]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_icache.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_inum.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_error.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_quota.h"
33 #include "xfs_trace.h"
34 #include "xfs_icache.h"
35 #include "xfs_bmap_util.h"
36
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
39
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 struct xfs_perag *pag, struct xfs_inode *ip);
42
43 /*
44 * Allocate and initialise an xfs_inode.
45 */
46 struct xfs_inode *
47 xfs_inode_alloc(
48 struct xfs_mount *mp,
49 xfs_ino_t ino)
50 {
51 struct xfs_inode *ip;
52
53 /*
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
57 */
58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (!ip)
60 return NULL;
61 if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 kmem_zone_free(xfs_inode_zone, ip);
63 return NULL;
64 }
65
66 ASSERT(atomic_read(&ip->i_pincount) == 0);
67 ASSERT(!spin_is_locked(&ip->i_flags_lock));
68 ASSERT(!xfs_isiflocked(ip));
69 ASSERT(ip->i_ino == 0);
70
71 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
72
73 /* initialise the xfs inode */
74 ip->i_ino = ino;
75 ip->i_mount = mp;
76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 ip->i_afp = NULL;
78 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
79 ip->i_flags = 0;
80 ip->i_delayed_blks = 0;
81 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
82
83 return ip;
84 }
85
86 STATIC void
87 xfs_inode_free_callback(
88 struct rcu_head *head)
89 {
90 struct inode *inode = container_of(head, struct inode, i_rcu);
91 struct xfs_inode *ip = XFS_I(inode);
92
93 kmem_zone_free(xfs_inode_zone, ip);
94 }
95
96 void
97 xfs_inode_free(
98 struct xfs_inode *ip)
99 {
100 switch (ip->i_d.di_mode & S_IFMT) {
101 case S_IFREG:
102 case S_IFDIR:
103 case S_IFLNK:
104 xfs_idestroy_fork(ip, XFS_DATA_FORK);
105 break;
106 }
107
108 if (ip->i_afp)
109 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
110
111 if (ip->i_itemp) {
112 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
113 xfs_inode_item_destroy(ip);
114 ip->i_itemp = NULL;
115 }
116
117 /*
118 * Because we use RCU freeing we need to ensure the inode always
119 * appears to be reclaimed with an invalid inode number when in the
120 * free state. The ip->i_flags_lock provides the barrier against lookup
121 * races.
122 */
123 spin_lock(&ip->i_flags_lock);
124 ip->i_flags = XFS_IRECLAIM;
125 ip->i_ino = 0;
126 spin_unlock(&ip->i_flags_lock);
127
128 /* asserts to verify all state is correct here */
129 ASSERT(atomic_read(&ip->i_pincount) == 0);
130 ASSERT(!xfs_isiflocked(ip));
131
132 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
133 }
134
135 /*
136 * Check the validity of the inode we just found it the cache
137 */
138 static int
139 xfs_iget_cache_hit(
140 struct xfs_perag *pag,
141 struct xfs_inode *ip,
142 xfs_ino_t ino,
143 int flags,
144 int lock_flags) __releases(RCU)
145 {
146 struct inode *inode = VFS_I(ip);
147 struct xfs_mount *mp = ip->i_mount;
148 int error;
149
150 /*
151 * check for re-use of an inode within an RCU grace period due to the
152 * radix tree nodes not being updated yet. We monitor for this by
153 * setting the inode number to zero before freeing the inode structure.
154 * If the inode has been reallocated and set up, then the inode number
155 * will not match, so check for that, too.
156 */
157 spin_lock(&ip->i_flags_lock);
158 if (ip->i_ino != ino) {
159 trace_xfs_iget_skip(ip);
160 XFS_STATS_INC(xs_ig_frecycle);
161 error = EAGAIN;
162 goto out_error;
163 }
164
165
166 /*
167 * If we are racing with another cache hit that is currently
168 * instantiating this inode or currently recycling it out of
169 * reclaimabe state, wait for the initialisation to complete
170 * before continuing.
171 *
172 * XXX(hch): eventually we should do something equivalent to
173 * wait_on_inode to wait for these flags to be cleared
174 * instead of polling for it.
175 */
176 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
177 trace_xfs_iget_skip(ip);
178 XFS_STATS_INC(xs_ig_frecycle);
179 error = EAGAIN;
180 goto out_error;
181 }
182
183 /*
184 * If lookup is racing with unlink return an error immediately.
185 */
186 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
187 error = ENOENT;
188 goto out_error;
189 }
190
191 /*
192 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
193 * Need to carefully get it back into useable state.
194 */
195 if (ip->i_flags & XFS_IRECLAIMABLE) {
196 trace_xfs_iget_reclaim(ip);
197
198 /*
199 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
200 * from stomping over us while we recycle the inode. We can't
201 * clear the radix tree reclaimable tag yet as it requires
202 * pag_ici_lock to be held exclusive.
203 */
204 ip->i_flags |= XFS_IRECLAIM;
205
206 spin_unlock(&ip->i_flags_lock);
207 rcu_read_unlock();
208
209 error = -inode_init_always(mp->m_super, inode);
210 if (error) {
211 /*
212 * Re-initializing the inode failed, and we are in deep
213 * trouble. Try to re-add it to the reclaim list.
214 */
215 rcu_read_lock();
216 spin_lock(&ip->i_flags_lock);
217
218 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
219 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
220 trace_xfs_iget_reclaim_fail(ip);
221 goto out_error;
222 }
223
224 spin_lock(&pag->pag_ici_lock);
225 spin_lock(&ip->i_flags_lock);
226
227 /*
228 * Clear the per-lifetime state in the inode as we are now
229 * effectively a new inode and need to return to the initial
230 * state before reuse occurs.
231 */
232 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
233 ip->i_flags |= XFS_INEW;
234 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
235 inode->i_state = I_NEW;
236
237 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
238 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
239
240 spin_unlock(&ip->i_flags_lock);
241 spin_unlock(&pag->pag_ici_lock);
242 } else {
243 /* If the VFS inode is being torn down, pause and try again. */
244 if (!igrab(inode)) {
245 trace_xfs_iget_skip(ip);
246 error = EAGAIN;
247 goto out_error;
248 }
249
250 /* We've got a live one. */
251 spin_unlock(&ip->i_flags_lock);
252 rcu_read_unlock();
253 trace_xfs_iget_hit(ip);
254 }
255
256 if (lock_flags != 0)
257 xfs_ilock(ip, lock_flags);
258
259 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
260 XFS_STATS_INC(xs_ig_found);
261
262 return 0;
263
264 out_error:
265 spin_unlock(&ip->i_flags_lock);
266 rcu_read_unlock();
267 return error;
268 }
269
270
271 static int
272 xfs_iget_cache_miss(
273 struct xfs_mount *mp,
274 struct xfs_perag *pag,
275 xfs_trans_t *tp,
276 xfs_ino_t ino,
277 struct xfs_inode **ipp,
278 int flags,
279 int lock_flags)
280 {
281 struct xfs_inode *ip;
282 int error;
283 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
284 int iflags;
285
286 ip = xfs_inode_alloc(mp, ino);
287 if (!ip)
288 return ENOMEM;
289
290 error = xfs_iread(mp, tp, ip, flags);
291 if (error)
292 goto out_destroy;
293
294 trace_xfs_iget_miss(ip);
295
296 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
297 error = ENOENT;
298 goto out_destroy;
299 }
300
301 /*
302 * Preload the radix tree so we can insert safely under the
303 * write spinlock. Note that we cannot sleep inside the preload
304 * region. Since we can be called from transaction context, don't
305 * recurse into the file system.
306 */
307 if (radix_tree_preload(GFP_NOFS)) {
308 error = EAGAIN;
309 goto out_destroy;
310 }
311
312 /*
313 * Because the inode hasn't been added to the radix-tree yet it can't
314 * be found by another thread, so we can do the non-sleeping lock here.
315 */
316 if (lock_flags) {
317 if (!xfs_ilock_nowait(ip, lock_flags))
318 BUG();
319 }
320
321 /*
322 * These values must be set before inserting the inode into the radix
323 * tree as the moment it is inserted a concurrent lookup (allowed by the
324 * RCU locking mechanism) can find it and that lookup must see that this
325 * is an inode currently under construction (i.e. that XFS_INEW is set).
326 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
327 * memory barrier that ensures this detection works correctly at lookup
328 * time.
329 */
330 iflags = XFS_INEW;
331 if (flags & XFS_IGET_DONTCACHE)
332 iflags |= XFS_IDONTCACHE;
333 ip->i_udquot = NULL;
334 ip->i_gdquot = NULL;
335 ip->i_pdquot = NULL;
336 xfs_iflags_set(ip, iflags);
337
338 /* insert the new inode */
339 spin_lock(&pag->pag_ici_lock);
340 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
341 if (unlikely(error)) {
342 WARN_ON(error != -EEXIST);
343 XFS_STATS_INC(xs_ig_dup);
344 error = EAGAIN;
345 goto out_preload_end;
346 }
347 spin_unlock(&pag->pag_ici_lock);
348 radix_tree_preload_end();
349
350 *ipp = ip;
351 return 0;
352
353 out_preload_end:
354 spin_unlock(&pag->pag_ici_lock);
355 radix_tree_preload_end();
356 if (lock_flags)
357 xfs_iunlock(ip, lock_flags);
358 out_destroy:
359 __destroy_inode(VFS_I(ip));
360 xfs_inode_free(ip);
361 return error;
362 }
363
364 /*
365 * Look up an inode by number in the given file system.
366 * The inode is looked up in the cache held in each AG.
367 * If the inode is found in the cache, initialise the vfs inode
368 * if necessary.
369 *
370 * If it is not in core, read it in from the file system's device,
371 * add it to the cache and initialise the vfs inode.
372 *
373 * The inode is locked according to the value of the lock_flags parameter.
374 * This flag parameter indicates how and if the inode's IO lock and inode lock
375 * should be taken.
376 *
377 * mp -- the mount point structure for the current file system. It points
378 * to the inode hash table.
379 * tp -- a pointer to the current transaction if there is one. This is
380 * simply passed through to the xfs_iread() call.
381 * ino -- the number of the inode desired. This is the unique identifier
382 * within the file system for the inode being requested.
383 * lock_flags -- flags indicating how to lock the inode. See the comment
384 * for xfs_ilock() for a list of valid values.
385 */
386 int
387 xfs_iget(
388 xfs_mount_t *mp,
389 xfs_trans_t *tp,
390 xfs_ino_t ino,
391 uint flags,
392 uint lock_flags,
393 xfs_inode_t **ipp)
394 {
395 xfs_inode_t *ip;
396 int error;
397 xfs_perag_t *pag;
398 xfs_agino_t agino;
399
400 /*
401 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
402 * doesn't get freed while it's being referenced during a
403 * radix tree traversal here. It assumes this function
404 * aqcuires only the ILOCK (and therefore it has no need to
405 * involve the IOLOCK in this synchronization).
406 */
407 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
408
409 /* reject inode numbers outside existing AGs */
410 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
411 return EINVAL;
412
413 /* get the perag structure and ensure that it's inode capable */
414 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
415 agino = XFS_INO_TO_AGINO(mp, ino);
416
417 again:
418 error = 0;
419 rcu_read_lock();
420 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
421
422 if (ip) {
423 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
424 if (error)
425 goto out_error_or_again;
426 } else {
427 rcu_read_unlock();
428 XFS_STATS_INC(xs_ig_missed);
429
430 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
431 flags, lock_flags);
432 if (error)
433 goto out_error_or_again;
434 }
435 xfs_perag_put(pag);
436
437 *ipp = ip;
438
439 /*
440 * If we have a real type for an on-disk inode, we can set ops(&unlock)
441 * now. If it's a new inode being created, xfs_ialloc will handle it.
442 */
443 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
444 xfs_setup_inode(ip);
445 return 0;
446
447 out_error_or_again:
448 if (error == EAGAIN) {
449 delay(1);
450 goto again;
451 }
452 xfs_perag_put(pag);
453 return error;
454 }
455
456 /*
457 * The inode lookup is done in batches to keep the amount of lock traffic and
458 * radix tree lookups to a minimum. The batch size is a trade off between
459 * lookup reduction and stack usage. This is in the reclaim path, so we can't
460 * be too greedy.
461 */
462 #define XFS_LOOKUP_BATCH 32
463
464 STATIC int
465 xfs_inode_ag_walk_grab(
466 struct xfs_inode *ip)
467 {
468 struct inode *inode = VFS_I(ip);
469
470 ASSERT(rcu_read_lock_held());
471
472 /*
473 * check for stale RCU freed inode
474 *
475 * If the inode has been reallocated, it doesn't matter if it's not in
476 * the AG we are walking - we are walking for writeback, so if it
477 * passes all the "valid inode" checks and is dirty, then we'll write
478 * it back anyway. If it has been reallocated and still being
479 * initialised, the XFS_INEW check below will catch it.
480 */
481 spin_lock(&ip->i_flags_lock);
482 if (!ip->i_ino)
483 goto out_unlock_noent;
484
485 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
486 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
487 goto out_unlock_noent;
488 spin_unlock(&ip->i_flags_lock);
489
490 /* nothing to sync during shutdown */
491 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
492 return EFSCORRUPTED;
493
494 /* If we can't grab the inode, it must on it's way to reclaim. */
495 if (!igrab(inode))
496 return ENOENT;
497
498 /* inode is valid */
499 return 0;
500
501 out_unlock_noent:
502 spin_unlock(&ip->i_flags_lock);
503 return ENOENT;
504 }
505
506 STATIC int
507 xfs_inode_ag_walk(
508 struct xfs_mount *mp,
509 struct xfs_perag *pag,
510 int (*execute)(struct xfs_inode *ip, int flags,
511 void *args),
512 int flags,
513 void *args,
514 int tag)
515 {
516 uint32_t first_index;
517 int last_error = 0;
518 int skipped;
519 int done;
520 int nr_found;
521
522 restart:
523 done = 0;
524 skipped = 0;
525 first_index = 0;
526 nr_found = 0;
527 do {
528 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
529 int error = 0;
530 int i;
531
532 rcu_read_lock();
533
534 if (tag == -1)
535 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
536 (void **)batch, first_index,
537 XFS_LOOKUP_BATCH);
538 else
539 nr_found = radix_tree_gang_lookup_tag(
540 &pag->pag_ici_root,
541 (void **) batch, first_index,
542 XFS_LOOKUP_BATCH, tag);
543
544 if (!nr_found) {
545 rcu_read_unlock();
546 break;
547 }
548
549 /*
550 * Grab the inodes before we drop the lock. if we found
551 * nothing, nr == 0 and the loop will be skipped.
552 */
553 for (i = 0; i < nr_found; i++) {
554 struct xfs_inode *ip = batch[i];
555
556 if (done || xfs_inode_ag_walk_grab(ip))
557 batch[i] = NULL;
558
559 /*
560 * Update the index for the next lookup. Catch
561 * overflows into the next AG range which can occur if
562 * we have inodes in the last block of the AG and we
563 * are currently pointing to the last inode.
564 *
565 * Because we may see inodes that are from the wrong AG
566 * due to RCU freeing and reallocation, only update the
567 * index if it lies in this AG. It was a race that lead
568 * us to see this inode, so another lookup from the
569 * same index will not find it again.
570 */
571 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
572 continue;
573 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
574 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
575 done = 1;
576 }
577
578 /* unlock now we've grabbed the inodes. */
579 rcu_read_unlock();
580
581 for (i = 0; i < nr_found; i++) {
582 if (!batch[i])
583 continue;
584 error = execute(batch[i], flags, args);
585 IRELE(batch[i]);
586 if (error == EAGAIN) {
587 skipped++;
588 continue;
589 }
590 if (error && last_error != EFSCORRUPTED)
591 last_error = error;
592 }
593
594 /* bail out if the filesystem is corrupted. */
595 if (error == EFSCORRUPTED)
596 break;
597
598 cond_resched();
599
600 } while (nr_found && !done);
601
602 if (skipped) {
603 delay(1);
604 goto restart;
605 }
606 return last_error;
607 }
608
609 /*
610 * Background scanning to trim post-EOF preallocated space. This is queued
611 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
612 */
613 STATIC void
614 xfs_queue_eofblocks(
615 struct xfs_mount *mp)
616 {
617 rcu_read_lock();
618 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
619 queue_delayed_work(mp->m_eofblocks_workqueue,
620 &mp->m_eofblocks_work,
621 msecs_to_jiffies(xfs_eofb_secs * 1000));
622 rcu_read_unlock();
623 }
624
625 void
626 xfs_eofblocks_worker(
627 struct work_struct *work)
628 {
629 struct xfs_mount *mp = container_of(to_delayed_work(work),
630 struct xfs_mount, m_eofblocks_work);
631 xfs_icache_free_eofblocks(mp, NULL);
632 xfs_queue_eofblocks(mp);
633 }
634
635 int
636 xfs_inode_ag_iterator(
637 struct xfs_mount *mp,
638 int (*execute)(struct xfs_inode *ip, int flags,
639 void *args),
640 int flags,
641 void *args)
642 {
643 struct xfs_perag *pag;
644 int error = 0;
645 int last_error = 0;
646 xfs_agnumber_t ag;
647
648 ag = 0;
649 while ((pag = xfs_perag_get(mp, ag))) {
650 ag = pag->pag_agno + 1;
651 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
652 xfs_perag_put(pag);
653 if (error) {
654 last_error = error;
655 if (error == EFSCORRUPTED)
656 break;
657 }
658 }
659 return XFS_ERROR(last_error);
660 }
661
662 int
663 xfs_inode_ag_iterator_tag(
664 struct xfs_mount *mp,
665 int (*execute)(struct xfs_inode *ip, int flags,
666 void *args),
667 int flags,
668 void *args,
669 int tag)
670 {
671 struct xfs_perag *pag;
672 int error = 0;
673 int last_error = 0;
674 xfs_agnumber_t ag;
675
676 ag = 0;
677 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
678 ag = pag->pag_agno + 1;
679 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
680 xfs_perag_put(pag);
681 if (error) {
682 last_error = error;
683 if (error == EFSCORRUPTED)
684 break;
685 }
686 }
687 return XFS_ERROR(last_error);
688 }
689
690 /*
691 * Queue a new inode reclaim pass if there are reclaimable inodes and there
692 * isn't a reclaim pass already in progress. By default it runs every 5s based
693 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
694 * tunable, but that can be done if this method proves to be ineffective or too
695 * aggressive.
696 */
697 static void
698 xfs_reclaim_work_queue(
699 struct xfs_mount *mp)
700 {
701
702 rcu_read_lock();
703 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
704 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
705 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
706 }
707 rcu_read_unlock();
708 }
709
710 /*
711 * This is a fast pass over the inode cache to try to get reclaim moving on as
712 * many inodes as possible in a short period of time. It kicks itself every few
713 * seconds, as well as being kicked by the inode cache shrinker when memory
714 * goes low. It scans as quickly as possible avoiding locked inodes or those
715 * already being flushed, and once done schedules a future pass.
716 */
717 void
718 xfs_reclaim_worker(
719 struct work_struct *work)
720 {
721 struct xfs_mount *mp = container_of(to_delayed_work(work),
722 struct xfs_mount, m_reclaim_work);
723
724 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
725 xfs_reclaim_work_queue(mp);
726 }
727
728 static void
729 __xfs_inode_set_reclaim_tag(
730 struct xfs_perag *pag,
731 struct xfs_inode *ip)
732 {
733 radix_tree_tag_set(&pag->pag_ici_root,
734 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
735 XFS_ICI_RECLAIM_TAG);
736
737 if (!pag->pag_ici_reclaimable) {
738 /* propagate the reclaim tag up into the perag radix tree */
739 spin_lock(&ip->i_mount->m_perag_lock);
740 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
741 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
742 XFS_ICI_RECLAIM_TAG);
743 spin_unlock(&ip->i_mount->m_perag_lock);
744
745 /* schedule periodic background inode reclaim */
746 xfs_reclaim_work_queue(ip->i_mount);
747
748 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
749 -1, _RET_IP_);
750 }
751 pag->pag_ici_reclaimable++;
752 }
753
754 /*
755 * We set the inode flag atomically with the radix tree tag.
756 * Once we get tag lookups on the radix tree, this inode flag
757 * can go away.
758 */
759 void
760 xfs_inode_set_reclaim_tag(
761 xfs_inode_t *ip)
762 {
763 struct xfs_mount *mp = ip->i_mount;
764 struct xfs_perag *pag;
765
766 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
767 spin_lock(&pag->pag_ici_lock);
768 spin_lock(&ip->i_flags_lock);
769 __xfs_inode_set_reclaim_tag(pag, ip);
770 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
771 spin_unlock(&ip->i_flags_lock);
772 spin_unlock(&pag->pag_ici_lock);
773 xfs_perag_put(pag);
774 }
775
776 STATIC void
777 __xfs_inode_clear_reclaim(
778 xfs_perag_t *pag,
779 xfs_inode_t *ip)
780 {
781 pag->pag_ici_reclaimable--;
782 if (!pag->pag_ici_reclaimable) {
783 /* clear the reclaim tag from the perag radix tree */
784 spin_lock(&ip->i_mount->m_perag_lock);
785 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
786 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
787 XFS_ICI_RECLAIM_TAG);
788 spin_unlock(&ip->i_mount->m_perag_lock);
789 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
790 -1, _RET_IP_);
791 }
792 }
793
794 STATIC void
795 __xfs_inode_clear_reclaim_tag(
796 xfs_mount_t *mp,
797 xfs_perag_t *pag,
798 xfs_inode_t *ip)
799 {
800 radix_tree_tag_clear(&pag->pag_ici_root,
801 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
802 __xfs_inode_clear_reclaim(pag, ip);
803 }
804
805 /*
806 * Grab the inode for reclaim exclusively.
807 * Return 0 if we grabbed it, non-zero otherwise.
808 */
809 STATIC int
810 xfs_reclaim_inode_grab(
811 struct xfs_inode *ip,
812 int flags)
813 {
814 ASSERT(rcu_read_lock_held());
815
816 /* quick check for stale RCU freed inode */
817 if (!ip->i_ino)
818 return 1;
819
820 /*
821 * If we are asked for non-blocking operation, do unlocked checks to
822 * see if the inode already is being flushed or in reclaim to avoid
823 * lock traffic.
824 */
825 if ((flags & SYNC_TRYLOCK) &&
826 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
827 return 1;
828
829 /*
830 * The radix tree lock here protects a thread in xfs_iget from racing
831 * with us starting reclaim on the inode. Once we have the
832 * XFS_IRECLAIM flag set it will not touch us.
833 *
834 * Due to RCU lookup, we may find inodes that have been freed and only
835 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
836 * aren't candidates for reclaim at all, so we must check the
837 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
838 */
839 spin_lock(&ip->i_flags_lock);
840 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
841 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
842 /* not a reclaim candidate. */
843 spin_unlock(&ip->i_flags_lock);
844 return 1;
845 }
846 __xfs_iflags_set(ip, XFS_IRECLAIM);
847 spin_unlock(&ip->i_flags_lock);
848 return 0;
849 }
850
851 /*
852 * Inodes in different states need to be treated differently. The following
853 * table lists the inode states and the reclaim actions necessary:
854 *
855 * inode state iflush ret required action
856 * --------------- ---------- ---------------
857 * bad - reclaim
858 * shutdown EIO unpin and reclaim
859 * clean, unpinned 0 reclaim
860 * stale, unpinned 0 reclaim
861 * clean, pinned(*) 0 requeue
862 * stale, pinned EAGAIN requeue
863 * dirty, async - requeue
864 * dirty, sync 0 reclaim
865 *
866 * (*) dgc: I don't think the clean, pinned state is possible but it gets
867 * handled anyway given the order of checks implemented.
868 *
869 * Also, because we get the flush lock first, we know that any inode that has
870 * been flushed delwri has had the flush completed by the time we check that
871 * the inode is clean.
872 *
873 * Note that because the inode is flushed delayed write by AIL pushing, the
874 * flush lock may already be held here and waiting on it can result in very
875 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
876 * the caller should push the AIL first before trying to reclaim inodes to
877 * minimise the amount of time spent waiting. For background relaim, we only
878 * bother to reclaim clean inodes anyway.
879 *
880 * Hence the order of actions after gaining the locks should be:
881 * bad => reclaim
882 * shutdown => unpin and reclaim
883 * pinned, async => requeue
884 * pinned, sync => unpin
885 * stale => reclaim
886 * clean => reclaim
887 * dirty, async => requeue
888 * dirty, sync => flush, wait and reclaim
889 */
890 STATIC int
891 xfs_reclaim_inode(
892 struct xfs_inode *ip,
893 struct xfs_perag *pag,
894 int sync_mode)
895 {
896 struct xfs_buf *bp = NULL;
897 int error;
898
899 restart:
900 error = 0;
901 xfs_ilock(ip, XFS_ILOCK_EXCL);
902 if (!xfs_iflock_nowait(ip)) {
903 if (!(sync_mode & SYNC_WAIT))
904 goto out;
905 xfs_iflock(ip);
906 }
907
908 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
909 xfs_iunpin_wait(ip);
910 xfs_iflush_abort(ip, false);
911 goto reclaim;
912 }
913 if (xfs_ipincount(ip)) {
914 if (!(sync_mode & SYNC_WAIT))
915 goto out_ifunlock;
916 xfs_iunpin_wait(ip);
917 }
918 if (xfs_iflags_test(ip, XFS_ISTALE))
919 goto reclaim;
920 if (xfs_inode_clean(ip))
921 goto reclaim;
922
923 /*
924 * Never flush out dirty data during non-blocking reclaim, as it would
925 * just contend with AIL pushing trying to do the same job.
926 */
927 if (!(sync_mode & SYNC_WAIT))
928 goto out_ifunlock;
929
930 /*
931 * Now we have an inode that needs flushing.
932 *
933 * Note that xfs_iflush will never block on the inode buffer lock, as
934 * xfs_ifree_cluster() can lock the inode buffer before it locks the
935 * ip->i_lock, and we are doing the exact opposite here. As a result,
936 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
937 * result in an ABBA deadlock with xfs_ifree_cluster().
938 *
939 * As xfs_ifree_cluser() must gather all inodes that are active in the
940 * cache to mark them stale, if we hit this case we don't actually want
941 * to do IO here - we want the inode marked stale so we can simply
942 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
943 * inode, back off and try again. Hopefully the next pass through will
944 * see the stale flag set on the inode.
945 */
946 error = xfs_iflush(ip, &bp);
947 if (error == EAGAIN) {
948 xfs_iunlock(ip, XFS_ILOCK_EXCL);
949 /* backoff longer than in xfs_ifree_cluster */
950 delay(2);
951 goto restart;
952 }
953
954 if (!error) {
955 error = xfs_bwrite(bp);
956 xfs_buf_relse(bp);
957 }
958
959 xfs_iflock(ip);
960 reclaim:
961 xfs_ifunlock(ip);
962 xfs_iunlock(ip, XFS_ILOCK_EXCL);
963
964 XFS_STATS_INC(xs_ig_reclaims);
965 /*
966 * Remove the inode from the per-AG radix tree.
967 *
968 * Because radix_tree_delete won't complain even if the item was never
969 * added to the tree assert that it's been there before to catch
970 * problems with the inode life time early on.
971 */
972 spin_lock(&pag->pag_ici_lock);
973 if (!radix_tree_delete(&pag->pag_ici_root,
974 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
975 ASSERT(0);
976 __xfs_inode_clear_reclaim(pag, ip);
977 spin_unlock(&pag->pag_ici_lock);
978
979 /*
980 * Here we do an (almost) spurious inode lock in order to coordinate
981 * with inode cache radix tree lookups. This is because the lookup
982 * can reference the inodes in the cache without taking references.
983 *
984 * We make that OK here by ensuring that we wait until the inode is
985 * unlocked after the lookup before we go ahead and free it.
986 */
987 xfs_ilock(ip, XFS_ILOCK_EXCL);
988 xfs_qm_dqdetach(ip);
989 xfs_iunlock(ip, XFS_ILOCK_EXCL);
990
991 xfs_inode_free(ip);
992 return error;
993
994 out_ifunlock:
995 xfs_ifunlock(ip);
996 out:
997 xfs_iflags_clear(ip, XFS_IRECLAIM);
998 xfs_iunlock(ip, XFS_ILOCK_EXCL);
999 /*
1000 * We could return EAGAIN here to make reclaim rescan the inode tree in
1001 * a short while. However, this just burns CPU time scanning the tree
1002 * waiting for IO to complete and the reclaim work never goes back to
1003 * the idle state. Instead, return 0 to let the next scheduled
1004 * background reclaim attempt to reclaim the inode again.
1005 */
1006 return 0;
1007 }
1008
1009 /*
1010 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1011 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1012 * then a shut down during filesystem unmount reclaim walk leak all the
1013 * unreclaimed inodes.
1014 */
1015 STATIC int
1016 xfs_reclaim_inodes_ag(
1017 struct xfs_mount *mp,
1018 int flags,
1019 int *nr_to_scan)
1020 {
1021 struct xfs_perag *pag;
1022 int error = 0;
1023 int last_error = 0;
1024 xfs_agnumber_t ag;
1025 int trylock = flags & SYNC_TRYLOCK;
1026 int skipped;
1027
1028 restart:
1029 ag = 0;
1030 skipped = 0;
1031 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1032 unsigned long first_index = 0;
1033 int done = 0;
1034 int nr_found = 0;
1035
1036 ag = pag->pag_agno + 1;
1037
1038 if (trylock) {
1039 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1040 skipped++;
1041 xfs_perag_put(pag);
1042 continue;
1043 }
1044 first_index = pag->pag_ici_reclaim_cursor;
1045 } else
1046 mutex_lock(&pag->pag_ici_reclaim_lock);
1047
1048 do {
1049 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1050 int i;
1051
1052 rcu_read_lock();
1053 nr_found = radix_tree_gang_lookup_tag(
1054 &pag->pag_ici_root,
1055 (void **)batch, first_index,
1056 XFS_LOOKUP_BATCH,
1057 XFS_ICI_RECLAIM_TAG);
1058 if (!nr_found) {
1059 done = 1;
1060 rcu_read_unlock();
1061 break;
1062 }
1063
1064 /*
1065 * Grab the inodes before we drop the lock. if we found
1066 * nothing, nr == 0 and the loop will be skipped.
1067 */
1068 for (i = 0; i < nr_found; i++) {
1069 struct xfs_inode *ip = batch[i];
1070
1071 if (done || xfs_reclaim_inode_grab(ip, flags))
1072 batch[i] = NULL;
1073
1074 /*
1075 * Update the index for the next lookup. Catch
1076 * overflows into the next AG range which can
1077 * occur if we have inodes in the last block of
1078 * the AG and we are currently pointing to the
1079 * last inode.
1080 *
1081 * Because we may see inodes that are from the
1082 * wrong AG due to RCU freeing and
1083 * reallocation, only update the index if it
1084 * lies in this AG. It was a race that lead us
1085 * to see this inode, so another lookup from
1086 * the same index will not find it again.
1087 */
1088 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1089 pag->pag_agno)
1090 continue;
1091 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1092 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1093 done = 1;
1094 }
1095
1096 /* unlock now we've grabbed the inodes. */
1097 rcu_read_unlock();
1098
1099 for (i = 0; i < nr_found; i++) {
1100 if (!batch[i])
1101 continue;
1102 error = xfs_reclaim_inode(batch[i], pag, flags);
1103 if (error && last_error != EFSCORRUPTED)
1104 last_error = error;
1105 }
1106
1107 *nr_to_scan -= XFS_LOOKUP_BATCH;
1108
1109 cond_resched();
1110
1111 } while (nr_found && !done && *nr_to_scan > 0);
1112
1113 if (trylock && !done)
1114 pag->pag_ici_reclaim_cursor = first_index;
1115 else
1116 pag->pag_ici_reclaim_cursor = 0;
1117 mutex_unlock(&pag->pag_ici_reclaim_lock);
1118 xfs_perag_put(pag);
1119 }
1120
1121 /*
1122 * if we skipped any AG, and we still have scan count remaining, do
1123 * another pass this time using blocking reclaim semantics (i.e
1124 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1125 * ensure that when we get more reclaimers than AGs we block rather
1126 * than spin trying to execute reclaim.
1127 */
1128 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1129 trylock = 0;
1130 goto restart;
1131 }
1132 return XFS_ERROR(last_error);
1133 }
1134
1135 int
1136 xfs_reclaim_inodes(
1137 xfs_mount_t *mp,
1138 int mode)
1139 {
1140 int nr_to_scan = INT_MAX;
1141
1142 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1143 }
1144
1145 /*
1146 * Scan a certain number of inodes for reclaim.
1147 *
1148 * When called we make sure that there is a background (fast) inode reclaim in
1149 * progress, while we will throttle the speed of reclaim via doing synchronous
1150 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1151 * them to be cleaned, which we hope will not be very long due to the
1152 * background walker having already kicked the IO off on those dirty inodes.
1153 */
1154 long
1155 xfs_reclaim_inodes_nr(
1156 struct xfs_mount *mp,
1157 int nr_to_scan)
1158 {
1159 /* kick background reclaimer and push the AIL */
1160 xfs_reclaim_work_queue(mp);
1161 xfs_ail_push_all(mp->m_ail);
1162
1163 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1164 }
1165
1166 /*
1167 * Return the number of reclaimable inodes in the filesystem for
1168 * the shrinker to determine how much to reclaim.
1169 */
1170 int
1171 xfs_reclaim_inodes_count(
1172 struct xfs_mount *mp)
1173 {
1174 struct xfs_perag *pag;
1175 xfs_agnumber_t ag = 0;
1176 int reclaimable = 0;
1177
1178 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1179 ag = pag->pag_agno + 1;
1180 reclaimable += pag->pag_ici_reclaimable;
1181 xfs_perag_put(pag);
1182 }
1183 return reclaimable;
1184 }
1185
1186 STATIC int
1187 xfs_inode_match_id(
1188 struct xfs_inode *ip,
1189 struct xfs_eofblocks *eofb)
1190 {
1191 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1192 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1193 return 0;
1194
1195 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1196 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1197 return 0;
1198
1199 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1200 xfs_get_projid(ip) != eofb->eof_prid)
1201 return 0;
1202
1203 return 1;
1204 }
1205
1206 STATIC int
1207 xfs_inode_free_eofblocks(
1208 struct xfs_inode *ip,
1209 int flags,
1210 void *args)
1211 {
1212 int ret;
1213 struct xfs_eofblocks *eofb = args;
1214
1215 if (!xfs_can_free_eofblocks(ip, false)) {
1216 /* inode could be preallocated or append-only */
1217 trace_xfs_inode_free_eofblocks_invalid(ip);
1218 xfs_inode_clear_eofblocks_tag(ip);
1219 return 0;
1220 }
1221
1222 /*
1223 * If the mapping is dirty the operation can block and wait for some
1224 * time. Unless we are waiting, skip it.
1225 */
1226 if (!(flags & SYNC_WAIT) &&
1227 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1228 return 0;
1229
1230 if (eofb) {
1231 if (!xfs_inode_match_id(ip, eofb))
1232 return 0;
1233
1234 /* skip the inode if the file size is too small */
1235 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1236 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1237 return 0;
1238 }
1239
1240 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1241
1242 /* don't revisit the inode if we're not waiting */
1243 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1244 ret = 0;
1245
1246 return ret;
1247 }
1248
1249 int
1250 xfs_icache_free_eofblocks(
1251 struct xfs_mount *mp,
1252 struct xfs_eofblocks *eofb)
1253 {
1254 int flags = SYNC_TRYLOCK;
1255
1256 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1257 flags = SYNC_WAIT;
1258
1259 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1260 eofb, XFS_ICI_EOFBLOCKS_TAG);
1261 }
1262
1263 void
1264 xfs_inode_set_eofblocks_tag(
1265 xfs_inode_t *ip)
1266 {
1267 struct xfs_mount *mp = ip->i_mount;
1268 struct xfs_perag *pag;
1269 int tagged;
1270
1271 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1272 spin_lock(&pag->pag_ici_lock);
1273 trace_xfs_inode_set_eofblocks_tag(ip);
1274
1275 tagged = radix_tree_tagged(&pag->pag_ici_root,
1276 XFS_ICI_EOFBLOCKS_TAG);
1277 radix_tree_tag_set(&pag->pag_ici_root,
1278 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1279 XFS_ICI_EOFBLOCKS_TAG);
1280 if (!tagged) {
1281 /* propagate the eofblocks tag up into the perag radix tree */
1282 spin_lock(&ip->i_mount->m_perag_lock);
1283 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1284 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1285 XFS_ICI_EOFBLOCKS_TAG);
1286 spin_unlock(&ip->i_mount->m_perag_lock);
1287
1288 /* kick off background trimming */
1289 xfs_queue_eofblocks(ip->i_mount);
1290
1291 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1292 -1, _RET_IP_);
1293 }
1294
1295 spin_unlock(&pag->pag_ici_lock);
1296 xfs_perag_put(pag);
1297 }
1298
1299 void
1300 xfs_inode_clear_eofblocks_tag(
1301 xfs_inode_t *ip)
1302 {
1303 struct xfs_mount *mp = ip->i_mount;
1304 struct xfs_perag *pag;
1305
1306 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1307 spin_lock(&pag->pag_ici_lock);
1308 trace_xfs_inode_clear_eofblocks_tag(ip);
1309
1310 radix_tree_tag_clear(&pag->pag_ici_root,
1311 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1312 XFS_ICI_EOFBLOCKS_TAG);
1313 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1314 /* clear the eofblocks tag from the perag radix tree */
1315 spin_lock(&ip->i_mount->m_perag_lock);
1316 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1317 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1318 XFS_ICI_EOFBLOCKS_TAG);
1319 spin_unlock(&ip->i_mount->m_perag_lock);
1320 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1321 -1, _RET_IP_);
1322 }
1323
1324 spin_unlock(&pag->pag_ici_lock);
1325 xfs_perag_put(pag);
1326 }
1327