1103 /* REFERENCED */
1104 xfs_agblock_t agbno; /* block number containing inode */
1105 xfs_buf_t *agbp; /* buffer containing allocation group header */
1106 xfs_agino_t agino; /* inode number relative to allocation group */
1107 xfs_agnumber_t agno; /* allocation group number */
1108 xfs_agi_t *agi; /* allocation group header */
1109 xfs_btree_cur_t *cur; /* inode btree cursor */
1110 int error; /* error return value */
1111 int i; /* result code */
1112 int ilen; /* inodes in an inode cluster */
1113 xfs_mount_t *mp; /* mount structure for filesystem */
1114 int off; /* offset of inode in inode chunk */
1115 xfs_inobt_rec_incore_t rec; /* btree record */
1116 struct xfs_perag *pag;
1117
1118 mp = tp->t_mountp;
1119
1120 /*
1121 * Break up inode number into its components.
1122 */
1123 agno = XFS_INO_TO_AGNO(mp, inode);
1124 if (agno >= mp->m_sb.sb_agcount) {
1125 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1126 __func__, agno, mp->m_sb.sb_agcount);
1127 ASSERT(0);
1128 return XFS_ERROR(EINVAL);
1129 }
1130 agino = XFS_INO_TO_AGINO(mp, inode);
1131 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1132 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1133 __func__, (unsigned long long)inode,
1134 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1135 ASSERT(0);
1136 return XFS_ERROR(EINVAL);
1137 }
1138 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1139 if (agbno >= mp->m_sb.sb_agblocks) {
1140 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1141 __func__, agbno, mp->m_sb.sb_agblocks);
1142 ASSERT(0);
1143 return XFS_ERROR(EINVAL);
1144 }
1145 /*
1146 * Get the allocation group header.
1147 */
1148 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1149 if (error) {
1150 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1151 __func__, error);
1152 return error;
1153 }
1154 agi = XFS_BUF_TO_AGI(agbp);
1155 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1156 ASSERT(agbno < be32_to_cpu(agi->agi_length));
1157 /*
1158 * Initialize the cursor.
1159 */
1160 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1161
1162 error = xfs_check_agi_freecount(cur, agi);
1163 if (error)
1164 goto error0;
1165
1166 /*
1167 * Look for the entry describing this inode.
1168 */
1169 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1170 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1171 __func__, error);
1172 goto error0;
1173 }
1174 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1175 error = xfs_inobt_get_rec(cur, &rec, &i);
1176 if (error) {
1177 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1178 __func__, error);
1179 goto error0;
1180 }
1181 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1182 /*
1183 * Get the offset in the inode chunk.
1184 */
1185 off = agino - rec.ir_startino;
1186 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1187 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1188 /*
1189 * Mark the inode free & increment the count.
1190 */
1191 rec.ir_free |= XFS_INOBT_MASK(off);
1192 rec.ir_freecount++;
1193
1194 /*
1195 * When an inode cluster is free, it becomes eligible for removal
1196 */
1197 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1198 (rec.ir_freecount == mp->m_ialloc_inos)) {
1199
1200 *delete = 1;
1201 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1202
1203 /*
1204 * Remove the inode cluster from the AGI B+Tree, adjust the
1205 * AGI and Superblock inode counts, and mark the disk space
1206 * to be freed when the transaction is committed.
1207 */
1208 ilen = mp->m_ialloc_inos;
1209 be32_add_cpu(&agi->agi_count, -ilen);
1210 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1211 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1212 pag = xfs_perag_get(mp, agno);
1213 pag->pagi_freecount -= ilen - 1;
1214 xfs_perag_put(pag);
1215 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1216 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1217
1218 if ((error = xfs_btree_delete(cur, &i))) {
1219 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1220 __func__, error);
1221 goto error0;
1222 }
1223
1224 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1225 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1226 mp->m_ialloc_blks, flist, mp);
1227 } else {
1228 *delete = 0;
1229
1230 error = xfs_inobt_update(cur, &rec);
1231 if (error) {
1232 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1233 __func__, error);
1234 goto error0;
1235 }
1236
1237 /*
1238 * Change the inode free counts and log the ag/sb changes.
1239 */
1240 be32_add_cpu(&agi->agi_freecount, 1);
1241 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1242 pag = xfs_perag_get(mp, agno);
1243 pag->pagi_freecount++;
1244 xfs_perag_put(pag);
1245 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1246 }
1247
1248 error = xfs_check_agi_freecount(cur, agi);
1249 if (error)
1250 goto error0;
1251
1252 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1253 return 0;
1254
1255 error0:
1256 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1257 return error;
1258 }
1259
1260 STATIC int
1261 xfs_imap_lookup(
1262 struct xfs_mount *mp,
1263 struct xfs_trans *tp,
1264 xfs_agnumber_t agno,
1265 xfs_agino_t agino,
1266 xfs_agblock_t agbno,
1267 xfs_agblock_t *chunk_agbno,
1268 xfs_agblock_t *offset_agbno,
1269 int flags)
1270 {
1271 struct xfs_inobt_rec_incore rec;
1272 struct xfs_btree_cur *cur;
1273 struct xfs_buf *agbp;
1274 int error;
1275 int i;
1276
1277 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1278 if (error) {
1279 xfs_alert(mp,
1280 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1281 __func__, error, agno);
1282 return error;
1283 }
1284
1285 /*
1286 * Lookup the inode record for the given agino. If the record cannot be
1287 * found, then it's an invalid inode number and we should abort. Once
1288 * we have a record, we need to ensure it contains the inode number
1289 * we are looking up.
1290 */
1291 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1292 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1293 if (!error) {
1294 if (i)
1295 error = xfs_inobt_get_rec(cur, &rec, &i);
1296 if (!error && i == 0)
1297 error = EINVAL;
1298 }
1299
1300 xfs_trans_brelse(tp, agbp);
1301 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1302 if (error)
1303 return error;
1304
1305 /* check that the returned record contains the required inode */
1306 if (rec.ir_startino > agino ||
1307 rec.ir_startino + mp->m_ialloc_inos <= agino)
1308 return EINVAL;
1309
1310 /* for untrusted inodes check it is allocated first */
1311 if ((flags & XFS_IGET_UNTRUSTED) &&
1312 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1313 return EINVAL;
1314
1315 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1316 *offset_agbno = agbno - *chunk_agbno;
1317 return 0;
1318 }
1319
1320 /*
1321 * Return the location of the inode in imap, for mapping it into a buffer.
1322 */
1323 int
1324 xfs_imap(
1325 xfs_mount_t *mp, /* file system mount structure */
1326 xfs_trans_t *tp, /* transaction pointer */
1327 xfs_ino_t ino, /* inode to locate */
1328 struct xfs_imap *imap, /* location map structure */
1329 uint flags) /* flags for inode btree lookup */
1330 {
1331 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1332 xfs_agino_t agino; /* inode number within alloc group */
1333 xfs_agnumber_t agno; /* allocation group number */
1334 int blks_per_cluster; /* num blocks per inode cluster */
1335 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1336 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1337 int error; /* error code */
1338 int offset; /* index of inode in its buffer */
1339 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1340
1341 ASSERT(ino != NULLFSINO);
1342
1343 /*
1344 * Split up the inode number into its parts.
1345 */
1346 agno = XFS_INO_TO_AGNO(mp, ino);
1347 agino = XFS_INO_TO_AGINO(mp, ino);
1348 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1349 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1350 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1351 #ifdef DEBUG
1352 /*
1353 * Don't output diagnostic information for untrusted inodes
1354 * as they can be invalid without implying corruption.
1355 */
1356 if (flags & XFS_IGET_UNTRUSTED)
1357 return XFS_ERROR(EINVAL);
1358 if (agno >= mp->m_sb.sb_agcount) {
1359 xfs_alert(mp,
1360 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1361 __func__, agno, mp->m_sb.sb_agcount);
1362 }
1363 if (agbno >= mp->m_sb.sb_agblocks) {
1364 xfs_alert(mp,
1365 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1366 __func__, (unsigned long long)agbno,
1367 (unsigned long)mp->m_sb.sb_agblocks);
1368 }
1369 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1370 xfs_alert(mp,
1371 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1372 __func__, ino,
1373 XFS_AGINO_TO_INO(mp, agno, agino));
1374 }
1375 xfs_stack_trace();
1376 #endif /* DEBUG */
1377 return XFS_ERROR(EINVAL);
1378 }
1379
1380 blks_per_cluster = xfs_icluster_size_fsb(mp);
1381
1382 /*
1383 * For bulkstat and handle lookups, we have an untrusted inode number
1384 * that we have to verify is valid. We cannot do this just by reading
1385 * the inode buffer as it may have been unlinked and removed leaving
1386 * inodes in stale state on disk. Hence we have to do a btree lookup
1387 * in all cases where an untrusted inode number is passed.
1388 */
1389 if (flags & XFS_IGET_UNTRUSTED) {
1390 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1391 &chunk_agbno, &offset_agbno, flags);
1392 if (error)
1393 return error;
1394 goto out_map;
1395 }
1396
1397 /*
1398 * If the inode cluster size is the same as the blocksize or
1399 * smaller we get to the buffer by simple arithmetics.
1400 */
1401 if (blks_per_cluster == 1) {
1402 offset = XFS_INO_TO_OFFSET(mp, ino);
1403 ASSERT(offset < mp->m_sb.sb_inopblock);
1404
1405 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1406 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1407 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1408 return 0;
1409 }
1410
1411 /*
1412 * If the inode chunks are aligned then use simple maths to
1413 * find the location. Otherwise we have to do a btree
1414 * lookup to find the location.
1415 */
1416 if (mp->m_inoalign_mask) {
1417 offset_agbno = agbno & mp->m_inoalign_mask;
1418 chunk_agbno = agbno - offset_agbno;
1419 } else {
1420 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1421 &chunk_agbno, &offset_agbno, flags);
1422 if (error)
1423 return error;
1424 }
1425
1426 out_map:
1427 ASSERT(agbno >= chunk_agbno);
1428 cluster_agbno = chunk_agbno +
1429 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1430 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1431 XFS_INO_TO_OFFSET(mp, ino);
1432
1433 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1434 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1435 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1436
1437 /*
1438 * If the inode number maps to a block outside the bounds
1439 * of the file system then return NULL rather than calling
1440 * read_buf and panicing when we get an error from the
1441 * driver.
1442 */
1443 if ((imap->im_blkno + imap->im_len) >
1444 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1445 xfs_alert(mp,
1446 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1447 __func__, (unsigned long long) imap->im_blkno,
1448 (unsigned long long) imap->im_len,
1449 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1450 return XFS_ERROR(EINVAL);
1451 }
1452 return 0;
1453 }
1454
1455 /*
1456 * Compute and fill in value of m_in_maxlevels.
1457 */
1458 void
1459 xfs_ialloc_compute_maxlevels(
1460 xfs_mount_t *mp) /* file system mount structure */
1461 {
1462 int level;
1463 uint maxblocks;
1464 uint maxleafents;
1465 int minleafrecs;
1466 int minnoderecs;
1467
1468 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1469 XFS_INODES_PER_CHUNK_LOG;
1470 minleafrecs = mp->m_alloc_mnr[0];
1471 minnoderecs = mp->m_alloc_mnr[1];
1472 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1473 for (level = 1; maxblocks > 1; level++)
1474 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1475 mp->m_in_maxlevels = level;
1476 }
1477
1478 /*
1479 * Log specified fields for the ag hdr (inode section)
1480 */
1481 void
1482 xfs_ialloc_log_agi(
1483 xfs_trans_t *tp, /* transaction pointer */
1484 xfs_buf_t *bp, /* allocation group header buffer */
1485 int fields) /* bitmask of fields to log */
1486 {
1487 int first; /* first byte number */
1488 int last; /* last byte number */
1489 static const short offsets[] = { /* field starting offsets */
1490 /* keep in sync with bit definitions */
1491 offsetof(xfs_agi_t, agi_magicnum),
1492 offsetof(xfs_agi_t, agi_versionnum),
1493 offsetof(xfs_agi_t, agi_seqno),
1494 offsetof(xfs_agi_t, agi_length),
1495 offsetof(xfs_agi_t, agi_count),
1496 offsetof(xfs_agi_t, agi_root),
1497 offsetof(xfs_agi_t, agi_level),
1498 offsetof(xfs_agi_t, agi_freecount),
1499 offsetof(xfs_agi_t, agi_newino),
1500 offsetof(xfs_agi_t, agi_dirino),
1501 offsetof(xfs_agi_t, agi_unlinked),
1502 sizeof(xfs_agi_t)
1503 };
1504 #ifdef DEBUG
1505 xfs_agi_t *agi; /* allocation group header */
1506
1507 agi = XFS_BUF_TO_AGI(bp);
1508 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1509 #endif
1510 /*
1511 * Compute byte offsets for the first and last fields.
1512 */
1513 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
1514 /*
1515 * Log the allocation group inode header buffer.
1516 */
1517 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
1518 xfs_trans_log_buf(tp, bp, first, last);
1519 }
1520
1521 #ifdef DEBUG
1522 STATIC void
1523 xfs_check_agi_unlinked(
1524 struct xfs_agi *agi)
1525 {
1526 int i;
1527
1528 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
1529 ASSERT(agi->agi_unlinked[i]);
1530 }
1531 #else
1532 #define xfs_check_agi_unlinked(agi)
1533 #endif
1534
1535 static bool
1536 xfs_agi_verify(
1537 struct xfs_buf *bp)
1538 {
1539 struct xfs_mount *mp = bp->b_target->bt_mount;
1540 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
1541
1542 if (xfs_sb_version_hascrc(&mp->m_sb) &&
1543 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
1544 return false;
1545 /*
1546 * Validate the magic number of the agi block.
1547 */
1548 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
1549 return false;
1550 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
1551 return false;
1552
1553 /*
1554 * during growfs operations, the perag is not fully initialised,
1555 * so we can't use it for any useful checking. growfs ensures we can't
1556 * use it by using uncached buffers that don't have the perag attached
1557 * so we can detect and avoid this problem.
1558 */
1559 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
1560 return false;
1561
1562 xfs_check_agi_unlinked(agi);
1563 return true;
1564 }
1565
1566 static void
1567 xfs_agi_read_verify(
1568 struct xfs_buf *bp)
1569 {
1570 struct xfs_mount *mp = bp->b_target->bt_mount;
1571 int agi_ok = 1;
1572
1573 if (xfs_sb_version_hascrc(&mp->m_sb))
1574 agi_ok = xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
1575 offsetof(struct xfs_agi, agi_crc));
1576 agi_ok = agi_ok && xfs_agi_verify(bp);
1577
1578 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
1579 XFS_RANDOM_IALLOC_READ_AGI))) {
1580 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1581 xfs_buf_ioerror(bp, EFSCORRUPTED);
1582 }
1583 }
1584
1585 static void
1586 xfs_agi_write_verify(
1587 struct xfs_buf *bp)
1588 {
1589 struct xfs_mount *mp = bp->b_target->bt_mount;
1590 struct xfs_buf_log_item *bip = bp->b_fspriv;
1591
1592 if (!xfs_agi_verify(bp)) {
1593 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1594 xfs_buf_ioerror(bp, EFSCORRUPTED);
1595 return;
1596 }
1597
1598 if (!xfs_sb_version_hascrc(&mp->m_sb))
1599 return;
1600
1601 if (bip)
1602 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
1603 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
1604 offsetof(struct xfs_agi, agi_crc));
1605 }
1606
1607 const struct xfs_buf_ops xfs_agi_buf_ops = {
1608 .verify_read = xfs_agi_read_verify,
1609 .verify_write = xfs_agi_write_verify,
1610 };
1611
1612 /*
1613 * Read in the allocation group header (inode allocation section)
1614 */
1615 int
1616 xfs_read_agi(
1617 struct xfs_mount *mp, /* file system mount structure */
1618 struct xfs_trans *tp, /* transaction pointer */
1619 xfs_agnumber_t agno, /* allocation group number */
1620 struct xfs_buf **bpp) /* allocation group hdr buf */
1621 {
1622 int error;
1623
1624 trace_xfs_read_agi(mp, agno);
1625
1626 ASSERT(agno != NULLAGNUMBER);
1627 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1628 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1629 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1630 if (error)
1631 return error;
1632
1633 ASSERT(!xfs_buf_geterror(*bpp));
1634 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
1635 return 0;
1636 }
1637
1638 int
1639 xfs_ialloc_read_agi(
1640 struct xfs_mount *mp, /* file system mount structure */
1641 struct xfs_trans *tp, /* transaction pointer */
1642 xfs_agnumber_t agno, /* allocation group number */
1643 struct xfs_buf **bpp) /* allocation group hdr buf */
1644 {
1645 struct xfs_agi *agi; /* allocation group header */
1646 struct xfs_perag *pag; /* per allocation group data */
1647 int error;
1648
1649 trace_xfs_ialloc_read_agi(mp, agno);
1650
1651 error = xfs_read_agi(mp, tp, agno, bpp);
1652 if (error)
1653 return error;
1654
1655 agi = XFS_BUF_TO_AGI(*bpp);
1656 pag = xfs_perag_get(mp, agno);
1657 if (!pag->pagi_init) {
1658 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
1659 pag->pagi_count = be32_to_cpu(agi->agi_count);
1660 pag->pagi_init = 1;
1661 }
1662
1663 /*
1664 * It's possible for these to be out of sync if
1665 * we are in the middle of a forced shutdown.
1666 */
1667 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
1668 XFS_FORCED_SHUTDOWN(mp));
1669 xfs_perag_put(pag);
1670 return 0;
1671 }
1672
1673 /*
1674 * Read in the agi to initialise the per-ag data in the mount structure
1675 */
1676 int
1677 xfs_ialloc_pagi_init(
1678 xfs_mount_t *mp, /* file system mount structure */
1679 xfs_trans_t *tp, /* transaction pointer */
1680 xfs_agnumber_t agno) /* allocation group number */
1681 {
1682 xfs_buf_t *bp = NULL;
1683 int error;
1684
1685 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
1686 if (error)
1687 return error;
1688 if (bp)
1689 xfs_trans_brelse(tp, bp);
1690 return 0;
1691 }