]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_icache.c
454be7c673e76034ae845de939c48970a746a8d8
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41 /*
42 * Allocate and initialise an xfs_inode.
43 */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
48 {
49 struct xfs_inode *ip;
50
51 /*
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
55 */
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
62 }
63
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
66
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 /* initialise the xfs inode */
73 ip->i_ino = ino;
74 ip->i_mount = mp;
75 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 ip->i_afp = NULL;
77 ip->i_cowfp = NULL;
78 ip->i_cnextents = 0;
79 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 ip->i_flags = 0;
82 ip->i_delayed_blks = 0;
83 memset(&ip->i_d, 0, sizeof(ip->i_d));
84
85 return ip;
86 }
87
88 STATIC void
89 xfs_inode_free_callback(
90 struct rcu_head *head)
91 {
92 struct inode *inode = container_of(head, struct inode, i_rcu);
93 struct xfs_inode *ip = XFS_I(inode);
94
95 switch (VFS_I(ip)->i_mode & S_IFMT) {
96 case S_IFREG:
97 case S_IFDIR:
98 case S_IFLNK:
99 xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 break;
101 }
102
103 if (ip->i_afp)
104 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 if (ip->i_cowfp)
106 xfs_idestroy_fork(ip, XFS_COW_FORK);
107
108 if (ip->i_itemp) {
109 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 xfs_inode_item_destroy(ip);
111 ip->i_itemp = NULL;
112 }
113
114 kmem_zone_free(xfs_inode_zone, ip);
115 }
116
117 static void
118 __xfs_inode_free(
119 struct xfs_inode *ip)
120 {
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 XFS_STATS_DEC(ip->i_mount, vn_active);
124
125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127
128 void
129 xfs_inode_free(
130 struct xfs_inode *ip)
131 {
132 ASSERT(!xfs_isiflocked(ip));
133
134 /*
135 * Because we use RCU freeing we need to ensure the inode always
136 * appears to be reclaimed with an invalid inode number when in the
137 * free state. The ip->i_flags_lock provides the barrier against lookup
138 * races.
139 */
140 spin_lock(&ip->i_flags_lock);
141 ip->i_flags = XFS_IRECLAIM;
142 ip->i_ino = 0;
143 spin_unlock(&ip->i_flags_lock);
144
145 __xfs_inode_free(ip);
146 }
147
148 /*
149 * Queue a new inode reclaim pass if there are reclaimable inodes and there
150 * isn't a reclaim pass already in progress. By default it runs every 5s based
151 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152 * tunable, but that can be done if this method proves to be ineffective or too
153 * aggressive.
154 */
155 static void
156 xfs_reclaim_work_queue(
157 struct xfs_mount *mp)
158 {
159
160 rcu_read_lock();
161 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 }
165 rcu_read_unlock();
166 }
167
168 /*
169 * This is a fast pass over the inode cache to try to get reclaim moving on as
170 * many inodes as possible in a short period of time. It kicks itself every few
171 * seconds, as well as being kicked by the inode cache shrinker when memory
172 * goes low. It scans as quickly as possible avoiding locked inodes or those
173 * already being flushed, and once done schedules a future pass.
174 */
175 void
176 xfs_reclaim_worker(
177 struct work_struct *work)
178 {
179 struct xfs_mount *mp = container_of(to_delayed_work(work),
180 struct xfs_mount, m_reclaim_work);
181
182 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 xfs_reclaim_work_queue(mp);
184 }
185
186 static void
187 xfs_perag_set_reclaim_tag(
188 struct xfs_perag *pag)
189 {
190 struct xfs_mount *mp = pag->pag_mount;
191
192 lockdep_assert_held(&pag->pag_ici_lock);
193 if (pag->pag_ici_reclaimable++)
194 return;
195
196 /* propagate the reclaim tag up into the perag radix tree */
197 spin_lock(&mp->m_perag_lock);
198 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 XFS_ICI_RECLAIM_TAG);
200 spin_unlock(&mp->m_perag_lock);
201
202 /* schedule periodic background inode reclaim */
203 xfs_reclaim_work_queue(mp);
204
205 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207
208 static void
209 xfs_perag_clear_reclaim_tag(
210 struct xfs_perag *pag)
211 {
212 struct xfs_mount *mp = pag->pag_mount;
213
214 lockdep_assert_held(&pag->pag_ici_lock);
215 if (--pag->pag_ici_reclaimable)
216 return;
217
218 /* clear the reclaim tag from the perag radix tree */
219 spin_lock(&mp->m_perag_lock);
220 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 XFS_ICI_RECLAIM_TAG);
222 spin_unlock(&mp->m_perag_lock);
223 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225
226
227 /*
228 * We set the inode flag atomically with the radix tree tag.
229 * Once we get tag lookups on the radix tree, this inode flag
230 * can go away.
231 */
232 void
233 xfs_inode_set_reclaim_tag(
234 struct xfs_inode *ip)
235 {
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_perag *pag;
238
239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 spin_lock(&pag->pag_ici_lock);
241 spin_lock(&ip->i_flags_lock);
242
243 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 XFS_ICI_RECLAIM_TAG);
245 xfs_perag_set_reclaim_tag(pag);
246 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247
248 spin_unlock(&ip->i_flags_lock);
249 spin_unlock(&pag->pag_ici_lock);
250 xfs_perag_put(pag);
251 }
252
253 STATIC void
254 xfs_inode_clear_reclaim_tag(
255 struct xfs_perag *pag,
256 xfs_ino_t ino)
257 {
258 radix_tree_tag_clear(&pag->pag_ici_root,
259 XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 XFS_ICI_RECLAIM_TAG);
261 xfs_perag_clear_reclaim_tag(pag);
262 }
263
264 static void
265 xfs_inew_wait(
266 struct xfs_inode *ip)
267 {
268 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270
271 do {
272 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 if (!xfs_iflags_test(ip, XFS_INEW))
274 break;
275 schedule();
276 } while (true);
277 finish_wait(wq, &wait.wq_entry);
278 }
279
280 /*
281 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282 * part of the structure. This is made more complex by the fact we store
283 * information about the on-disk values in the VFS inode and so we can't just
284 * overwrite the values unconditionally. Hence we save the parameters we
285 * need to retain across reinitialisation, and rewrite them into the VFS inode
286 * after reinitialisation even if it fails.
287 */
288 static int
289 xfs_reinit_inode(
290 struct xfs_mount *mp,
291 struct inode *inode)
292 {
293 int error;
294 uint32_t nlink = inode->i_nlink;
295 uint32_t generation = inode->i_generation;
296 uint64_t version = inode->i_version;
297 umode_t mode = inode->i_mode;
298 dev_t dev = inode->i_rdev;
299
300 error = inode_init_always(mp->m_super, inode);
301
302 set_nlink(inode, nlink);
303 inode->i_generation = generation;
304 inode->i_version = version;
305 inode->i_mode = mode;
306 inode->i_rdev = dev;
307 return error;
308 }
309
310 /*
311 * Check the validity of the inode we just found it the cache
312 */
313 static int
314 xfs_iget_cache_hit(
315 struct xfs_perag *pag,
316 struct xfs_inode *ip,
317 xfs_ino_t ino,
318 int flags,
319 int lock_flags) __releases(RCU)
320 {
321 struct inode *inode = VFS_I(ip);
322 struct xfs_mount *mp = ip->i_mount;
323 int error;
324
325 /*
326 * check for re-use of an inode within an RCU grace period due to the
327 * radix tree nodes not being updated yet. We monitor for this by
328 * setting the inode number to zero before freeing the inode structure.
329 * If the inode has been reallocated and set up, then the inode number
330 * will not match, so check for that, too.
331 */
332 spin_lock(&ip->i_flags_lock);
333 if (ip->i_ino != ino) {
334 trace_xfs_iget_skip(ip);
335 XFS_STATS_INC(mp, xs_ig_frecycle);
336 error = -EAGAIN;
337 goto out_error;
338 }
339
340
341 /*
342 * If we are racing with another cache hit that is currently
343 * instantiating this inode or currently recycling it out of
344 * reclaimabe state, wait for the initialisation to complete
345 * before continuing.
346 *
347 * XXX(hch): eventually we should do something equivalent to
348 * wait_on_inode to wait for these flags to be cleared
349 * instead of polling for it.
350 */
351 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
352 trace_xfs_iget_skip(ip);
353 XFS_STATS_INC(mp, xs_ig_frecycle);
354 error = -EAGAIN;
355 goto out_error;
356 }
357
358 /*
359 * If lookup is racing with unlink return an error immediately.
360 */
361 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
362 error = -ENOENT;
363 goto out_error;
364 }
365
366 /*
367 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
368 * Need to carefully get it back into useable state.
369 */
370 if (ip->i_flags & XFS_IRECLAIMABLE) {
371 trace_xfs_iget_reclaim(ip);
372
373 if (flags & XFS_IGET_INCORE) {
374 error = -EAGAIN;
375 goto out_error;
376 }
377
378 /*
379 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
380 * from stomping over us while we recycle the inode. We can't
381 * clear the radix tree reclaimable tag yet as it requires
382 * pag_ici_lock to be held exclusive.
383 */
384 ip->i_flags |= XFS_IRECLAIM;
385
386 spin_unlock(&ip->i_flags_lock);
387 rcu_read_unlock();
388
389 error = xfs_reinit_inode(mp, inode);
390 if (error) {
391 bool wake;
392 /*
393 * Re-initializing the inode failed, and we are in deep
394 * trouble. Try to re-add it to the reclaim list.
395 */
396 rcu_read_lock();
397 spin_lock(&ip->i_flags_lock);
398 wake = !!__xfs_iflags_test(ip, XFS_INEW);
399 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
400 if (wake)
401 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
402 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
403 trace_xfs_iget_reclaim_fail(ip);
404 goto out_error;
405 }
406
407 spin_lock(&pag->pag_ici_lock);
408 spin_lock(&ip->i_flags_lock);
409
410 /*
411 * Clear the per-lifetime state in the inode as we are now
412 * effectively a new inode and need to return to the initial
413 * state before reuse occurs.
414 */
415 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
416 ip->i_flags |= XFS_INEW;
417 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
418 inode->i_state = I_NEW;
419
420 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
421 init_rwsem(&inode->i_rwsem);
422
423 spin_unlock(&ip->i_flags_lock);
424 spin_unlock(&pag->pag_ici_lock);
425 } else {
426 /* If the VFS inode is being torn down, pause and try again. */
427 if (!igrab(inode)) {
428 trace_xfs_iget_skip(ip);
429 error = -EAGAIN;
430 goto out_error;
431 }
432
433 /* We've got a live one. */
434 spin_unlock(&ip->i_flags_lock);
435 rcu_read_unlock();
436 trace_xfs_iget_hit(ip);
437 }
438
439 if (lock_flags != 0)
440 xfs_ilock(ip, lock_flags);
441
442 if (!(flags & XFS_IGET_INCORE))
443 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
444 XFS_STATS_INC(mp, xs_ig_found);
445
446 return 0;
447
448 out_error:
449 spin_unlock(&ip->i_flags_lock);
450 rcu_read_unlock();
451 return error;
452 }
453
454
455 static int
456 xfs_iget_cache_miss(
457 struct xfs_mount *mp,
458 struct xfs_perag *pag,
459 xfs_trans_t *tp,
460 xfs_ino_t ino,
461 struct xfs_inode **ipp,
462 int flags,
463 int lock_flags)
464 {
465 struct xfs_inode *ip;
466 int error;
467 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
468 int iflags;
469
470 ip = xfs_inode_alloc(mp, ino);
471 if (!ip)
472 return -ENOMEM;
473
474 error = xfs_iread(mp, tp, ip, flags);
475 if (error)
476 goto out_destroy;
477
478 trace_xfs_iget_miss(ip);
479
480
481 /*
482 * If we are allocating a new inode, then check what was returned is
483 * actually a free, empty inode. If we are not allocating an inode,
484 * the check we didn't find a free inode.
485 */
486 if (flags & XFS_IGET_CREATE) {
487 if (VFS_I(ip)->i_mode != 0) {
488 xfs_warn(mp,
489 "Corruption detected! Free inode 0x%llx not marked free on disk",
490 ino);
491 error = -EFSCORRUPTED;
492 goto out_destroy;
493 }
494 if (ip->i_d.di_nblocks != 0) {
495 xfs_warn(mp,
496 "Corruption detected! Free inode 0x%llx has blocks allocated!",
497 ino);
498 error = -EFSCORRUPTED;
499 goto out_destroy;
500 }
501 } else if (VFS_I(ip)->i_mode == 0) {
502 error = -ENOENT;
503 goto out_destroy;
504 }
505
506 /*
507 * Preload the radix tree so we can insert safely under the
508 * write spinlock. Note that we cannot sleep inside the preload
509 * region. Since we can be called from transaction context, don't
510 * recurse into the file system.
511 */
512 if (radix_tree_preload(GFP_NOFS)) {
513 error = -EAGAIN;
514 goto out_destroy;
515 }
516
517 /*
518 * Because the inode hasn't been added to the radix-tree yet it can't
519 * be found by another thread, so we can do the non-sleeping lock here.
520 */
521 if (lock_flags) {
522 if (!xfs_ilock_nowait(ip, lock_flags))
523 BUG();
524 }
525
526 /*
527 * These values must be set before inserting the inode into the radix
528 * tree as the moment it is inserted a concurrent lookup (allowed by the
529 * RCU locking mechanism) can find it and that lookup must see that this
530 * is an inode currently under construction (i.e. that XFS_INEW is set).
531 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
532 * memory barrier that ensures this detection works correctly at lookup
533 * time.
534 */
535 iflags = XFS_INEW;
536 if (flags & XFS_IGET_DONTCACHE)
537 iflags |= XFS_IDONTCACHE;
538 ip->i_udquot = NULL;
539 ip->i_gdquot = NULL;
540 ip->i_pdquot = NULL;
541 xfs_iflags_set(ip, iflags);
542
543 /* insert the new inode */
544 spin_lock(&pag->pag_ici_lock);
545 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
546 if (unlikely(error)) {
547 WARN_ON(error != -EEXIST);
548 XFS_STATS_INC(mp, xs_ig_dup);
549 error = -EAGAIN;
550 goto out_preload_end;
551 }
552 spin_unlock(&pag->pag_ici_lock);
553 radix_tree_preload_end();
554
555 *ipp = ip;
556 return 0;
557
558 out_preload_end:
559 spin_unlock(&pag->pag_ici_lock);
560 radix_tree_preload_end();
561 if (lock_flags)
562 xfs_iunlock(ip, lock_flags);
563 out_destroy:
564 __destroy_inode(VFS_I(ip));
565 xfs_inode_free(ip);
566 return error;
567 }
568
569 /*
570 * Look up an inode by number in the given file system.
571 * The inode is looked up in the cache held in each AG.
572 * If the inode is found in the cache, initialise the vfs inode
573 * if necessary.
574 *
575 * If it is not in core, read it in from the file system's device,
576 * add it to the cache and initialise the vfs inode.
577 *
578 * The inode is locked according to the value of the lock_flags parameter.
579 * This flag parameter indicates how and if the inode's IO lock and inode lock
580 * should be taken.
581 *
582 * mp -- the mount point structure for the current file system. It points
583 * to the inode hash table.
584 * tp -- a pointer to the current transaction if there is one. This is
585 * simply passed through to the xfs_iread() call.
586 * ino -- the number of the inode desired. This is the unique identifier
587 * within the file system for the inode being requested.
588 * lock_flags -- flags indicating how to lock the inode. See the comment
589 * for xfs_ilock() for a list of valid values.
590 */
591 int
592 xfs_iget(
593 xfs_mount_t *mp,
594 xfs_trans_t *tp,
595 xfs_ino_t ino,
596 uint flags,
597 uint lock_flags,
598 xfs_inode_t **ipp)
599 {
600 xfs_inode_t *ip;
601 int error;
602 xfs_perag_t *pag;
603 xfs_agino_t agino;
604
605 /*
606 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
607 * doesn't get freed while it's being referenced during a
608 * radix tree traversal here. It assumes this function
609 * aqcuires only the ILOCK (and therefore it has no need to
610 * involve the IOLOCK in this synchronization).
611 */
612 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
613
614 /* reject inode numbers outside existing AGs */
615 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
616 return -EINVAL;
617
618 XFS_STATS_INC(mp, xs_ig_attempts);
619
620 /* get the perag structure and ensure that it's inode capable */
621 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
622 agino = XFS_INO_TO_AGINO(mp, ino);
623
624 again:
625 error = 0;
626 rcu_read_lock();
627 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
628
629 if (ip) {
630 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
631 if (error)
632 goto out_error_or_again;
633 } else {
634 rcu_read_unlock();
635 if (flags & XFS_IGET_INCORE) {
636 error = -ENODATA;
637 goto out_error_or_again;
638 }
639 XFS_STATS_INC(mp, xs_ig_missed);
640
641 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
642 flags, lock_flags);
643 if (error)
644 goto out_error_or_again;
645 }
646 xfs_perag_put(pag);
647
648 *ipp = ip;
649
650 /*
651 * If we have a real type for an on-disk inode, we can setup the inode
652 * now. If it's a new inode being created, xfs_ialloc will handle it.
653 */
654 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
655 xfs_setup_existing_inode(ip);
656 return 0;
657
658 out_error_or_again:
659 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
660 delay(1);
661 goto again;
662 }
663 xfs_perag_put(pag);
664 return error;
665 }
666
667 /*
668 * "Is this a cached inode that's also allocated?"
669 *
670 * Look up an inode by number in the given file system. If the inode is
671 * in cache and isn't in purgatory, return 1 if the inode is allocated
672 * and 0 if it is not. For all other cases (not in cache, being torn
673 * down, etc.), return a negative error code.
674 *
675 * The caller has to prevent inode allocation and freeing activity,
676 * presumably by locking the AGI buffer. This is to ensure that an
677 * inode cannot transition from allocated to freed until the caller is
678 * ready to allow that. If the inode is in an intermediate state (new,
679 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
680 * inode is not in the cache, -ENOENT will be returned. The caller must
681 * deal with these scenarios appropriately.
682 *
683 * This is a specialized use case for the online scrubber; if you're
684 * reading this, you probably want xfs_iget.
685 */
686 int
687 xfs_icache_inode_is_allocated(
688 struct xfs_mount *mp,
689 struct xfs_trans *tp,
690 xfs_ino_t ino,
691 bool *inuse)
692 {
693 struct xfs_inode *ip;
694 int error;
695
696 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
697 if (error)
698 return error;
699
700 *inuse = !!(VFS_I(ip)->i_mode);
701 IRELE(ip);
702 return 0;
703 }
704
705 /*
706 * The inode lookup is done in batches to keep the amount of lock traffic and
707 * radix tree lookups to a minimum. The batch size is a trade off between
708 * lookup reduction and stack usage. This is in the reclaim path, so we can't
709 * be too greedy.
710 */
711 #define XFS_LOOKUP_BATCH 32
712
713 STATIC int
714 xfs_inode_ag_walk_grab(
715 struct xfs_inode *ip,
716 int flags)
717 {
718 struct inode *inode = VFS_I(ip);
719 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
720
721 ASSERT(rcu_read_lock_held());
722
723 /*
724 * check for stale RCU freed inode
725 *
726 * If the inode has been reallocated, it doesn't matter if it's not in
727 * the AG we are walking - we are walking for writeback, so if it
728 * passes all the "valid inode" checks and is dirty, then we'll write
729 * it back anyway. If it has been reallocated and still being
730 * initialised, the XFS_INEW check below will catch it.
731 */
732 spin_lock(&ip->i_flags_lock);
733 if (!ip->i_ino)
734 goto out_unlock_noent;
735
736 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
737 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
738 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
739 goto out_unlock_noent;
740 spin_unlock(&ip->i_flags_lock);
741
742 /* nothing to sync during shutdown */
743 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
744 return -EFSCORRUPTED;
745
746 /* If we can't grab the inode, it must on it's way to reclaim. */
747 if (!igrab(inode))
748 return -ENOENT;
749
750 /* inode is valid */
751 return 0;
752
753 out_unlock_noent:
754 spin_unlock(&ip->i_flags_lock);
755 return -ENOENT;
756 }
757
758 STATIC int
759 xfs_inode_ag_walk(
760 struct xfs_mount *mp,
761 struct xfs_perag *pag,
762 int (*execute)(struct xfs_inode *ip, int flags,
763 void *args),
764 int flags,
765 void *args,
766 int tag,
767 int iter_flags)
768 {
769 uint32_t first_index;
770 int last_error = 0;
771 int skipped;
772 int done;
773 int nr_found;
774
775 restart:
776 done = 0;
777 skipped = 0;
778 first_index = 0;
779 nr_found = 0;
780 do {
781 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
782 int error = 0;
783 int i;
784
785 rcu_read_lock();
786
787 if (tag == -1)
788 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
789 (void **)batch, first_index,
790 XFS_LOOKUP_BATCH);
791 else
792 nr_found = radix_tree_gang_lookup_tag(
793 &pag->pag_ici_root,
794 (void **) batch, first_index,
795 XFS_LOOKUP_BATCH, tag);
796
797 if (!nr_found) {
798 rcu_read_unlock();
799 break;
800 }
801
802 /*
803 * Grab the inodes before we drop the lock. if we found
804 * nothing, nr == 0 and the loop will be skipped.
805 */
806 for (i = 0; i < nr_found; i++) {
807 struct xfs_inode *ip = batch[i];
808
809 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
810 batch[i] = NULL;
811
812 /*
813 * Update the index for the next lookup. Catch
814 * overflows into the next AG range which can occur if
815 * we have inodes in the last block of the AG and we
816 * are currently pointing to the last inode.
817 *
818 * Because we may see inodes that are from the wrong AG
819 * due to RCU freeing and reallocation, only update the
820 * index if it lies in this AG. It was a race that lead
821 * us to see this inode, so another lookup from the
822 * same index will not find it again.
823 */
824 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
825 continue;
826 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
827 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
828 done = 1;
829 }
830
831 /* unlock now we've grabbed the inodes. */
832 rcu_read_unlock();
833
834 for (i = 0; i < nr_found; i++) {
835 if (!batch[i])
836 continue;
837 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
838 xfs_iflags_test(batch[i], XFS_INEW))
839 xfs_inew_wait(batch[i]);
840 error = execute(batch[i], flags, args);
841 IRELE(batch[i]);
842 if (error == -EAGAIN) {
843 skipped++;
844 continue;
845 }
846 if (error && last_error != -EFSCORRUPTED)
847 last_error = error;
848 }
849
850 /* bail out if the filesystem is corrupted. */
851 if (error == -EFSCORRUPTED)
852 break;
853
854 cond_resched();
855
856 } while (nr_found && !done);
857
858 if (skipped) {
859 delay(1);
860 goto restart;
861 }
862 return last_error;
863 }
864
865 /*
866 * Background scanning to trim post-EOF preallocated space. This is queued
867 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
868 */
869 void
870 xfs_queue_eofblocks(
871 struct xfs_mount *mp)
872 {
873 rcu_read_lock();
874 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
875 queue_delayed_work(mp->m_eofblocks_workqueue,
876 &mp->m_eofblocks_work,
877 msecs_to_jiffies(xfs_eofb_secs * 1000));
878 rcu_read_unlock();
879 }
880
881 void
882 xfs_eofblocks_worker(
883 struct work_struct *work)
884 {
885 struct xfs_mount *mp = container_of(to_delayed_work(work),
886 struct xfs_mount, m_eofblocks_work);
887 xfs_icache_free_eofblocks(mp, NULL);
888 xfs_queue_eofblocks(mp);
889 }
890
891 /*
892 * Background scanning to trim preallocated CoW space. This is queued
893 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
894 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
895 */
896 void
897 xfs_queue_cowblocks(
898 struct xfs_mount *mp)
899 {
900 rcu_read_lock();
901 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
902 queue_delayed_work(mp->m_eofblocks_workqueue,
903 &mp->m_cowblocks_work,
904 msecs_to_jiffies(xfs_cowb_secs * 1000));
905 rcu_read_unlock();
906 }
907
908 void
909 xfs_cowblocks_worker(
910 struct work_struct *work)
911 {
912 struct xfs_mount *mp = container_of(to_delayed_work(work),
913 struct xfs_mount, m_cowblocks_work);
914 xfs_icache_free_cowblocks(mp, NULL);
915 xfs_queue_cowblocks(mp);
916 }
917
918 int
919 xfs_inode_ag_iterator_flags(
920 struct xfs_mount *mp,
921 int (*execute)(struct xfs_inode *ip, int flags,
922 void *args),
923 int flags,
924 void *args,
925 int iter_flags)
926 {
927 struct xfs_perag *pag;
928 int error = 0;
929 int last_error = 0;
930 xfs_agnumber_t ag;
931
932 ag = 0;
933 while ((pag = xfs_perag_get(mp, ag))) {
934 ag = pag->pag_agno + 1;
935 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
936 iter_flags);
937 xfs_perag_put(pag);
938 if (error) {
939 last_error = error;
940 if (error == -EFSCORRUPTED)
941 break;
942 }
943 }
944 return last_error;
945 }
946
947 int
948 xfs_inode_ag_iterator(
949 struct xfs_mount *mp,
950 int (*execute)(struct xfs_inode *ip, int flags,
951 void *args),
952 int flags,
953 void *args)
954 {
955 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
956 }
957
958 int
959 xfs_inode_ag_iterator_tag(
960 struct xfs_mount *mp,
961 int (*execute)(struct xfs_inode *ip, int flags,
962 void *args),
963 int flags,
964 void *args,
965 int tag)
966 {
967 struct xfs_perag *pag;
968 int error = 0;
969 int last_error = 0;
970 xfs_agnumber_t ag;
971
972 ag = 0;
973 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
974 ag = pag->pag_agno + 1;
975 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
976 0);
977 xfs_perag_put(pag);
978 if (error) {
979 last_error = error;
980 if (error == -EFSCORRUPTED)
981 break;
982 }
983 }
984 return last_error;
985 }
986
987 /*
988 * Grab the inode for reclaim exclusively.
989 * Return 0 if we grabbed it, non-zero otherwise.
990 */
991 STATIC int
992 xfs_reclaim_inode_grab(
993 struct xfs_inode *ip,
994 int flags)
995 {
996 ASSERT(rcu_read_lock_held());
997
998 /* quick check for stale RCU freed inode */
999 if (!ip->i_ino)
1000 return 1;
1001
1002 /*
1003 * If we are asked for non-blocking operation, do unlocked checks to
1004 * see if the inode already is being flushed or in reclaim to avoid
1005 * lock traffic.
1006 */
1007 if ((flags & SYNC_TRYLOCK) &&
1008 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1009 return 1;
1010
1011 /*
1012 * The radix tree lock here protects a thread in xfs_iget from racing
1013 * with us starting reclaim on the inode. Once we have the
1014 * XFS_IRECLAIM flag set it will not touch us.
1015 *
1016 * Due to RCU lookup, we may find inodes that have been freed and only
1017 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1018 * aren't candidates for reclaim at all, so we must check the
1019 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1020 */
1021 spin_lock(&ip->i_flags_lock);
1022 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1023 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1024 /* not a reclaim candidate. */
1025 spin_unlock(&ip->i_flags_lock);
1026 return 1;
1027 }
1028 __xfs_iflags_set(ip, XFS_IRECLAIM);
1029 spin_unlock(&ip->i_flags_lock);
1030 return 0;
1031 }
1032
1033 /*
1034 * Inodes in different states need to be treated differently. The following
1035 * table lists the inode states and the reclaim actions necessary:
1036 *
1037 * inode state iflush ret required action
1038 * --------------- ---------- ---------------
1039 * bad - reclaim
1040 * shutdown EIO unpin and reclaim
1041 * clean, unpinned 0 reclaim
1042 * stale, unpinned 0 reclaim
1043 * clean, pinned(*) 0 requeue
1044 * stale, pinned EAGAIN requeue
1045 * dirty, async - requeue
1046 * dirty, sync 0 reclaim
1047 *
1048 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1049 * handled anyway given the order of checks implemented.
1050 *
1051 * Also, because we get the flush lock first, we know that any inode that has
1052 * been flushed delwri has had the flush completed by the time we check that
1053 * the inode is clean.
1054 *
1055 * Note that because the inode is flushed delayed write by AIL pushing, the
1056 * flush lock may already be held here and waiting on it can result in very
1057 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1058 * the caller should push the AIL first before trying to reclaim inodes to
1059 * minimise the amount of time spent waiting. For background relaim, we only
1060 * bother to reclaim clean inodes anyway.
1061 *
1062 * Hence the order of actions after gaining the locks should be:
1063 * bad => reclaim
1064 * shutdown => unpin and reclaim
1065 * pinned, async => requeue
1066 * pinned, sync => unpin
1067 * stale => reclaim
1068 * clean => reclaim
1069 * dirty, async => requeue
1070 * dirty, sync => flush, wait and reclaim
1071 */
1072 STATIC int
1073 xfs_reclaim_inode(
1074 struct xfs_inode *ip,
1075 struct xfs_perag *pag,
1076 int sync_mode)
1077 {
1078 struct xfs_buf *bp = NULL;
1079 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1080 int error;
1081
1082 restart:
1083 error = 0;
1084 xfs_ilock(ip, XFS_ILOCK_EXCL);
1085 if (!xfs_iflock_nowait(ip)) {
1086 if (!(sync_mode & SYNC_WAIT))
1087 goto out;
1088 xfs_iflock(ip);
1089 }
1090
1091 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1092 xfs_iunpin_wait(ip);
1093 /* xfs_iflush_abort() drops the flush lock */
1094 xfs_iflush_abort(ip, false);
1095 goto reclaim;
1096 }
1097 if (xfs_ipincount(ip)) {
1098 if (!(sync_mode & SYNC_WAIT))
1099 goto out_ifunlock;
1100 xfs_iunpin_wait(ip);
1101 }
1102 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1103 xfs_ifunlock(ip);
1104 goto reclaim;
1105 }
1106
1107 /*
1108 * Never flush out dirty data during non-blocking reclaim, as it would
1109 * just contend with AIL pushing trying to do the same job.
1110 */
1111 if (!(sync_mode & SYNC_WAIT))
1112 goto out_ifunlock;
1113
1114 /*
1115 * Now we have an inode that needs flushing.
1116 *
1117 * Note that xfs_iflush will never block on the inode buffer lock, as
1118 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1119 * ip->i_lock, and we are doing the exact opposite here. As a result,
1120 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1121 * result in an ABBA deadlock with xfs_ifree_cluster().
1122 *
1123 * As xfs_ifree_cluser() must gather all inodes that are active in the
1124 * cache to mark them stale, if we hit this case we don't actually want
1125 * to do IO here - we want the inode marked stale so we can simply
1126 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1127 * inode, back off and try again. Hopefully the next pass through will
1128 * see the stale flag set on the inode.
1129 */
1130 error = xfs_iflush(ip, &bp);
1131 if (error == -EAGAIN) {
1132 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1133 /* backoff longer than in xfs_ifree_cluster */
1134 delay(2);
1135 goto restart;
1136 }
1137
1138 if (!error) {
1139 error = xfs_bwrite(bp);
1140 xfs_buf_relse(bp);
1141 }
1142
1143 reclaim:
1144 ASSERT(!xfs_isiflocked(ip));
1145
1146 /*
1147 * Because we use RCU freeing we need to ensure the inode always appears
1148 * to be reclaimed with an invalid inode number when in the free state.
1149 * We do this as early as possible under the ILOCK so that
1150 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1151 * detect races with us here. By doing this, we guarantee that once
1152 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1153 * it will see either a valid inode that will serialise correctly, or it
1154 * will see an invalid inode that it can skip.
1155 */
1156 spin_lock(&ip->i_flags_lock);
1157 ip->i_flags = XFS_IRECLAIM;
1158 ip->i_ino = 0;
1159 spin_unlock(&ip->i_flags_lock);
1160
1161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1162
1163 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1164 /*
1165 * Remove the inode from the per-AG radix tree.
1166 *
1167 * Because radix_tree_delete won't complain even if the item was never
1168 * added to the tree assert that it's been there before to catch
1169 * problems with the inode life time early on.
1170 */
1171 spin_lock(&pag->pag_ici_lock);
1172 if (!radix_tree_delete(&pag->pag_ici_root,
1173 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1174 ASSERT(0);
1175 xfs_perag_clear_reclaim_tag(pag);
1176 spin_unlock(&pag->pag_ici_lock);
1177
1178 /*
1179 * Here we do an (almost) spurious inode lock in order to coordinate
1180 * with inode cache radix tree lookups. This is because the lookup
1181 * can reference the inodes in the cache without taking references.
1182 *
1183 * We make that OK here by ensuring that we wait until the inode is
1184 * unlocked after the lookup before we go ahead and free it.
1185 */
1186 xfs_ilock(ip, XFS_ILOCK_EXCL);
1187 xfs_qm_dqdetach(ip);
1188 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1189
1190 __xfs_inode_free(ip);
1191 return error;
1192
1193 out_ifunlock:
1194 xfs_ifunlock(ip);
1195 out:
1196 xfs_iflags_clear(ip, XFS_IRECLAIM);
1197 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1198 /*
1199 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1200 * a short while. However, this just burns CPU time scanning the tree
1201 * waiting for IO to complete and the reclaim work never goes back to
1202 * the idle state. Instead, return 0 to let the next scheduled
1203 * background reclaim attempt to reclaim the inode again.
1204 */
1205 return 0;
1206 }
1207
1208 /*
1209 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1210 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1211 * then a shut down during filesystem unmount reclaim walk leak all the
1212 * unreclaimed inodes.
1213 */
1214 STATIC int
1215 xfs_reclaim_inodes_ag(
1216 struct xfs_mount *mp,
1217 int flags,
1218 int *nr_to_scan)
1219 {
1220 struct xfs_perag *pag;
1221 int error = 0;
1222 int last_error = 0;
1223 xfs_agnumber_t ag;
1224 int trylock = flags & SYNC_TRYLOCK;
1225 int skipped;
1226
1227 restart:
1228 ag = 0;
1229 skipped = 0;
1230 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1231 unsigned long first_index = 0;
1232 int done = 0;
1233 int nr_found = 0;
1234
1235 ag = pag->pag_agno + 1;
1236
1237 if (trylock) {
1238 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1239 skipped++;
1240 xfs_perag_put(pag);
1241 continue;
1242 }
1243 first_index = pag->pag_ici_reclaim_cursor;
1244 } else
1245 mutex_lock(&pag->pag_ici_reclaim_lock);
1246
1247 do {
1248 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1249 int i;
1250
1251 rcu_read_lock();
1252 nr_found = radix_tree_gang_lookup_tag(
1253 &pag->pag_ici_root,
1254 (void **)batch, first_index,
1255 XFS_LOOKUP_BATCH,
1256 XFS_ICI_RECLAIM_TAG);
1257 if (!nr_found) {
1258 done = 1;
1259 rcu_read_unlock();
1260 break;
1261 }
1262
1263 /*
1264 * Grab the inodes before we drop the lock. if we found
1265 * nothing, nr == 0 and the loop will be skipped.
1266 */
1267 for (i = 0; i < nr_found; i++) {
1268 struct xfs_inode *ip = batch[i];
1269
1270 if (done || xfs_reclaim_inode_grab(ip, flags))
1271 batch[i] = NULL;
1272
1273 /*
1274 * Update the index for the next lookup. Catch
1275 * overflows into the next AG range which can
1276 * occur if we have inodes in the last block of
1277 * the AG and we are currently pointing to the
1278 * last inode.
1279 *
1280 * Because we may see inodes that are from the
1281 * wrong AG due to RCU freeing and
1282 * reallocation, only update the index if it
1283 * lies in this AG. It was a race that lead us
1284 * to see this inode, so another lookup from
1285 * the same index will not find it again.
1286 */
1287 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1288 pag->pag_agno)
1289 continue;
1290 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1291 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1292 done = 1;
1293 }
1294
1295 /* unlock now we've grabbed the inodes. */
1296 rcu_read_unlock();
1297
1298 for (i = 0; i < nr_found; i++) {
1299 if (!batch[i])
1300 continue;
1301 error = xfs_reclaim_inode(batch[i], pag, flags);
1302 if (error && last_error != -EFSCORRUPTED)
1303 last_error = error;
1304 }
1305
1306 *nr_to_scan -= XFS_LOOKUP_BATCH;
1307
1308 cond_resched();
1309
1310 } while (nr_found && !done && *nr_to_scan > 0);
1311
1312 if (trylock && !done)
1313 pag->pag_ici_reclaim_cursor = first_index;
1314 else
1315 pag->pag_ici_reclaim_cursor = 0;
1316 mutex_unlock(&pag->pag_ici_reclaim_lock);
1317 xfs_perag_put(pag);
1318 }
1319
1320 /*
1321 * if we skipped any AG, and we still have scan count remaining, do
1322 * another pass this time using blocking reclaim semantics (i.e
1323 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1324 * ensure that when we get more reclaimers than AGs we block rather
1325 * than spin trying to execute reclaim.
1326 */
1327 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1328 trylock = 0;
1329 goto restart;
1330 }
1331 return last_error;
1332 }
1333
1334 int
1335 xfs_reclaim_inodes(
1336 xfs_mount_t *mp,
1337 int mode)
1338 {
1339 int nr_to_scan = INT_MAX;
1340
1341 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1342 }
1343
1344 /*
1345 * Scan a certain number of inodes for reclaim.
1346 *
1347 * When called we make sure that there is a background (fast) inode reclaim in
1348 * progress, while we will throttle the speed of reclaim via doing synchronous
1349 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1350 * them to be cleaned, which we hope will not be very long due to the
1351 * background walker having already kicked the IO off on those dirty inodes.
1352 */
1353 long
1354 xfs_reclaim_inodes_nr(
1355 struct xfs_mount *mp,
1356 int nr_to_scan)
1357 {
1358 /* kick background reclaimer and push the AIL */
1359 xfs_reclaim_work_queue(mp);
1360 xfs_ail_push_all(mp->m_ail);
1361
1362 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1363 }
1364
1365 /*
1366 * Return the number of reclaimable inodes in the filesystem for
1367 * the shrinker to determine how much to reclaim.
1368 */
1369 int
1370 xfs_reclaim_inodes_count(
1371 struct xfs_mount *mp)
1372 {
1373 struct xfs_perag *pag;
1374 xfs_agnumber_t ag = 0;
1375 int reclaimable = 0;
1376
1377 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1378 ag = pag->pag_agno + 1;
1379 reclaimable += pag->pag_ici_reclaimable;
1380 xfs_perag_put(pag);
1381 }
1382 return reclaimable;
1383 }
1384
1385 STATIC int
1386 xfs_inode_match_id(
1387 struct xfs_inode *ip,
1388 struct xfs_eofblocks *eofb)
1389 {
1390 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1391 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1392 return 0;
1393
1394 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1395 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1396 return 0;
1397
1398 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1399 xfs_get_projid(ip) != eofb->eof_prid)
1400 return 0;
1401
1402 return 1;
1403 }
1404
1405 /*
1406 * A union-based inode filtering algorithm. Process the inode if any of the
1407 * criteria match. This is for global/internal scans only.
1408 */
1409 STATIC int
1410 xfs_inode_match_id_union(
1411 struct xfs_inode *ip,
1412 struct xfs_eofblocks *eofb)
1413 {
1414 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1415 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1416 return 1;
1417
1418 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1419 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1420 return 1;
1421
1422 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1423 xfs_get_projid(ip) == eofb->eof_prid)
1424 return 1;
1425
1426 return 0;
1427 }
1428
1429 STATIC int
1430 xfs_inode_free_eofblocks(
1431 struct xfs_inode *ip,
1432 int flags,
1433 void *args)
1434 {
1435 int ret = 0;
1436 struct xfs_eofblocks *eofb = args;
1437 int match;
1438
1439 if (!xfs_can_free_eofblocks(ip, false)) {
1440 /* inode could be preallocated or append-only */
1441 trace_xfs_inode_free_eofblocks_invalid(ip);
1442 xfs_inode_clear_eofblocks_tag(ip);
1443 return 0;
1444 }
1445
1446 /*
1447 * If the mapping is dirty the operation can block and wait for some
1448 * time. Unless we are waiting, skip it.
1449 */
1450 if (!(flags & SYNC_WAIT) &&
1451 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1452 return 0;
1453
1454 if (eofb) {
1455 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1456 match = xfs_inode_match_id_union(ip, eofb);
1457 else
1458 match = xfs_inode_match_id(ip, eofb);
1459 if (!match)
1460 return 0;
1461
1462 /* skip the inode if the file size is too small */
1463 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1464 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1465 return 0;
1466 }
1467
1468 /*
1469 * If the caller is waiting, return -EAGAIN to keep the background
1470 * scanner moving and revisit the inode in a subsequent pass.
1471 */
1472 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1473 if (flags & SYNC_WAIT)
1474 ret = -EAGAIN;
1475 return ret;
1476 }
1477 ret = xfs_free_eofblocks(ip);
1478 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1479
1480 return ret;
1481 }
1482
1483 static int
1484 __xfs_icache_free_eofblocks(
1485 struct xfs_mount *mp,
1486 struct xfs_eofblocks *eofb,
1487 int (*execute)(struct xfs_inode *ip, int flags,
1488 void *args),
1489 int tag)
1490 {
1491 int flags = SYNC_TRYLOCK;
1492
1493 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1494 flags = SYNC_WAIT;
1495
1496 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1497 eofb, tag);
1498 }
1499
1500 int
1501 xfs_icache_free_eofblocks(
1502 struct xfs_mount *mp,
1503 struct xfs_eofblocks *eofb)
1504 {
1505 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1506 XFS_ICI_EOFBLOCKS_TAG);
1507 }
1508
1509 /*
1510 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1511 * multiple quotas, we don't know exactly which quota caused an allocation
1512 * failure. We make a best effort by including each quota under low free space
1513 * conditions (less than 1% free space) in the scan.
1514 */
1515 static int
1516 __xfs_inode_free_quota_eofblocks(
1517 struct xfs_inode *ip,
1518 int (*execute)(struct xfs_mount *mp,
1519 struct xfs_eofblocks *eofb))
1520 {
1521 int scan = 0;
1522 struct xfs_eofblocks eofb = {0};
1523 struct xfs_dquot *dq;
1524
1525 /*
1526 * Run a sync scan to increase effectiveness and use the union filter to
1527 * cover all applicable quotas in a single scan.
1528 */
1529 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1530
1531 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1532 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1533 if (dq && xfs_dquot_lowsp(dq)) {
1534 eofb.eof_uid = VFS_I(ip)->i_uid;
1535 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1536 scan = 1;
1537 }
1538 }
1539
1540 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1541 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1542 if (dq && xfs_dquot_lowsp(dq)) {
1543 eofb.eof_gid = VFS_I(ip)->i_gid;
1544 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1545 scan = 1;
1546 }
1547 }
1548
1549 if (scan)
1550 execute(ip->i_mount, &eofb);
1551
1552 return scan;
1553 }
1554
1555 int
1556 xfs_inode_free_quota_eofblocks(
1557 struct xfs_inode *ip)
1558 {
1559 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1560 }
1561
1562 static inline unsigned long
1563 xfs_iflag_for_tag(
1564 int tag)
1565 {
1566 switch (tag) {
1567 case XFS_ICI_EOFBLOCKS_TAG:
1568 return XFS_IEOFBLOCKS;
1569 case XFS_ICI_COWBLOCKS_TAG:
1570 return XFS_ICOWBLOCKS;
1571 default:
1572 ASSERT(0);
1573 return 0;
1574 }
1575 }
1576
1577 static void
1578 __xfs_inode_set_blocks_tag(
1579 xfs_inode_t *ip,
1580 void (*execute)(struct xfs_mount *mp),
1581 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1582 int error, unsigned long caller_ip),
1583 int tag)
1584 {
1585 struct xfs_mount *mp = ip->i_mount;
1586 struct xfs_perag *pag;
1587 int tagged;
1588
1589 /*
1590 * Don't bother locking the AG and looking up in the radix trees
1591 * if we already know that we have the tag set.
1592 */
1593 if (ip->i_flags & xfs_iflag_for_tag(tag))
1594 return;
1595 spin_lock(&ip->i_flags_lock);
1596 ip->i_flags |= xfs_iflag_for_tag(tag);
1597 spin_unlock(&ip->i_flags_lock);
1598
1599 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1600 spin_lock(&pag->pag_ici_lock);
1601
1602 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1603 radix_tree_tag_set(&pag->pag_ici_root,
1604 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1605 if (!tagged) {
1606 /* propagate the eofblocks tag up into the perag radix tree */
1607 spin_lock(&ip->i_mount->m_perag_lock);
1608 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1609 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1610 tag);
1611 spin_unlock(&ip->i_mount->m_perag_lock);
1612
1613 /* kick off background trimming */
1614 execute(ip->i_mount);
1615
1616 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1617 }
1618
1619 spin_unlock(&pag->pag_ici_lock);
1620 xfs_perag_put(pag);
1621 }
1622
1623 void
1624 xfs_inode_set_eofblocks_tag(
1625 xfs_inode_t *ip)
1626 {
1627 trace_xfs_inode_set_eofblocks_tag(ip);
1628 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1629 trace_xfs_perag_set_eofblocks,
1630 XFS_ICI_EOFBLOCKS_TAG);
1631 }
1632
1633 static void
1634 __xfs_inode_clear_blocks_tag(
1635 xfs_inode_t *ip,
1636 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1637 int error, unsigned long caller_ip),
1638 int tag)
1639 {
1640 struct xfs_mount *mp = ip->i_mount;
1641 struct xfs_perag *pag;
1642
1643 spin_lock(&ip->i_flags_lock);
1644 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1645 spin_unlock(&ip->i_flags_lock);
1646
1647 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1648 spin_lock(&pag->pag_ici_lock);
1649
1650 radix_tree_tag_clear(&pag->pag_ici_root,
1651 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1652 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1653 /* clear the eofblocks tag from the perag radix tree */
1654 spin_lock(&ip->i_mount->m_perag_lock);
1655 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1656 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1657 tag);
1658 spin_unlock(&ip->i_mount->m_perag_lock);
1659 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1660 }
1661
1662 spin_unlock(&pag->pag_ici_lock);
1663 xfs_perag_put(pag);
1664 }
1665
1666 void
1667 xfs_inode_clear_eofblocks_tag(
1668 xfs_inode_t *ip)
1669 {
1670 trace_xfs_inode_clear_eofblocks_tag(ip);
1671 return __xfs_inode_clear_blocks_tag(ip,
1672 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1673 }
1674
1675 /*
1676 * Automatic CoW Reservation Freeing
1677 *
1678 * These functions automatically garbage collect leftover CoW reservations
1679 * that were made on behalf of a cowextsize hint when we start to run out
1680 * of quota or when the reservations sit around for too long. If the file
1681 * has dirty pages or is undergoing writeback, its CoW reservations will
1682 * be retained.
1683 *
1684 * The actual garbage collection piggybacks off the same code that runs
1685 * the speculative EOF preallocation garbage collector.
1686 */
1687 STATIC int
1688 xfs_inode_free_cowblocks(
1689 struct xfs_inode *ip,
1690 int flags,
1691 void *args)
1692 {
1693 int ret;
1694 struct xfs_eofblocks *eofb = args;
1695 int match;
1696 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1697
1698 /*
1699 * Just clear the tag if we have an empty cow fork or none at all. It's
1700 * possible the inode was fully unshared since it was originally tagged.
1701 */
1702 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1703 trace_xfs_inode_free_cowblocks_invalid(ip);
1704 xfs_inode_clear_cowblocks_tag(ip);
1705 return 0;
1706 }
1707
1708 /*
1709 * If the mapping is dirty or under writeback we cannot touch the
1710 * CoW fork. Leave it alone if we're in the midst of a directio.
1711 */
1712 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1713 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1714 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1715 atomic_read(&VFS_I(ip)->i_dio_count))
1716 return 0;
1717
1718 if (eofb) {
1719 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1720 match = xfs_inode_match_id_union(ip, eofb);
1721 else
1722 match = xfs_inode_match_id(ip, eofb);
1723 if (!match)
1724 return 0;
1725
1726 /* skip the inode if the file size is too small */
1727 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1728 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1729 return 0;
1730 }
1731
1732 /* Free the CoW blocks */
1733 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1734 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1735
1736 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1737
1738 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1739 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1740
1741 return ret;
1742 }
1743
1744 int
1745 xfs_icache_free_cowblocks(
1746 struct xfs_mount *mp,
1747 struct xfs_eofblocks *eofb)
1748 {
1749 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1750 XFS_ICI_COWBLOCKS_TAG);
1751 }
1752
1753 int
1754 xfs_inode_free_quota_cowblocks(
1755 struct xfs_inode *ip)
1756 {
1757 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1758 }
1759
1760 void
1761 xfs_inode_set_cowblocks_tag(
1762 xfs_inode_t *ip)
1763 {
1764 trace_xfs_inode_set_cowblocks_tag(ip);
1765 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1766 trace_xfs_perag_set_cowblocks,
1767 XFS_ICI_COWBLOCKS_TAG);
1768 }
1769
1770 void
1771 xfs_inode_clear_cowblocks_tag(
1772 xfs_inode_t *ip)
1773 {
1774 trace_xfs_inode_clear_cowblocks_tag(ip);
1775 return __xfs_inode_clear_blocks_tag(ip,
1776 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1777 }