]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_iget.c
vfs: fix inode_init_always calling convention
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_acl.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_utils.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_bmap.h"
45 #include "xfs_btree_trace.h"
46 #include "xfs_dir2_trace.h"
47
48
49 /*
50 * Allocate and initialise an xfs_inode.
51 */
52 STATIC struct xfs_inode *
53 xfs_inode_alloc(
54 struct xfs_mount *mp,
55 xfs_ino_t ino)
56 {
57 struct xfs_inode *ip;
58
59 /*
60 * if this didn't occur in transactions, we could use
61 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
62 * code up to do this anyway.
63 */
64 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
65 if (!ip)
66 return NULL;
67 if (inode_init_always(mp->m_super, VFS_I(ip))) {
68 kmem_zone_free(xfs_inode_zone, ip);
69 return NULL;
70 }
71
72 ASSERT(atomic_read(&ip->i_iocount) == 0);
73 ASSERT(atomic_read(&ip->i_pincount) == 0);
74 ASSERT(!spin_is_locked(&ip->i_flags_lock));
75 ASSERT(completion_done(&ip->i_flush));
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_update_core = 0;
85 ip->i_update_size = 0;
86 ip->i_delayed_blks = 0;
87 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
88 ip->i_size = 0;
89 ip->i_new_size = 0;
90
91 /*
92 * Initialize inode's trace buffers.
93 */
94 #ifdef XFS_INODE_TRACE
95 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
96 #endif
97 #ifdef XFS_BMAP_TRACE
98 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
99 #endif
100 #ifdef XFS_BTREE_TRACE
101 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
102 #endif
103 #ifdef XFS_RW_TRACE
104 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
105 #endif
106 #ifdef XFS_ILOCK_TRACE
107 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
108 #endif
109 #ifdef XFS_DIR2_TRACE
110 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
111 #endif
112
113 /* prevent anyone from using this yet */
114 VFS_I(ip)->i_state = I_NEW|I_LOCK;
115
116 return ip;
117 }
118
119 /*
120 * Check the validity of the inode we just found it the cache
121 */
122 static int
123 xfs_iget_cache_hit(
124 struct xfs_perag *pag,
125 struct xfs_inode *ip,
126 int flags,
127 int lock_flags) __releases(pag->pag_ici_lock)
128 {
129 struct xfs_mount *mp = ip->i_mount;
130 int error = EAGAIN;
131
132 /*
133 * If INEW is set this inode is being set up
134 * If IRECLAIM is set this inode is being torn down
135 * Pause and try again.
136 */
137 if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
138 XFS_STATS_INC(xs_ig_frecycle);
139 goto out_error;
140 }
141
142 /* If IRECLAIMABLE is set, we've torn down the vfs inode part */
143 if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
144
145 /*
146 * If lookup is racing with unlink, then we should return an
147 * error immediately so we don't remove it from the reclaim
148 * list and potentially leak the inode.
149 */
150 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
151 error = ENOENT;
152 goto out_error;
153 }
154
155 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
156
157 /*
158 * We need to re-initialise the VFS inode as it has been
159 * 'freed' by the VFS. Do this here so we can deal with
160 * errors cleanly, then tag it so it can be set up correctly
161 * later.
162 */
163 if (inode_init_always(mp->m_super, VFS_I(ip))) {
164 error = ENOMEM;
165 goto out_error;
166 }
167
168 /*
169 * We must set the XFS_INEW flag before clearing the
170 * XFS_IRECLAIMABLE flag so that if a racing lookup does
171 * not find the XFS_IRECLAIMABLE above but has the igrab()
172 * below succeed we can safely check XFS_INEW to detect
173 * that this inode is still being initialised.
174 */
175 xfs_iflags_set(ip, XFS_INEW);
176 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
177
178 /* clear the radix tree reclaim flag as well. */
179 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
180 } else if (!igrab(VFS_I(ip))) {
181 /* If the VFS inode is being torn down, pause and try again. */
182 XFS_STATS_INC(xs_ig_frecycle);
183 goto out_error;
184 } else if (xfs_iflags_test(ip, XFS_INEW)) {
185 /*
186 * We are racing with another cache hit that is
187 * currently recycling this inode out of the XFS_IRECLAIMABLE
188 * state. Wait for the initialisation to complete before
189 * continuing.
190 */
191 wait_on_inode(VFS_I(ip));
192 }
193
194 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
195 error = ENOENT;
196 iput(VFS_I(ip));
197 goto out_error;
198 }
199
200 /* We've got a live one. */
201 read_unlock(&pag->pag_ici_lock);
202
203 if (lock_flags != 0)
204 xfs_ilock(ip, lock_flags);
205
206 xfs_iflags_clear(ip, XFS_ISTALE);
207 xfs_itrace_exit_tag(ip, "xfs_iget.found");
208 XFS_STATS_INC(xs_ig_found);
209 return 0;
210
211 out_error:
212 read_unlock(&pag->pag_ici_lock);
213 return error;
214 }
215
216
217 static int
218 xfs_iget_cache_miss(
219 struct xfs_mount *mp,
220 struct xfs_perag *pag,
221 xfs_trans_t *tp,
222 xfs_ino_t ino,
223 struct xfs_inode **ipp,
224 xfs_daddr_t bno,
225 int flags,
226 int lock_flags) __releases(pag->pag_ici_lock)
227 {
228 struct xfs_inode *ip;
229 int error;
230 unsigned long first_index, mask;
231 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
232
233 ip = xfs_inode_alloc(mp, ino);
234 if (!ip)
235 return ENOMEM;
236
237 error = xfs_iread(mp, tp, ip, bno, flags);
238 if (error)
239 goto out_destroy;
240
241 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
242
243 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
244 error = ENOENT;
245 goto out_destroy;
246 }
247
248 /*
249 * Preload the radix tree so we can insert safely under the
250 * write spinlock. Note that we cannot sleep inside the preload
251 * region.
252 */
253 if (radix_tree_preload(GFP_KERNEL)) {
254 error = EAGAIN;
255 goto out_destroy;
256 }
257
258 /*
259 * Because the inode hasn't been added to the radix-tree yet it can't
260 * be found by another thread, so we can do the non-sleeping lock here.
261 */
262 if (lock_flags) {
263 if (!xfs_ilock_nowait(ip, lock_flags))
264 BUG();
265 }
266
267 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
268 first_index = agino & mask;
269 write_lock(&pag->pag_ici_lock);
270
271 /* insert the new inode */
272 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
273 if (unlikely(error)) {
274 WARN_ON(error != -EEXIST);
275 XFS_STATS_INC(xs_ig_dup);
276 error = EAGAIN;
277 goto out_preload_end;
278 }
279
280 /* These values _must_ be set before releasing the radix tree lock! */
281 ip->i_udquot = ip->i_gdquot = NULL;
282 xfs_iflags_set(ip, XFS_INEW);
283
284 write_unlock(&pag->pag_ici_lock);
285 radix_tree_preload_end();
286 *ipp = ip;
287 return 0;
288
289 out_preload_end:
290 write_unlock(&pag->pag_ici_lock);
291 radix_tree_preload_end();
292 if (lock_flags)
293 xfs_iunlock(ip, lock_flags);
294 out_destroy:
295 xfs_destroy_inode(ip);
296 return error;
297 }
298
299 /*
300 * Look up an inode by number in the given file system.
301 * The inode is looked up in the cache held in each AG.
302 * If the inode is found in the cache, initialise the vfs inode
303 * if necessary.
304 *
305 * If it is not in core, read it in from the file system's device,
306 * add it to the cache and initialise the vfs inode.
307 *
308 * The inode is locked according to the value of the lock_flags parameter.
309 * This flag parameter indicates how and if the inode's IO lock and inode lock
310 * should be taken.
311 *
312 * mp -- the mount point structure for the current file system. It points
313 * to the inode hash table.
314 * tp -- a pointer to the current transaction if there is one. This is
315 * simply passed through to the xfs_iread() call.
316 * ino -- the number of the inode desired. This is the unique identifier
317 * within the file system for the inode being requested.
318 * lock_flags -- flags indicating how to lock the inode. See the comment
319 * for xfs_ilock() for a list of valid values.
320 * bno -- the block number starting the buffer containing the inode,
321 * if known (as by bulkstat), else 0.
322 */
323 int
324 xfs_iget(
325 xfs_mount_t *mp,
326 xfs_trans_t *tp,
327 xfs_ino_t ino,
328 uint flags,
329 uint lock_flags,
330 xfs_inode_t **ipp,
331 xfs_daddr_t bno)
332 {
333 xfs_inode_t *ip;
334 int error;
335 xfs_perag_t *pag;
336 xfs_agino_t agino;
337
338 /* the radix tree exists only in inode capable AGs */
339 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
340 return EINVAL;
341
342 /* get the perag structure and ensure that it's inode capable */
343 pag = xfs_get_perag(mp, ino);
344 if (!pag->pagi_inodeok)
345 return EINVAL;
346 ASSERT(pag->pag_ici_init);
347 agino = XFS_INO_TO_AGINO(mp, ino);
348
349 again:
350 error = 0;
351 read_lock(&pag->pag_ici_lock);
352 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
353
354 if (ip) {
355 error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
356 if (error)
357 goto out_error_or_again;
358 } else {
359 read_unlock(&pag->pag_ici_lock);
360 XFS_STATS_INC(xs_ig_missed);
361
362 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
363 flags, lock_flags);
364 if (error)
365 goto out_error_or_again;
366 }
367 xfs_put_perag(mp, pag);
368
369 *ipp = ip;
370
371 ASSERT(ip->i_df.if_ext_max ==
372 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
373 /*
374 * If we have a real type for an on-disk inode, we can set ops(&unlock)
375 * now. If it's a new inode being created, xfs_ialloc will handle it.
376 */
377 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
378 xfs_setup_inode(ip);
379 return 0;
380
381 out_error_or_again:
382 if (error == EAGAIN) {
383 delay(1);
384 goto again;
385 }
386 xfs_put_perag(mp, pag);
387 return error;
388 }
389
390
391 /*
392 * Look for the inode corresponding to the given ino in the hash table.
393 * If it is there and its i_transp pointer matches tp, return it.
394 * Otherwise, return NULL.
395 */
396 xfs_inode_t *
397 xfs_inode_incore(xfs_mount_t *mp,
398 xfs_ino_t ino,
399 xfs_trans_t *tp)
400 {
401 xfs_inode_t *ip;
402 xfs_perag_t *pag;
403
404 pag = xfs_get_perag(mp, ino);
405 read_lock(&pag->pag_ici_lock);
406 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
407 read_unlock(&pag->pag_ici_lock);
408 xfs_put_perag(mp, pag);
409
410 /* the returned inode must match the transaction */
411 if (ip && (ip->i_transp != tp))
412 return NULL;
413 return ip;
414 }
415
416 /*
417 * Decrement reference count of an inode structure and unlock it.
418 *
419 * ip -- the inode being released
420 * lock_flags -- this parameter indicates the inode's locks to be
421 * to be released. See the comment on xfs_iunlock() for a list
422 * of valid values.
423 */
424 void
425 xfs_iput(xfs_inode_t *ip,
426 uint lock_flags)
427 {
428 xfs_itrace_entry(ip);
429 xfs_iunlock(ip, lock_flags);
430 IRELE(ip);
431 }
432
433 /*
434 * Special iput for brand-new inodes that are still locked
435 */
436 void
437 xfs_iput_new(
438 xfs_inode_t *ip,
439 uint lock_flags)
440 {
441 struct inode *inode = VFS_I(ip);
442
443 xfs_itrace_entry(ip);
444
445 if ((ip->i_d.di_mode == 0)) {
446 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
447 make_bad_inode(inode);
448 }
449 if (inode->i_state & I_NEW)
450 unlock_new_inode(inode);
451 if (lock_flags)
452 xfs_iunlock(ip, lock_flags);
453 IRELE(ip);
454 }
455
456 /*
457 * This is called free all the memory associated with an inode.
458 * It must free the inode itself and any buffers allocated for
459 * if_extents/if_data and if_broot. It must also free the lock
460 * associated with the inode.
461 *
462 * Note: because we don't initialise everything on reallocation out
463 * of the zone, we must ensure we nullify everything correctly before
464 * freeing the structure.
465 */
466 void
467 xfs_ireclaim(
468 struct xfs_inode *ip)
469 {
470 struct xfs_mount *mp = ip->i_mount;
471 struct xfs_perag *pag;
472
473 XFS_STATS_INC(xs_ig_reclaims);
474
475 /*
476 * Remove the inode from the per-AG radix tree. It doesn't matter
477 * if it was never added to it because radix_tree_delete can deal
478 * with that case just fine.
479 */
480 pag = xfs_get_perag(mp, ip->i_ino);
481 write_lock(&pag->pag_ici_lock);
482 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
483 write_unlock(&pag->pag_ici_lock);
484 xfs_put_perag(mp, pag);
485
486 /*
487 * Here we do an (almost) spurious inode lock in order to coordinate
488 * with inode cache radix tree lookups. This is because the lookup
489 * can reference the inodes in the cache without taking references.
490 *
491 * We make that OK here by ensuring that we wait until the inode is
492 * unlocked after the lookup before we go ahead and free it. We get
493 * both the ilock and the iolock because the code may need to drop the
494 * ilock one but will still hold the iolock.
495 */
496 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
497 xfs_qm_dqdetach(ip);
498 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
499
500 switch (ip->i_d.di_mode & S_IFMT) {
501 case S_IFREG:
502 case S_IFDIR:
503 case S_IFLNK:
504 xfs_idestroy_fork(ip, XFS_DATA_FORK);
505 break;
506 }
507
508 if (ip->i_afp)
509 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
510
511 #ifdef XFS_INODE_TRACE
512 ktrace_free(ip->i_trace);
513 #endif
514 #ifdef XFS_BMAP_TRACE
515 ktrace_free(ip->i_xtrace);
516 #endif
517 #ifdef XFS_BTREE_TRACE
518 ktrace_free(ip->i_btrace);
519 #endif
520 #ifdef XFS_RW_TRACE
521 ktrace_free(ip->i_rwtrace);
522 #endif
523 #ifdef XFS_ILOCK_TRACE
524 ktrace_free(ip->i_lock_trace);
525 #endif
526 #ifdef XFS_DIR2_TRACE
527 ktrace_free(ip->i_dir_trace);
528 #endif
529 if (ip->i_itemp) {
530 /*
531 * Only if we are shutting down the fs will we see an
532 * inode still in the AIL. If it is there, we should remove
533 * it to prevent a use-after-free from occurring.
534 */
535 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
536 struct xfs_ail *ailp = lip->li_ailp;
537
538 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
539 XFS_FORCED_SHUTDOWN(ip->i_mount));
540 if (lip->li_flags & XFS_LI_IN_AIL) {
541 spin_lock(&ailp->xa_lock);
542 if (lip->li_flags & XFS_LI_IN_AIL)
543 xfs_trans_ail_delete(ailp, lip);
544 else
545 spin_unlock(&ailp->xa_lock);
546 }
547 xfs_inode_item_destroy(ip);
548 ip->i_itemp = NULL;
549 }
550 /* asserts to verify all state is correct here */
551 ASSERT(atomic_read(&ip->i_iocount) == 0);
552 ASSERT(atomic_read(&ip->i_pincount) == 0);
553 ASSERT(!spin_is_locked(&ip->i_flags_lock));
554 ASSERT(completion_done(&ip->i_flush));
555 kmem_zone_free(xfs_inode_zone, ip);
556 }
557
558 /*
559 * This is a wrapper routine around the xfs_ilock() routine
560 * used to centralize some grungy code. It is used in places
561 * that wish to lock the inode solely for reading the extents.
562 * The reason these places can't just call xfs_ilock(SHARED)
563 * is that the inode lock also guards to bringing in of the
564 * extents from disk for a file in b-tree format. If the inode
565 * is in b-tree format, then we need to lock the inode exclusively
566 * until the extents are read in. Locking it exclusively all
567 * the time would limit our parallelism unnecessarily, though.
568 * What we do instead is check to see if the extents have been
569 * read in yet, and only lock the inode exclusively if they
570 * have not.
571 *
572 * The function returns a value which should be given to the
573 * corresponding xfs_iunlock_map_shared(). This value is
574 * the mode in which the lock was actually taken.
575 */
576 uint
577 xfs_ilock_map_shared(
578 xfs_inode_t *ip)
579 {
580 uint lock_mode;
581
582 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
583 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
584 lock_mode = XFS_ILOCK_EXCL;
585 } else {
586 lock_mode = XFS_ILOCK_SHARED;
587 }
588
589 xfs_ilock(ip, lock_mode);
590
591 return lock_mode;
592 }
593
594 /*
595 * This is simply the unlock routine to go with xfs_ilock_map_shared().
596 * All it does is call xfs_iunlock() with the given lock_mode.
597 */
598 void
599 xfs_iunlock_map_shared(
600 xfs_inode_t *ip,
601 unsigned int lock_mode)
602 {
603 xfs_iunlock(ip, lock_mode);
604 }
605
606 /*
607 * The xfs inode contains 2 locks: a multi-reader lock called the
608 * i_iolock and a multi-reader lock called the i_lock. This routine
609 * allows either or both of the locks to be obtained.
610 *
611 * The 2 locks should always be ordered so that the IO lock is
612 * obtained first in order to prevent deadlock.
613 *
614 * ip -- the inode being locked
615 * lock_flags -- this parameter indicates the inode's locks
616 * to be locked. It can be:
617 * XFS_IOLOCK_SHARED,
618 * XFS_IOLOCK_EXCL,
619 * XFS_ILOCK_SHARED,
620 * XFS_ILOCK_EXCL,
621 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
622 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
623 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
624 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
625 */
626 void
627 xfs_ilock(
628 xfs_inode_t *ip,
629 uint lock_flags)
630 {
631 /*
632 * You can't set both SHARED and EXCL for the same lock,
633 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
634 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
635 */
636 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
637 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
638 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
639 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
640 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
641
642 if (lock_flags & XFS_IOLOCK_EXCL)
643 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
644 else if (lock_flags & XFS_IOLOCK_SHARED)
645 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
646
647 if (lock_flags & XFS_ILOCK_EXCL)
648 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
649 else if (lock_flags & XFS_ILOCK_SHARED)
650 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
651
652 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
653 }
654
655 /*
656 * This is just like xfs_ilock(), except that the caller
657 * is guaranteed not to sleep. It returns 1 if it gets
658 * the requested locks and 0 otherwise. If the IO lock is
659 * obtained but the inode lock cannot be, then the IO lock
660 * is dropped before returning.
661 *
662 * ip -- the inode being locked
663 * lock_flags -- this parameter indicates the inode's locks to be
664 * to be locked. See the comment for xfs_ilock() for a list
665 * of valid values.
666 */
667 int
668 xfs_ilock_nowait(
669 xfs_inode_t *ip,
670 uint lock_flags)
671 {
672 /*
673 * You can't set both SHARED and EXCL for the same lock,
674 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
675 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
676 */
677 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
678 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
679 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
680 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
681 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
682
683 if (lock_flags & XFS_IOLOCK_EXCL) {
684 if (!mrtryupdate(&ip->i_iolock))
685 goto out;
686 } else if (lock_flags & XFS_IOLOCK_SHARED) {
687 if (!mrtryaccess(&ip->i_iolock))
688 goto out;
689 }
690 if (lock_flags & XFS_ILOCK_EXCL) {
691 if (!mrtryupdate(&ip->i_lock))
692 goto out_undo_iolock;
693 } else if (lock_flags & XFS_ILOCK_SHARED) {
694 if (!mrtryaccess(&ip->i_lock))
695 goto out_undo_iolock;
696 }
697 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
698 return 1;
699
700 out_undo_iolock:
701 if (lock_flags & XFS_IOLOCK_EXCL)
702 mrunlock_excl(&ip->i_iolock);
703 else if (lock_flags & XFS_IOLOCK_SHARED)
704 mrunlock_shared(&ip->i_iolock);
705 out:
706 return 0;
707 }
708
709 /*
710 * xfs_iunlock() is used to drop the inode locks acquired with
711 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
712 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
713 * that we know which locks to drop.
714 *
715 * ip -- the inode being unlocked
716 * lock_flags -- this parameter indicates the inode's locks to be
717 * to be unlocked. See the comment for xfs_ilock() for a list
718 * of valid values for this parameter.
719 *
720 */
721 void
722 xfs_iunlock(
723 xfs_inode_t *ip,
724 uint lock_flags)
725 {
726 /*
727 * You can't set both SHARED and EXCL for the same lock,
728 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
729 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
730 */
731 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
732 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
733 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
734 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
735 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
736 XFS_LOCK_DEP_MASK)) == 0);
737 ASSERT(lock_flags != 0);
738
739 if (lock_flags & XFS_IOLOCK_EXCL)
740 mrunlock_excl(&ip->i_iolock);
741 else if (lock_flags & XFS_IOLOCK_SHARED)
742 mrunlock_shared(&ip->i_iolock);
743
744 if (lock_flags & XFS_ILOCK_EXCL)
745 mrunlock_excl(&ip->i_lock);
746 else if (lock_flags & XFS_ILOCK_SHARED)
747 mrunlock_shared(&ip->i_lock);
748
749 if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
750 !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
751 /*
752 * Let the AIL know that this item has been unlocked in case
753 * it is in the AIL and anyone is waiting on it. Don't do
754 * this if the caller has asked us not to.
755 */
756 xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
757 (xfs_log_item_t*)(ip->i_itemp));
758 }
759 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
760 }
761
762 /*
763 * give up write locks. the i/o lock cannot be held nested
764 * if it is being demoted.
765 */
766 void
767 xfs_ilock_demote(
768 xfs_inode_t *ip,
769 uint lock_flags)
770 {
771 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
772 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
773
774 if (lock_flags & XFS_ILOCK_EXCL)
775 mrdemote(&ip->i_lock);
776 if (lock_flags & XFS_IOLOCK_EXCL)
777 mrdemote(&ip->i_iolock);
778 }
779
780 #ifdef DEBUG
781 /*
782 * Debug-only routine, without additional rw_semaphore APIs, we can
783 * now only answer requests regarding whether we hold the lock for write
784 * (reader state is outside our visibility, we only track writer state).
785 *
786 * Note: this means !xfs_isilocked would give false positives, so don't do that.
787 */
788 int
789 xfs_isilocked(
790 xfs_inode_t *ip,
791 uint lock_flags)
792 {
793 if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
794 XFS_ILOCK_EXCL) {
795 if (!ip->i_lock.mr_writer)
796 return 0;
797 }
798
799 if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
800 XFS_IOLOCK_EXCL) {
801 if (!ip->i_iolock.mr_writer)
802 return 0;
803 }
804
805 return 1;
806 }
807 #endif
808
809 #ifdef XFS_INODE_TRACE
810
811 #define KTRACE_ENTER(ip, vk, s, line, ra) \
812 ktrace_enter((ip)->i_trace, \
813 /* 0 */ (void *)(__psint_t)(vk), \
814 /* 1 */ (void *)(s), \
815 /* 2 */ (void *)(__psint_t) line, \
816 /* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
817 /* 4 */ (void *)(ra), \
818 /* 5 */ NULL, \
819 /* 6 */ (void *)(__psint_t)current_cpu(), \
820 /* 7 */ (void *)(__psint_t)current_pid(), \
821 /* 8 */ (void *)__return_address, \
822 /* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL)
823
824 /*
825 * Vnode tracing code.
826 */
827 void
828 _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
829 {
830 KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
831 }
832
833 void
834 _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
835 {
836 KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
837 }
838
839 void
840 xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
841 {
842 KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
843 }
844
845 void
846 _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
847 {
848 KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
849 }
850
851 void
852 xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
853 {
854 KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
855 }
856 #endif /* XFS_INODE_TRACE */