]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_icache.c
789f8c32e65f92f5242efd63809206228dd2c667
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39
40 STATIC void xfs_inode_clear_reclaim_tag(struct xfs_perag *pag, xfs_ino_t ino);
41
42 /*
43 * Allocate and initialise an xfs_inode.
44 */
45 struct xfs_inode *
46 xfs_inode_alloc(
47 struct xfs_mount *mp,
48 xfs_ino_t ino)
49 {
50 struct xfs_inode *ip;
51
52 /*
53 * if this didn't occur in transactions, we could use
54 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
55 * code up to do this anyway.
56 */
57 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
58 if (!ip)
59 return NULL;
60 if (inode_init_always(mp->m_super, VFS_I(ip))) {
61 kmem_zone_free(xfs_inode_zone, ip);
62 return NULL;
63 }
64
65 /* VFS doesn't initialise i_mode! */
66 VFS_I(ip)->i_mode = 0;
67
68 XFS_STATS_INC(mp, vn_active);
69 ASSERT(atomic_read(&ip->i_pincount) == 0);
70 ASSERT(!spin_is_locked(&ip->i_flags_lock));
71 ASSERT(!xfs_isiflocked(ip));
72 ASSERT(ip->i_ino == 0);
73
74 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
75
76 /* initialise the xfs inode */
77 ip->i_ino = ino;
78 ip->i_mount = mp;
79 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
80 ip->i_afp = NULL;
81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 ip->i_flags = 0;
83 ip->i_delayed_blks = 0;
84 memset(&ip->i_d, 0, sizeof(ip->i_d));
85
86 return ip;
87 }
88
89 STATIC void
90 xfs_inode_free_callback(
91 struct rcu_head *head)
92 {
93 struct inode *inode = container_of(head, struct inode, i_rcu);
94 struct xfs_inode *ip = XFS_I(inode);
95
96 switch (VFS_I(ip)->i_mode & S_IFMT) {
97 case S_IFREG:
98 case S_IFDIR:
99 case S_IFLNK:
100 xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 break;
102 }
103
104 if (ip->i_afp)
105 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
106
107 if (ip->i_itemp) {
108 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
109 xfs_inode_item_destroy(ip);
110 ip->i_itemp = NULL;
111 }
112
113 kmem_zone_free(xfs_inode_zone, ip);
114 }
115
116 static void
117 __xfs_inode_free(
118 struct xfs_inode *ip)
119 {
120 /* asserts to verify all state is correct here */
121 ASSERT(atomic_read(&ip->i_pincount) == 0);
122 ASSERT(!xfs_isiflocked(ip));
123 XFS_STATS_DEC(ip->i_mount, vn_active);
124
125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127
128 void
129 xfs_inode_free(
130 struct xfs_inode *ip)
131 {
132 /*
133 * Because we use RCU freeing we need to ensure the inode always
134 * appears to be reclaimed with an invalid inode number when in the
135 * free state. The ip->i_flags_lock provides the barrier against lookup
136 * races.
137 */
138 spin_lock(&ip->i_flags_lock);
139 ip->i_flags = XFS_IRECLAIM;
140 ip->i_ino = 0;
141 spin_unlock(&ip->i_flags_lock);
142
143 __xfs_inode_free(ip);
144 }
145
146 /*
147 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
148 * part of the structure. This is made more complex by the fact we store
149 * information about the on-disk values in the VFS inode and so we can't just
150 * overwrite the values unconditionally. Hence we save the parameters we
151 * need to retain across reinitialisation, and rewrite them into the VFS inode
152 * after reinitialisation even if it fails.
153 */
154 static int
155 xfs_reinit_inode(
156 struct xfs_mount *mp,
157 struct inode *inode)
158 {
159 int error;
160 uint32_t nlink = inode->i_nlink;
161 uint32_t generation = inode->i_generation;
162 uint64_t version = inode->i_version;
163 umode_t mode = inode->i_mode;
164
165 error = inode_init_always(mp->m_super, inode);
166
167 set_nlink(inode, nlink);
168 inode->i_generation = generation;
169 inode->i_version = version;
170 inode->i_mode = mode;
171 return error;
172 }
173
174 /*
175 * Check the validity of the inode we just found it the cache
176 */
177 static int
178 xfs_iget_cache_hit(
179 struct xfs_perag *pag,
180 struct xfs_inode *ip,
181 xfs_ino_t ino,
182 int flags,
183 int lock_flags) __releases(RCU)
184 {
185 struct inode *inode = VFS_I(ip);
186 struct xfs_mount *mp = ip->i_mount;
187 int error;
188
189 /*
190 * check for re-use of an inode within an RCU grace period due to the
191 * radix tree nodes not being updated yet. We monitor for this by
192 * setting the inode number to zero before freeing the inode structure.
193 * If the inode has been reallocated and set up, then the inode number
194 * will not match, so check for that, too.
195 */
196 spin_lock(&ip->i_flags_lock);
197 if (ip->i_ino != ino) {
198 trace_xfs_iget_skip(ip);
199 XFS_STATS_INC(mp, xs_ig_frecycle);
200 error = -EAGAIN;
201 goto out_error;
202 }
203
204
205 /*
206 * If we are racing with another cache hit that is currently
207 * instantiating this inode or currently recycling it out of
208 * reclaimabe state, wait for the initialisation to complete
209 * before continuing.
210 *
211 * XXX(hch): eventually we should do something equivalent to
212 * wait_on_inode to wait for these flags to be cleared
213 * instead of polling for it.
214 */
215 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
216 trace_xfs_iget_skip(ip);
217 XFS_STATS_INC(mp, xs_ig_frecycle);
218 error = -EAGAIN;
219 goto out_error;
220 }
221
222 /*
223 * If lookup is racing with unlink return an error immediately.
224 */
225 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
226 error = -ENOENT;
227 goto out_error;
228 }
229
230 /*
231 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
232 * Need to carefully get it back into useable state.
233 */
234 if (ip->i_flags & XFS_IRECLAIMABLE) {
235 trace_xfs_iget_reclaim(ip);
236
237 /*
238 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
239 * from stomping over us while we recycle the inode. We can't
240 * clear the radix tree reclaimable tag yet as it requires
241 * pag_ici_lock to be held exclusive.
242 */
243 ip->i_flags |= XFS_IRECLAIM;
244
245 spin_unlock(&ip->i_flags_lock);
246 rcu_read_unlock();
247
248 error = xfs_reinit_inode(mp, inode);
249 if (error) {
250 /*
251 * Re-initializing the inode failed, and we are in deep
252 * trouble. Try to re-add it to the reclaim list.
253 */
254 rcu_read_lock();
255 spin_lock(&ip->i_flags_lock);
256
257 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
258 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
259 trace_xfs_iget_reclaim_fail(ip);
260 goto out_error;
261 }
262
263 spin_lock(&pag->pag_ici_lock);
264 spin_lock(&ip->i_flags_lock);
265
266 /*
267 * Clear the per-lifetime state in the inode as we are now
268 * effectively a new inode and need to return to the initial
269 * state before reuse occurs.
270 */
271 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
272 ip->i_flags |= XFS_INEW;
273 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
274 inode->i_state = I_NEW;
275
276 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
277 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
278
279 spin_unlock(&ip->i_flags_lock);
280 spin_unlock(&pag->pag_ici_lock);
281 } else {
282 /* If the VFS inode is being torn down, pause and try again. */
283 if (!igrab(inode)) {
284 trace_xfs_iget_skip(ip);
285 error = -EAGAIN;
286 goto out_error;
287 }
288
289 /* We've got a live one. */
290 spin_unlock(&ip->i_flags_lock);
291 rcu_read_unlock();
292 trace_xfs_iget_hit(ip);
293 }
294
295 if (lock_flags != 0)
296 xfs_ilock(ip, lock_flags);
297
298 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
299 XFS_STATS_INC(mp, xs_ig_found);
300
301 return 0;
302
303 out_error:
304 spin_unlock(&ip->i_flags_lock);
305 rcu_read_unlock();
306 return error;
307 }
308
309
310 static int
311 xfs_iget_cache_miss(
312 struct xfs_mount *mp,
313 struct xfs_perag *pag,
314 xfs_trans_t *tp,
315 xfs_ino_t ino,
316 struct xfs_inode **ipp,
317 int flags,
318 int lock_flags)
319 {
320 struct xfs_inode *ip;
321 int error;
322 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
323 int iflags;
324
325 ip = xfs_inode_alloc(mp, ino);
326 if (!ip)
327 return -ENOMEM;
328
329 error = xfs_iread(mp, tp, ip, flags);
330 if (error)
331 goto out_destroy;
332
333 trace_xfs_iget_miss(ip);
334
335 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
336 error = -ENOENT;
337 goto out_destroy;
338 }
339
340 /*
341 * Preload the radix tree so we can insert safely under the
342 * write spinlock. Note that we cannot sleep inside the preload
343 * region. Since we can be called from transaction context, don't
344 * recurse into the file system.
345 */
346 if (radix_tree_preload(GFP_NOFS)) {
347 error = -EAGAIN;
348 goto out_destroy;
349 }
350
351 /*
352 * Because the inode hasn't been added to the radix-tree yet it can't
353 * be found by another thread, so we can do the non-sleeping lock here.
354 */
355 if (lock_flags) {
356 if (!xfs_ilock_nowait(ip, lock_flags))
357 BUG();
358 }
359
360 /*
361 * These values must be set before inserting the inode into the radix
362 * tree as the moment it is inserted a concurrent lookup (allowed by the
363 * RCU locking mechanism) can find it and that lookup must see that this
364 * is an inode currently under construction (i.e. that XFS_INEW is set).
365 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
366 * memory barrier that ensures this detection works correctly at lookup
367 * time.
368 */
369 iflags = XFS_INEW;
370 if (flags & XFS_IGET_DONTCACHE)
371 iflags |= XFS_IDONTCACHE;
372 ip->i_udquot = NULL;
373 ip->i_gdquot = NULL;
374 ip->i_pdquot = NULL;
375 xfs_iflags_set(ip, iflags);
376
377 /* insert the new inode */
378 spin_lock(&pag->pag_ici_lock);
379 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
380 if (unlikely(error)) {
381 WARN_ON(error != -EEXIST);
382 XFS_STATS_INC(mp, xs_ig_dup);
383 error = -EAGAIN;
384 goto out_preload_end;
385 }
386 spin_unlock(&pag->pag_ici_lock);
387 radix_tree_preload_end();
388
389 *ipp = ip;
390 return 0;
391
392 out_preload_end:
393 spin_unlock(&pag->pag_ici_lock);
394 radix_tree_preload_end();
395 if (lock_flags)
396 xfs_iunlock(ip, lock_flags);
397 out_destroy:
398 __destroy_inode(VFS_I(ip));
399 xfs_inode_free(ip);
400 return error;
401 }
402
403 /*
404 * Look up an inode by number in the given file system.
405 * The inode is looked up in the cache held in each AG.
406 * If the inode is found in the cache, initialise the vfs inode
407 * if necessary.
408 *
409 * If it is not in core, read it in from the file system's device,
410 * add it to the cache and initialise the vfs inode.
411 *
412 * The inode is locked according to the value of the lock_flags parameter.
413 * This flag parameter indicates how and if the inode's IO lock and inode lock
414 * should be taken.
415 *
416 * mp -- the mount point structure for the current file system. It points
417 * to the inode hash table.
418 * tp -- a pointer to the current transaction if there is one. This is
419 * simply passed through to the xfs_iread() call.
420 * ino -- the number of the inode desired. This is the unique identifier
421 * within the file system for the inode being requested.
422 * lock_flags -- flags indicating how to lock the inode. See the comment
423 * for xfs_ilock() for a list of valid values.
424 */
425 int
426 xfs_iget(
427 xfs_mount_t *mp,
428 xfs_trans_t *tp,
429 xfs_ino_t ino,
430 uint flags,
431 uint lock_flags,
432 xfs_inode_t **ipp)
433 {
434 xfs_inode_t *ip;
435 int error;
436 xfs_perag_t *pag;
437 xfs_agino_t agino;
438
439 /*
440 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
441 * doesn't get freed while it's being referenced during a
442 * radix tree traversal here. It assumes this function
443 * aqcuires only the ILOCK (and therefore it has no need to
444 * involve the IOLOCK in this synchronization).
445 */
446 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
447
448 /* reject inode numbers outside existing AGs */
449 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
450 return -EINVAL;
451
452 XFS_STATS_INC(mp, xs_ig_attempts);
453
454 /* get the perag structure and ensure that it's inode capable */
455 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
456 agino = XFS_INO_TO_AGINO(mp, ino);
457
458 again:
459 error = 0;
460 rcu_read_lock();
461 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
462
463 if (ip) {
464 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
465 if (error)
466 goto out_error_or_again;
467 } else {
468 rcu_read_unlock();
469 XFS_STATS_INC(mp, xs_ig_missed);
470
471 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
472 flags, lock_flags);
473 if (error)
474 goto out_error_or_again;
475 }
476 xfs_perag_put(pag);
477
478 *ipp = ip;
479
480 /*
481 * If we have a real type for an on-disk inode, we can setup the inode
482 * now. If it's a new inode being created, xfs_ialloc will handle it.
483 */
484 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
485 xfs_setup_existing_inode(ip);
486 return 0;
487
488 out_error_or_again:
489 if (error == -EAGAIN) {
490 delay(1);
491 goto again;
492 }
493 xfs_perag_put(pag);
494 return error;
495 }
496
497 /*
498 * The inode lookup is done in batches to keep the amount of lock traffic and
499 * radix tree lookups to a minimum. The batch size is a trade off between
500 * lookup reduction and stack usage. This is in the reclaim path, so we can't
501 * be too greedy.
502 */
503 #define XFS_LOOKUP_BATCH 32
504
505 STATIC int
506 xfs_inode_ag_walk_grab(
507 struct xfs_inode *ip)
508 {
509 struct inode *inode = VFS_I(ip);
510
511 ASSERT(rcu_read_lock_held());
512
513 /*
514 * check for stale RCU freed inode
515 *
516 * If the inode has been reallocated, it doesn't matter if it's not in
517 * the AG we are walking - we are walking for writeback, so if it
518 * passes all the "valid inode" checks and is dirty, then we'll write
519 * it back anyway. If it has been reallocated and still being
520 * initialised, the XFS_INEW check below will catch it.
521 */
522 spin_lock(&ip->i_flags_lock);
523 if (!ip->i_ino)
524 goto out_unlock_noent;
525
526 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
527 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
528 goto out_unlock_noent;
529 spin_unlock(&ip->i_flags_lock);
530
531 /* nothing to sync during shutdown */
532 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
533 return -EFSCORRUPTED;
534
535 /* If we can't grab the inode, it must on it's way to reclaim. */
536 if (!igrab(inode))
537 return -ENOENT;
538
539 /* inode is valid */
540 return 0;
541
542 out_unlock_noent:
543 spin_unlock(&ip->i_flags_lock);
544 return -ENOENT;
545 }
546
547 STATIC int
548 xfs_inode_ag_walk(
549 struct xfs_mount *mp,
550 struct xfs_perag *pag,
551 int (*execute)(struct xfs_inode *ip, int flags,
552 void *args),
553 int flags,
554 void *args,
555 int tag)
556 {
557 uint32_t first_index;
558 int last_error = 0;
559 int skipped;
560 int done;
561 int nr_found;
562
563 restart:
564 done = 0;
565 skipped = 0;
566 first_index = 0;
567 nr_found = 0;
568 do {
569 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
570 int error = 0;
571 int i;
572
573 rcu_read_lock();
574
575 if (tag == -1)
576 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
577 (void **)batch, first_index,
578 XFS_LOOKUP_BATCH);
579 else
580 nr_found = radix_tree_gang_lookup_tag(
581 &pag->pag_ici_root,
582 (void **) batch, first_index,
583 XFS_LOOKUP_BATCH, tag);
584
585 if (!nr_found) {
586 rcu_read_unlock();
587 break;
588 }
589
590 /*
591 * Grab the inodes before we drop the lock. if we found
592 * nothing, nr == 0 and the loop will be skipped.
593 */
594 for (i = 0; i < nr_found; i++) {
595 struct xfs_inode *ip = batch[i];
596
597 if (done || xfs_inode_ag_walk_grab(ip))
598 batch[i] = NULL;
599
600 /*
601 * Update the index for the next lookup. Catch
602 * overflows into the next AG range which can occur if
603 * we have inodes in the last block of the AG and we
604 * are currently pointing to the last inode.
605 *
606 * Because we may see inodes that are from the wrong AG
607 * due to RCU freeing and reallocation, only update the
608 * index if it lies in this AG. It was a race that lead
609 * us to see this inode, so another lookup from the
610 * same index will not find it again.
611 */
612 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
613 continue;
614 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
615 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
616 done = 1;
617 }
618
619 /* unlock now we've grabbed the inodes. */
620 rcu_read_unlock();
621
622 for (i = 0; i < nr_found; i++) {
623 if (!batch[i])
624 continue;
625 error = execute(batch[i], flags, args);
626 IRELE(batch[i]);
627 if (error == -EAGAIN) {
628 skipped++;
629 continue;
630 }
631 if (error && last_error != -EFSCORRUPTED)
632 last_error = error;
633 }
634
635 /* bail out if the filesystem is corrupted. */
636 if (error == -EFSCORRUPTED)
637 break;
638
639 cond_resched();
640
641 } while (nr_found && !done);
642
643 if (skipped) {
644 delay(1);
645 goto restart;
646 }
647 return last_error;
648 }
649
650 /*
651 * Background scanning to trim post-EOF preallocated space. This is queued
652 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
653 */
654 STATIC void
655 xfs_queue_eofblocks(
656 struct xfs_mount *mp)
657 {
658 rcu_read_lock();
659 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
660 queue_delayed_work(mp->m_eofblocks_workqueue,
661 &mp->m_eofblocks_work,
662 msecs_to_jiffies(xfs_eofb_secs * 1000));
663 rcu_read_unlock();
664 }
665
666 void
667 xfs_eofblocks_worker(
668 struct work_struct *work)
669 {
670 struct xfs_mount *mp = container_of(to_delayed_work(work),
671 struct xfs_mount, m_eofblocks_work);
672 xfs_icache_free_eofblocks(mp, NULL);
673 xfs_queue_eofblocks(mp);
674 }
675
676 int
677 xfs_inode_ag_iterator(
678 struct xfs_mount *mp,
679 int (*execute)(struct xfs_inode *ip, int flags,
680 void *args),
681 int flags,
682 void *args)
683 {
684 struct xfs_perag *pag;
685 int error = 0;
686 int last_error = 0;
687 xfs_agnumber_t ag;
688
689 ag = 0;
690 while ((pag = xfs_perag_get(mp, ag))) {
691 ag = pag->pag_agno + 1;
692 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
693 xfs_perag_put(pag);
694 if (error) {
695 last_error = error;
696 if (error == -EFSCORRUPTED)
697 break;
698 }
699 }
700 return last_error;
701 }
702
703 int
704 xfs_inode_ag_iterator_tag(
705 struct xfs_mount *mp,
706 int (*execute)(struct xfs_inode *ip, int flags,
707 void *args),
708 int flags,
709 void *args,
710 int tag)
711 {
712 struct xfs_perag *pag;
713 int error = 0;
714 int last_error = 0;
715 xfs_agnumber_t ag;
716
717 ag = 0;
718 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
719 ag = pag->pag_agno + 1;
720 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
721 xfs_perag_put(pag);
722 if (error) {
723 last_error = error;
724 if (error == -EFSCORRUPTED)
725 break;
726 }
727 }
728 return last_error;
729 }
730
731 /*
732 * Queue a new inode reclaim pass if there are reclaimable inodes and there
733 * isn't a reclaim pass already in progress. By default it runs every 5s based
734 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
735 * tunable, but that can be done if this method proves to be ineffective or too
736 * aggressive.
737 */
738 static void
739 xfs_reclaim_work_queue(
740 struct xfs_mount *mp)
741 {
742
743 rcu_read_lock();
744 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
745 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
746 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
747 }
748 rcu_read_unlock();
749 }
750
751 /*
752 * This is a fast pass over the inode cache to try to get reclaim moving on as
753 * many inodes as possible in a short period of time. It kicks itself every few
754 * seconds, as well as being kicked by the inode cache shrinker when memory
755 * goes low. It scans as quickly as possible avoiding locked inodes or those
756 * already being flushed, and once done schedules a future pass.
757 */
758 void
759 xfs_reclaim_worker(
760 struct work_struct *work)
761 {
762 struct xfs_mount *mp = container_of(to_delayed_work(work),
763 struct xfs_mount, m_reclaim_work);
764
765 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
766 xfs_reclaim_work_queue(mp);
767 }
768
769 static void
770 xfs_perag_set_reclaim_tag(
771 struct xfs_perag *pag)
772 {
773 struct xfs_mount *mp = pag->pag_mount;
774
775 ASSERT(spin_is_locked(&pag->pag_ici_lock));
776 if (pag->pag_ici_reclaimable++)
777 return;
778
779 /* propagate the reclaim tag up into the perag radix tree */
780 spin_lock(&mp->m_perag_lock);
781 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
782 XFS_ICI_RECLAIM_TAG);
783 spin_unlock(&mp->m_perag_lock);
784
785 /* schedule periodic background inode reclaim */
786 xfs_reclaim_work_queue(mp);
787
788 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
789 }
790
791 static void
792 xfs_perag_clear_reclaim_tag(
793 struct xfs_perag *pag)
794 {
795 struct xfs_mount *mp = pag->pag_mount;
796
797 ASSERT(spin_is_locked(&pag->pag_ici_lock));
798 if (--pag->pag_ici_reclaimable)
799 return;
800
801 /* clear the reclaim tag from the perag radix tree */
802 spin_lock(&mp->m_perag_lock);
803 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
804 XFS_ICI_RECLAIM_TAG);
805 spin_unlock(&mp->m_perag_lock);
806 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
807 }
808
809
810 /*
811 * We set the inode flag atomically with the radix tree tag.
812 * Once we get tag lookups on the radix tree, this inode flag
813 * can go away.
814 */
815 void
816 xfs_inode_set_reclaim_tag(
817 struct xfs_inode *ip)
818 {
819 struct xfs_mount *mp = ip->i_mount;
820 struct xfs_perag *pag;
821
822 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
823 spin_lock(&pag->pag_ici_lock);
824 spin_lock(&ip->i_flags_lock);
825
826 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
827 XFS_ICI_RECLAIM_TAG);
828 xfs_perag_set_reclaim_tag(pag);
829 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
830
831 spin_unlock(&ip->i_flags_lock);
832 spin_unlock(&pag->pag_ici_lock);
833 xfs_perag_put(pag);
834 }
835
836 STATIC void
837 xfs_inode_clear_reclaim_tag(
838 struct xfs_perag *pag,
839 xfs_ino_t ino)
840 {
841 radix_tree_tag_clear(&pag->pag_ici_root,
842 XFS_INO_TO_AGINO(pag->pag_mount, ino),
843 XFS_ICI_RECLAIM_TAG);
844 xfs_perag_clear_reclaim_tag(pag);
845 }
846
847 /*
848 * Grab the inode for reclaim exclusively.
849 * Return 0 if we grabbed it, non-zero otherwise.
850 */
851 STATIC int
852 xfs_reclaim_inode_grab(
853 struct xfs_inode *ip,
854 int flags)
855 {
856 ASSERT(rcu_read_lock_held());
857
858 /* quick check for stale RCU freed inode */
859 if (!ip->i_ino)
860 return 1;
861
862 /*
863 * If we are asked for non-blocking operation, do unlocked checks to
864 * see if the inode already is being flushed or in reclaim to avoid
865 * lock traffic.
866 */
867 if ((flags & SYNC_TRYLOCK) &&
868 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
869 return 1;
870
871 /*
872 * The radix tree lock here protects a thread in xfs_iget from racing
873 * with us starting reclaim on the inode. Once we have the
874 * XFS_IRECLAIM flag set it will not touch us.
875 *
876 * Due to RCU lookup, we may find inodes that have been freed and only
877 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
878 * aren't candidates for reclaim at all, so we must check the
879 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
880 */
881 spin_lock(&ip->i_flags_lock);
882 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
883 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
884 /* not a reclaim candidate. */
885 spin_unlock(&ip->i_flags_lock);
886 return 1;
887 }
888 __xfs_iflags_set(ip, XFS_IRECLAIM);
889 spin_unlock(&ip->i_flags_lock);
890 return 0;
891 }
892
893 /*
894 * Inodes in different states need to be treated differently. The following
895 * table lists the inode states and the reclaim actions necessary:
896 *
897 * inode state iflush ret required action
898 * --------------- ---------- ---------------
899 * bad - reclaim
900 * shutdown EIO unpin and reclaim
901 * clean, unpinned 0 reclaim
902 * stale, unpinned 0 reclaim
903 * clean, pinned(*) 0 requeue
904 * stale, pinned EAGAIN requeue
905 * dirty, async - requeue
906 * dirty, sync 0 reclaim
907 *
908 * (*) dgc: I don't think the clean, pinned state is possible but it gets
909 * handled anyway given the order of checks implemented.
910 *
911 * Also, because we get the flush lock first, we know that any inode that has
912 * been flushed delwri has had the flush completed by the time we check that
913 * the inode is clean.
914 *
915 * Note that because the inode is flushed delayed write by AIL pushing, the
916 * flush lock may already be held here and waiting on it can result in very
917 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
918 * the caller should push the AIL first before trying to reclaim inodes to
919 * minimise the amount of time spent waiting. For background relaim, we only
920 * bother to reclaim clean inodes anyway.
921 *
922 * Hence the order of actions after gaining the locks should be:
923 * bad => reclaim
924 * shutdown => unpin and reclaim
925 * pinned, async => requeue
926 * pinned, sync => unpin
927 * stale => reclaim
928 * clean => reclaim
929 * dirty, async => requeue
930 * dirty, sync => flush, wait and reclaim
931 */
932 STATIC int
933 xfs_reclaim_inode(
934 struct xfs_inode *ip,
935 struct xfs_perag *pag,
936 int sync_mode)
937 {
938 struct xfs_buf *bp = NULL;
939 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
940 int error;
941
942 restart:
943 error = 0;
944 xfs_ilock(ip, XFS_ILOCK_EXCL);
945 if (!xfs_iflock_nowait(ip)) {
946 if (!(sync_mode & SYNC_WAIT))
947 goto out;
948 xfs_iflock(ip);
949 }
950
951 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
952 xfs_iunpin_wait(ip);
953 xfs_iflush_abort(ip, false);
954 goto reclaim;
955 }
956 if (xfs_ipincount(ip)) {
957 if (!(sync_mode & SYNC_WAIT))
958 goto out_ifunlock;
959 xfs_iunpin_wait(ip);
960 }
961 if (xfs_iflags_test(ip, XFS_ISTALE))
962 goto reclaim;
963 if (xfs_inode_clean(ip))
964 goto reclaim;
965
966 /*
967 * Never flush out dirty data during non-blocking reclaim, as it would
968 * just contend with AIL pushing trying to do the same job.
969 */
970 if (!(sync_mode & SYNC_WAIT))
971 goto out_ifunlock;
972
973 /*
974 * Now we have an inode that needs flushing.
975 *
976 * Note that xfs_iflush will never block on the inode buffer lock, as
977 * xfs_ifree_cluster() can lock the inode buffer before it locks the
978 * ip->i_lock, and we are doing the exact opposite here. As a result,
979 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
980 * result in an ABBA deadlock with xfs_ifree_cluster().
981 *
982 * As xfs_ifree_cluser() must gather all inodes that are active in the
983 * cache to mark them stale, if we hit this case we don't actually want
984 * to do IO here - we want the inode marked stale so we can simply
985 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
986 * inode, back off and try again. Hopefully the next pass through will
987 * see the stale flag set on the inode.
988 */
989 error = xfs_iflush(ip, &bp);
990 if (error == -EAGAIN) {
991 xfs_iunlock(ip, XFS_ILOCK_EXCL);
992 /* backoff longer than in xfs_ifree_cluster */
993 delay(2);
994 goto restart;
995 }
996
997 if (!error) {
998 error = xfs_bwrite(bp);
999 xfs_buf_relse(bp);
1000 }
1001
1002 xfs_iflock(ip);
1003 reclaim:
1004 /*
1005 * Because we use RCU freeing we need to ensure the inode always appears
1006 * to be reclaimed with an invalid inode number when in the free state.
1007 * We do this as early as possible under the ILOCK and flush lock so
1008 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1009 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1010 * locked both the XFS_ILOCK and the flush lock that it will see either
1011 * a valid, flushable inode that will serialise correctly against the
1012 * locks below, or it will see a clean (and invalid) inode that it can
1013 * skip.
1014 */
1015 spin_lock(&ip->i_flags_lock);
1016 ip->i_flags = XFS_IRECLAIM;
1017 ip->i_ino = 0;
1018 spin_unlock(&ip->i_flags_lock);
1019
1020 xfs_ifunlock(ip);
1021 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1022
1023 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1024 /*
1025 * Remove the inode from the per-AG radix tree.
1026 *
1027 * Because radix_tree_delete won't complain even if the item was never
1028 * added to the tree assert that it's been there before to catch
1029 * problems with the inode life time early on.
1030 */
1031 spin_lock(&pag->pag_ici_lock);
1032 if (!radix_tree_delete(&pag->pag_ici_root,
1033 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1034 ASSERT(0);
1035 xfs_perag_clear_reclaim_tag(pag);
1036 spin_unlock(&pag->pag_ici_lock);
1037
1038 /*
1039 * Here we do an (almost) spurious inode lock in order to coordinate
1040 * with inode cache radix tree lookups. This is because the lookup
1041 * can reference the inodes in the cache without taking references.
1042 *
1043 * We make that OK here by ensuring that we wait until the inode is
1044 * unlocked after the lookup before we go ahead and free it.
1045 */
1046 xfs_ilock(ip, XFS_ILOCK_EXCL);
1047 xfs_qm_dqdetach(ip);
1048 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1049
1050 __xfs_inode_free(ip);
1051 return error;
1052
1053 out_ifunlock:
1054 xfs_ifunlock(ip);
1055 out:
1056 xfs_iflags_clear(ip, XFS_IRECLAIM);
1057 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1058 /*
1059 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1060 * a short while. However, this just burns CPU time scanning the tree
1061 * waiting for IO to complete and the reclaim work never goes back to
1062 * the idle state. Instead, return 0 to let the next scheduled
1063 * background reclaim attempt to reclaim the inode again.
1064 */
1065 return 0;
1066 }
1067
1068 /*
1069 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1070 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1071 * then a shut down during filesystem unmount reclaim walk leak all the
1072 * unreclaimed inodes.
1073 */
1074 STATIC int
1075 xfs_reclaim_inodes_ag(
1076 struct xfs_mount *mp,
1077 int flags,
1078 int *nr_to_scan)
1079 {
1080 struct xfs_perag *pag;
1081 int error = 0;
1082 int last_error = 0;
1083 xfs_agnumber_t ag;
1084 int trylock = flags & SYNC_TRYLOCK;
1085 int skipped;
1086
1087 restart:
1088 ag = 0;
1089 skipped = 0;
1090 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1091 unsigned long first_index = 0;
1092 int done = 0;
1093 int nr_found = 0;
1094
1095 ag = pag->pag_agno + 1;
1096
1097 if (trylock) {
1098 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1099 skipped++;
1100 xfs_perag_put(pag);
1101 continue;
1102 }
1103 first_index = pag->pag_ici_reclaim_cursor;
1104 } else
1105 mutex_lock(&pag->pag_ici_reclaim_lock);
1106
1107 do {
1108 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1109 int i;
1110
1111 rcu_read_lock();
1112 nr_found = radix_tree_gang_lookup_tag(
1113 &pag->pag_ici_root,
1114 (void **)batch, first_index,
1115 XFS_LOOKUP_BATCH,
1116 XFS_ICI_RECLAIM_TAG);
1117 if (!nr_found) {
1118 done = 1;
1119 rcu_read_unlock();
1120 break;
1121 }
1122
1123 /*
1124 * Grab the inodes before we drop the lock. if we found
1125 * nothing, nr == 0 and the loop will be skipped.
1126 */
1127 for (i = 0; i < nr_found; i++) {
1128 struct xfs_inode *ip = batch[i];
1129
1130 if (done || xfs_reclaim_inode_grab(ip, flags))
1131 batch[i] = NULL;
1132
1133 /*
1134 * Update the index for the next lookup. Catch
1135 * overflows into the next AG range which can
1136 * occur if we have inodes in the last block of
1137 * the AG and we are currently pointing to the
1138 * last inode.
1139 *
1140 * Because we may see inodes that are from the
1141 * wrong AG due to RCU freeing and
1142 * reallocation, only update the index if it
1143 * lies in this AG. It was a race that lead us
1144 * to see this inode, so another lookup from
1145 * the same index will not find it again.
1146 */
1147 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1148 pag->pag_agno)
1149 continue;
1150 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1151 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1152 done = 1;
1153 }
1154
1155 /* unlock now we've grabbed the inodes. */
1156 rcu_read_unlock();
1157
1158 for (i = 0; i < nr_found; i++) {
1159 if (!batch[i])
1160 continue;
1161 error = xfs_reclaim_inode(batch[i], pag, flags);
1162 if (error && last_error != -EFSCORRUPTED)
1163 last_error = error;
1164 }
1165
1166 *nr_to_scan -= XFS_LOOKUP_BATCH;
1167
1168 cond_resched();
1169
1170 } while (nr_found && !done && *nr_to_scan > 0);
1171
1172 if (trylock && !done)
1173 pag->pag_ici_reclaim_cursor = first_index;
1174 else
1175 pag->pag_ici_reclaim_cursor = 0;
1176 mutex_unlock(&pag->pag_ici_reclaim_lock);
1177 xfs_perag_put(pag);
1178 }
1179
1180 /*
1181 * if we skipped any AG, and we still have scan count remaining, do
1182 * another pass this time using blocking reclaim semantics (i.e
1183 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1184 * ensure that when we get more reclaimers than AGs we block rather
1185 * than spin trying to execute reclaim.
1186 */
1187 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1188 trylock = 0;
1189 goto restart;
1190 }
1191 return last_error;
1192 }
1193
1194 int
1195 xfs_reclaim_inodes(
1196 xfs_mount_t *mp,
1197 int mode)
1198 {
1199 int nr_to_scan = INT_MAX;
1200
1201 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1202 }
1203
1204 /*
1205 * Scan a certain number of inodes for reclaim.
1206 *
1207 * When called we make sure that there is a background (fast) inode reclaim in
1208 * progress, while we will throttle the speed of reclaim via doing synchronous
1209 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1210 * them to be cleaned, which we hope will not be very long due to the
1211 * background walker having already kicked the IO off on those dirty inodes.
1212 */
1213 long
1214 xfs_reclaim_inodes_nr(
1215 struct xfs_mount *mp,
1216 int nr_to_scan)
1217 {
1218 /* kick background reclaimer and push the AIL */
1219 xfs_reclaim_work_queue(mp);
1220 xfs_ail_push_all(mp->m_ail);
1221
1222 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1223 }
1224
1225 /*
1226 * Return the number of reclaimable inodes in the filesystem for
1227 * the shrinker to determine how much to reclaim.
1228 */
1229 int
1230 xfs_reclaim_inodes_count(
1231 struct xfs_mount *mp)
1232 {
1233 struct xfs_perag *pag;
1234 xfs_agnumber_t ag = 0;
1235 int reclaimable = 0;
1236
1237 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1238 ag = pag->pag_agno + 1;
1239 reclaimable += pag->pag_ici_reclaimable;
1240 xfs_perag_put(pag);
1241 }
1242 return reclaimable;
1243 }
1244
1245 STATIC int
1246 xfs_inode_match_id(
1247 struct xfs_inode *ip,
1248 struct xfs_eofblocks *eofb)
1249 {
1250 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1251 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1252 return 0;
1253
1254 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1255 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1256 return 0;
1257
1258 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1259 xfs_get_projid(ip) != eofb->eof_prid)
1260 return 0;
1261
1262 return 1;
1263 }
1264
1265 /*
1266 * A union-based inode filtering algorithm. Process the inode if any of the
1267 * criteria match. This is for global/internal scans only.
1268 */
1269 STATIC int
1270 xfs_inode_match_id_union(
1271 struct xfs_inode *ip,
1272 struct xfs_eofblocks *eofb)
1273 {
1274 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1275 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1276 return 1;
1277
1278 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1279 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1280 return 1;
1281
1282 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1283 xfs_get_projid(ip) == eofb->eof_prid)
1284 return 1;
1285
1286 return 0;
1287 }
1288
1289 STATIC int
1290 xfs_inode_free_eofblocks(
1291 struct xfs_inode *ip,
1292 int flags,
1293 void *args)
1294 {
1295 int ret;
1296 struct xfs_eofblocks *eofb = args;
1297 bool need_iolock = true;
1298 int match;
1299
1300 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1301
1302 if (!xfs_can_free_eofblocks(ip, false)) {
1303 /* inode could be preallocated or append-only */
1304 trace_xfs_inode_free_eofblocks_invalid(ip);
1305 xfs_inode_clear_eofblocks_tag(ip);
1306 return 0;
1307 }
1308
1309 /*
1310 * If the mapping is dirty the operation can block and wait for some
1311 * time. Unless we are waiting, skip it.
1312 */
1313 if (!(flags & SYNC_WAIT) &&
1314 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1315 return 0;
1316
1317 if (eofb) {
1318 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1319 match = xfs_inode_match_id_union(ip, eofb);
1320 else
1321 match = xfs_inode_match_id(ip, eofb);
1322 if (!match)
1323 return 0;
1324
1325 /* skip the inode if the file size is too small */
1326 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1327 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1328 return 0;
1329
1330 /*
1331 * A scan owner implies we already hold the iolock. Skip it in
1332 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1333 * the possibility of EAGAIN being returned.
1334 */
1335 if (eofb->eof_scan_owner == ip->i_ino)
1336 need_iolock = false;
1337 }
1338
1339 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1340
1341 /* don't revisit the inode if we're not waiting */
1342 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1343 ret = 0;
1344
1345 return ret;
1346 }
1347
1348 int
1349 xfs_icache_free_eofblocks(
1350 struct xfs_mount *mp,
1351 struct xfs_eofblocks *eofb)
1352 {
1353 int flags = SYNC_TRYLOCK;
1354
1355 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1356 flags = SYNC_WAIT;
1357
1358 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1359 eofb, XFS_ICI_EOFBLOCKS_TAG);
1360 }
1361
1362 /*
1363 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1364 * multiple quotas, we don't know exactly which quota caused an allocation
1365 * failure. We make a best effort by including each quota under low free space
1366 * conditions (less than 1% free space) in the scan.
1367 */
1368 int
1369 xfs_inode_free_quota_eofblocks(
1370 struct xfs_inode *ip)
1371 {
1372 int scan = 0;
1373 struct xfs_eofblocks eofb = {0};
1374 struct xfs_dquot *dq;
1375
1376 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1377
1378 /*
1379 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1380 * can repeatedly trylock on the inode we're currently processing. We
1381 * run a sync scan to increase effectiveness and use the union filter to
1382 * cover all applicable quotas in a single scan.
1383 */
1384 eofb.eof_scan_owner = ip->i_ino;
1385 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1386
1387 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1388 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1389 if (dq && xfs_dquot_lowsp(dq)) {
1390 eofb.eof_uid = VFS_I(ip)->i_uid;
1391 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1392 scan = 1;
1393 }
1394 }
1395
1396 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1397 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1398 if (dq && xfs_dquot_lowsp(dq)) {
1399 eofb.eof_gid = VFS_I(ip)->i_gid;
1400 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1401 scan = 1;
1402 }
1403 }
1404
1405 if (scan)
1406 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1407
1408 return scan;
1409 }
1410
1411 void
1412 xfs_inode_set_eofblocks_tag(
1413 xfs_inode_t *ip)
1414 {
1415 struct xfs_mount *mp = ip->i_mount;
1416 struct xfs_perag *pag;
1417 int tagged;
1418
1419 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1420 spin_lock(&pag->pag_ici_lock);
1421 trace_xfs_inode_set_eofblocks_tag(ip);
1422
1423 tagged = radix_tree_tagged(&pag->pag_ici_root,
1424 XFS_ICI_EOFBLOCKS_TAG);
1425 radix_tree_tag_set(&pag->pag_ici_root,
1426 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1427 XFS_ICI_EOFBLOCKS_TAG);
1428 if (!tagged) {
1429 /* propagate the eofblocks tag up into the perag radix tree */
1430 spin_lock(&ip->i_mount->m_perag_lock);
1431 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1432 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1433 XFS_ICI_EOFBLOCKS_TAG);
1434 spin_unlock(&ip->i_mount->m_perag_lock);
1435
1436 /* kick off background trimming */
1437 xfs_queue_eofblocks(ip->i_mount);
1438
1439 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1440 -1, _RET_IP_);
1441 }
1442
1443 spin_unlock(&pag->pag_ici_lock);
1444 xfs_perag_put(pag);
1445 }
1446
1447 void
1448 xfs_inode_clear_eofblocks_tag(
1449 xfs_inode_t *ip)
1450 {
1451 struct xfs_mount *mp = ip->i_mount;
1452 struct xfs_perag *pag;
1453
1454 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1455 spin_lock(&pag->pag_ici_lock);
1456 trace_xfs_inode_clear_eofblocks_tag(ip);
1457
1458 radix_tree_tag_clear(&pag->pag_ici_root,
1459 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1460 XFS_ICI_EOFBLOCKS_TAG);
1461 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1462 /* clear the eofblocks tag from the perag radix tree */
1463 spin_lock(&ip->i_mount->m_perag_lock);
1464 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1465 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1466 XFS_ICI_EOFBLOCKS_TAG);
1467 spin_unlock(&ip->i_mount->m_perag_lock);
1468 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1469 -1, _RET_IP_);
1470 }
1471
1472 spin_unlock(&pag->pag_ici_lock);
1473 xfs_perag_put(pag);
1474 }
1475