]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/xfs/xfs_iget.c
[XFS] Avoid directly referencing the VFS inode.
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_iget.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
41
42 /*
43 * Look up an inode by number in the given file system.
44 * The inode is looked up in the cache held in each AG.
45 * If the inode is found in the cache, attach it to the provided
46 * vnode.
47 *
48 * If it is not in core, read it in from the file system's device,
49 * add it to the cache and attach the provided vnode.
50 *
51 * The inode is locked according to the value of the lock_flags parameter.
52 * This flag parameter indicates how and if the inode's IO lock and inode lock
53 * should be taken.
54 *
55 * mp -- the mount point structure for the current file system. It points
56 * to the inode hash table.
57 * tp -- a pointer to the current transaction if there is one. This is
58 * simply passed through to the xfs_iread() call.
59 * ino -- the number of the inode desired. This is the unique identifier
60 * within the file system for the inode being requested.
61 * lock_flags -- flags indicating how to lock the inode. See the comment
62 * for xfs_ilock() for a list of valid values.
63 * bno -- the block number starting the buffer containing the inode,
64 * if known (as by bulkstat), else 0.
65 */
66 STATIC int
67 xfs_iget_core(
68 struct inode *inode,
69 xfs_mount_t *mp,
70 xfs_trans_t *tp,
71 xfs_ino_t ino,
72 uint flags,
73 uint lock_flags,
74 xfs_inode_t **ipp,
75 xfs_daddr_t bno)
76 {
77 struct inode *old_inode;
78 xfs_inode_t *ip;
79 xfs_inode_t *iq;
80 int error;
81 unsigned long first_index, mask;
82 xfs_perag_t *pag;
83 xfs_agino_t agino;
84
85 /* the radix tree exists only in inode capable AGs */
86 if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
87 return EINVAL;
88
89 /* get the perag structure and ensure that it's inode capable */
90 pag = xfs_get_perag(mp, ino);
91 if (!pag->pagi_inodeok)
92 return EINVAL;
93 ASSERT(pag->pag_ici_init);
94 agino = XFS_INO_TO_AGINO(mp, ino);
95
96 again:
97 read_lock(&pag->pag_ici_lock);
98 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
99
100 if (ip != NULL) {
101 /*
102 * If INEW is set this inode is being set up
103 * we need to pause and try again.
104 */
105 if (xfs_iflags_test(ip, XFS_INEW)) {
106 read_unlock(&pag->pag_ici_lock);
107 delay(1);
108 XFS_STATS_INC(xs_ig_frecycle);
109
110 goto again;
111 }
112
113 old_inode = ip->i_vnode;
114 if (old_inode == NULL) {
115 /*
116 * If IRECLAIM is set this inode is
117 * on its way out of the system,
118 * we need to pause and try again.
119 */
120 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
121 read_unlock(&pag->pag_ici_lock);
122 delay(1);
123 XFS_STATS_INC(xs_ig_frecycle);
124
125 goto again;
126 }
127 ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE));
128
129 /*
130 * If lookup is racing with unlink, then we
131 * should return an error immediately so we
132 * don't remove it from the reclaim list and
133 * potentially leak the inode.
134 */
135 if ((ip->i_d.di_mode == 0) &&
136 !(flags & XFS_IGET_CREATE)) {
137 read_unlock(&pag->pag_ici_lock);
138 xfs_put_perag(mp, pag);
139 return ENOENT;
140 }
141
142 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
143
144 XFS_STATS_INC(xs_ig_found);
145 xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
146 read_unlock(&pag->pag_ici_lock);
147
148 XFS_MOUNT_ILOCK(mp);
149 list_del_init(&ip->i_reclaim);
150 XFS_MOUNT_IUNLOCK(mp);
151
152 goto finish_inode;
153
154 } else if (inode != old_inode) {
155 /* The inode is being torn down, pause and
156 * try again.
157 */
158 if (old_inode->i_state & (I_FREEING | I_CLEAR)) {
159 read_unlock(&pag->pag_ici_lock);
160 delay(1);
161 XFS_STATS_INC(xs_ig_frecycle);
162
163 goto again;
164 }
165 /* Chances are the other vnode (the one in the inode) is being torn
166 * down right now, and we landed on top of it. Question is, what do
167 * we do? Unhook the old inode and hook up the new one?
168 */
169 cmn_err(CE_PANIC,
170 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
171 old_inode, inode);
172 }
173
174 /*
175 * Inode cache hit
176 */
177 read_unlock(&pag->pag_ici_lock);
178 XFS_STATS_INC(xs_ig_found);
179
180 finish_inode:
181 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
182 xfs_put_perag(mp, pag);
183 return ENOENT;
184 }
185
186 if (lock_flags != 0)
187 xfs_ilock(ip, lock_flags);
188
189 xfs_iflags_clear(ip, XFS_ISTALE);
190 xfs_itrace_exit_tag(ip, "xfs_iget.found");
191 goto return_ip;
192 }
193
194 /*
195 * Inode cache miss
196 */
197 read_unlock(&pag->pag_ici_lock);
198 XFS_STATS_INC(xs_ig_missed);
199
200 /*
201 * Read the disk inode attributes into a new inode structure and get
202 * a new vnode for it. This should also initialize i_ino and i_mount.
203 */
204 error = xfs_iread(mp, tp, ino, &ip, bno,
205 (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0);
206 if (error) {
207 xfs_put_perag(mp, pag);
208 return error;
209 }
210
211 xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
212
213
214 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
215 "xfsino", ip->i_ino);
216 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
217 init_waitqueue_head(&ip->i_ipin_wait);
218 atomic_set(&ip->i_pincount, 0);
219 initnsema(&ip->i_flock, 1, "xfsfino");
220
221 if (lock_flags)
222 xfs_ilock(ip, lock_flags);
223
224 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
225 xfs_idestroy(ip);
226 xfs_put_perag(mp, pag);
227 return ENOENT;
228 }
229
230 /*
231 * Preload the radix tree so we can insert safely under the
232 * write spinlock.
233 */
234 if (radix_tree_preload(GFP_KERNEL)) {
235 xfs_idestroy(ip);
236 delay(1);
237 goto again;
238 }
239 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
240 first_index = agino & mask;
241 write_lock(&pag->pag_ici_lock);
242 /*
243 * insert the new inode
244 */
245 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
246 if (unlikely(error)) {
247 BUG_ON(error != -EEXIST);
248 write_unlock(&pag->pag_ici_lock);
249 radix_tree_preload_end();
250 xfs_idestroy(ip);
251 XFS_STATS_INC(xs_ig_dup);
252 goto again;
253 }
254
255 /*
256 * These values _must_ be set before releasing the radix tree lock!
257 */
258 ip->i_udquot = ip->i_gdquot = NULL;
259 xfs_iflags_set(ip, XFS_INEW);
260
261 write_unlock(&pag->pag_ici_lock);
262 radix_tree_preload_end();
263
264 /*
265 * Link ip to its mount and thread it on the mount's inode list.
266 */
267 XFS_MOUNT_ILOCK(mp);
268 if ((iq = mp->m_inodes)) {
269 ASSERT(iq->i_mprev->i_mnext == iq);
270 ip->i_mprev = iq->i_mprev;
271 iq->i_mprev->i_mnext = ip;
272 iq->i_mprev = ip;
273 ip->i_mnext = iq;
274 } else {
275 ip->i_mnext = ip;
276 ip->i_mprev = ip;
277 }
278 mp->m_inodes = ip;
279
280 XFS_MOUNT_IUNLOCK(mp);
281 xfs_put_perag(mp, pag);
282
283 return_ip:
284 ASSERT(ip->i_df.if_ext_max ==
285 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
286
287 xfs_iflags_set(ip, XFS_IMODIFIED);
288 *ipp = ip;
289
290 /*
291 * If we have a real type for an on-disk inode, we can set ops(&unlock)
292 * now. If it's a new inode being created, xfs_ialloc will handle it.
293 */
294 xfs_initialize_vnode(mp, inode, ip);
295 return 0;
296 }
297
298
299 /*
300 * The 'normal' internal xfs_iget, if needed it will
301 * 'allocate', or 'get', the vnode.
302 */
303 int
304 xfs_iget(
305 xfs_mount_t *mp,
306 xfs_trans_t *tp,
307 xfs_ino_t ino,
308 uint flags,
309 uint lock_flags,
310 xfs_inode_t **ipp,
311 xfs_daddr_t bno)
312 {
313 struct inode *inode;
314 xfs_inode_t *ip;
315 int error;
316
317 XFS_STATS_INC(xs_ig_attempts);
318
319 retry:
320 inode = iget_locked(mp->m_super, ino);
321 if (!inode)
322 /* If we got no inode we are out of memory */
323 return ENOMEM;
324
325 if (inode->i_state & I_NEW) {
326 XFS_STATS_INC(vn_active);
327 XFS_STATS_INC(vn_alloc);
328
329 error = xfs_iget_core(inode, mp, tp, ino, flags,
330 lock_flags, ipp, bno);
331 if (error) {
332 make_bad_inode(inode);
333 if (inode->i_state & I_NEW)
334 unlock_new_inode(inode);
335 iput(inode);
336 }
337 return error;
338 }
339
340 /*
341 * If the inode is not fully constructed due to
342 * filehandle mismatches wait for the inode to go
343 * away and try again.
344 *
345 * iget_locked will call __wait_on_freeing_inode
346 * to wait for the inode to go away.
347 */
348 if (is_bad_inode(inode)) {
349 iput(inode);
350 delay(1);
351 goto retry;
352 }
353
354 ip = XFS_I(inode);
355 if (!ip) {
356 iput(inode);
357 delay(1);
358 goto retry;
359 }
360
361 if (lock_flags != 0)
362 xfs_ilock(ip, lock_flags);
363 XFS_STATS_INC(xs_ig_found);
364 *ipp = ip;
365 return 0;
366 }
367
368 /*
369 * Look for the inode corresponding to the given ino in the hash table.
370 * If it is there and its i_transp pointer matches tp, return it.
371 * Otherwise, return NULL.
372 */
373 xfs_inode_t *
374 xfs_inode_incore(xfs_mount_t *mp,
375 xfs_ino_t ino,
376 xfs_trans_t *tp)
377 {
378 xfs_inode_t *ip;
379 xfs_perag_t *pag;
380
381 pag = xfs_get_perag(mp, ino);
382 read_lock(&pag->pag_ici_lock);
383 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
384 read_unlock(&pag->pag_ici_lock);
385 xfs_put_perag(mp, pag);
386
387 /* the returned inode must match the transaction */
388 if (ip && (ip->i_transp != tp))
389 return NULL;
390 return ip;
391 }
392
393 /*
394 * Decrement reference count of an inode structure and unlock it.
395 *
396 * ip -- the inode being released
397 * lock_flags -- this parameter indicates the inode's locks to be
398 * to be released. See the comment on xfs_iunlock() for a list
399 * of valid values.
400 */
401 void
402 xfs_iput(xfs_inode_t *ip,
403 uint lock_flags)
404 {
405 xfs_itrace_entry(ip);
406 xfs_iunlock(ip, lock_flags);
407 IRELE(ip);
408 }
409
410 /*
411 * Special iput for brand-new inodes that are still locked
412 */
413 void
414 xfs_iput_new(
415 xfs_inode_t *ip,
416 uint lock_flags)
417 {
418 struct inode *inode = VFS_I(ip);
419
420 xfs_itrace_entry(ip);
421
422 if ((ip->i_d.di_mode == 0)) {
423 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
424 make_bad_inode(inode);
425 }
426 if (inode->i_state & I_NEW)
427 unlock_new_inode(inode);
428 if (lock_flags)
429 xfs_iunlock(ip, lock_flags);
430 IRELE(ip);
431 }
432
433
434 /*
435 * This routine embodies the part of the reclaim code that pulls
436 * the inode from the inode hash table and the mount structure's
437 * inode list.
438 * This should only be called from xfs_reclaim().
439 */
440 void
441 xfs_ireclaim(xfs_inode_t *ip)
442 {
443 /*
444 * Remove from old hash list and mount list.
445 */
446 XFS_STATS_INC(xs_ig_reclaims);
447
448 xfs_iextract(ip);
449
450 /*
451 * Here we do a spurious inode lock in order to coordinate with
452 * xfs_sync(). This is because xfs_sync() references the inodes
453 * in the mount list without taking references on the corresponding
454 * vnodes. We make that OK here by ensuring that we wait until
455 * the inode is unlocked in xfs_sync() before we go ahead and
456 * free it. We get both the regular lock and the io lock because
457 * the xfs_sync() code may need to drop the regular one but will
458 * still hold the io lock.
459 */
460 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
461
462 /*
463 * Release dquots (and their references) if any. An inode may escape
464 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
465 */
466 XFS_QM_DQDETACH(ip->i_mount, ip);
467
468 /*
469 * Pull our behavior descriptor from the vnode chain.
470 */
471 if (ip->i_vnode) {
472 ip->i_vnode->i_private = NULL;
473 ip->i_vnode = NULL;
474 }
475
476 /*
477 * Free all memory associated with the inode.
478 */
479 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
480 xfs_idestroy(ip);
481 }
482
483 /*
484 * This routine removes an about-to-be-destroyed inode from
485 * all of the lists in which it is located with the exception
486 * of the behavior chain.
487 */
488 void
489 xfs_iextract(
490 xfs_inode_t *ip)
491 {
492 xfs_mount_t *mp = ip->i_mount;
493 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
494 xfs_inode_t *iq;
495
496 write_lock(&pag->pag_ici_lock);
497 radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
498 write_unlock(&pag->pag_ici_lock);
499 xfs_put_perag(mp, pag);
500
501 /*
502 * Remove from mount's inode list.
503 */
504 XFS_MOUNT_ILOCK(mp);
505 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
506 iq = ip->i_mnext;
507 iq->i_mprev = ip->i_mprev;
508 ip->i_mprev->i_mnext = iq;
509
510 /*
511 * Fix up the head pointer if it points to the inode being deleted.
512 */
513 if (mp->m_inodes == ip) {
514 if (ip == iq) {
515 mp->m_inodes = NULL;
516 } else {
517 mp->m_inodes = iq;
518 }
519 }
520
521 /* Deal with the deleted inodes list */
522 list_del_init(&ip->i_reclaim);
523
524 mp->m_ireclaims++;
525 XFS_MOUNT_IUNLOCK(mp);
526 }
527
528 /*
529 * This is a wrapper routine around the xfs_ilock() routine
530 * used to centralize some grungy code. It is used in places
531 * that wish to lock the inode solely for reading the extents.
532 * The reason these places can't just call xfs_ilock(SHARED)
533 * is that the inode lock also guards to bringing in of the
534 * extents from disk for a file in b-tree format. If the inode
535 * is in b-tree format, then we need to lock the inode exclusively
536 * until the extents are read in. Locking it exclusively all
537 * the time would limit our parallelism unnecessarily, though.
538 * What we do instead is check to see if the extents have been
539 * read in yet, and only lock the inode exclusively if they
540 * have not.
541 *
542 * The function returns a value which should be given to the
543 * corresponding xfs_iunlock_map_shared(). This value is
544 * the mode in which the lock was actually taken.
545 */
546 uint
547 xfs_ilock_map_shared(
548 xfs_inode_t *ip)
549 {
550 uint lock_mode;
551
552 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
553 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
554 lock_mode = XFS_ILOCK_EXCL;
555 } else {
556 lock_mode = XFS_ILOCK_SHARED;
557 }
558
559 xfs_ilock(ip, lock_mode);
560
561 return lock_mode;
562 }
563
564 /*
565 * This is simply the unlock routine to go with xfs_ilock_map_shared().
566 * All it does is call xfs_iunlock() with the given lock_mode.
567 */
568 void
569 xfs_iunlock_map_shared(
570 xfs_inode_t *ip,
571 unsigned int lock_mode)
572 {
573 xfs_iunlock(ip, lock_mode);
574 }
575
576 /*
577 * The xfs inode contains 2 locks: a multi-reader lock called the
578 * i_iolock and a multi-reader lock called the i_lock. This routine
579 * allows either or both of the locks to be obtained.
580 *
581 * The 2 locks should always be ordered so that the IO lock is
582 * obtained first in order to prevent deadlock.
583 *
584 * ip -- the inode being locked
585 * lock_flags -- this parameter indicates the inode's locks
586 * to be locked. It can be:
587 * XFS_IOLOCK_SHARED,
588 * XFS_IOLOCK_EXCL,
589 * XFS_ILOCK_SHARED,
590 * XFS_ILOCK_EXCL,
591 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
592 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
593 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
594 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
595 */
596 void
597 xfs_ilock(
598 xfs_inode_t *ip,
599 uint lock_flags)
600 {
601 /*
602 * You can't set both SHARED and EXCL for the same lock,
603 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
604 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
605 */
606 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
607 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
608 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
609 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
610 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
611
612 if (lock_flags & XFS_IOLOCK_EXCL)
613 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
614 else if (lock_flags & XFS_IOLOCK_SHARED)
615 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
616
617 if (lock_flags & XFS_ILOCK_EXCL)
618 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
619 else if (lock_flags & XFS_ILOCK_SHARED)
620 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
621
622 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
623 }
624
625 /*
626 * This is just like xfs_ilock(), except that the caller
627 * is guaranteed not to sleep. It returns 1 if it gets
628 * the requested locks and 0 otherwise. If the IO lock is
629 * obtained but the inode lock cannot be, then the IO lock
630 * is dropped before returning.
631 *
632 * ip -- the inode being locked
633 * lock_flags -- this parameter indicates the inode's locks to be
634 * to be locked. See the comment for xfs_ilock() for a list
635 * of valid values.
636 */
637 int
638 xfs_ilock_nowait(
639 xfs_inode_t *ip,
640 uint lock_flags)
641 {
642 /*
643 * You can't set both SHARED and EXCL for the same lock,
644 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
645 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
646 */
647 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
648 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
649 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
650 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
651 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
652
653 if (lock_flags & XFS_IOLOCK_EXCL) {
654 if (!mrtryupdate(&ip->i_iolock))
655 goto out;
656 } else if (lock_flags & XFS_IOLOCK_SHARED) {
657 if (!mrtryaccess(&ip->i_iolock))
658 goto out;
659 }
660 if (lock_flags & XFS_ILOCK_EXCL) {
661 if (!mrtryupdate(&ip->i_lock))
662 goto out_undo_iolock;
663 } else if (lock_flags & XFS_ILOCK_SHARED) {
664 if (!mrtryaccess(&ip->i_lock))
665 goto out_undo_iolock;
666 }
667 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
668 return 1;
669
670 out_undo_iolock:
671 if (lock_flags & XFS_IOLOCK_EXCL)
672 mrunlock_excl(&ip->i_iolock);
673 else if (lock_flags & XFS_IOLOCK_SHARED)
674 mrunlock_shared(&ip->i_iolock);
675 out:
676 return 0;
677 }
678
679 /*
680 * xfs_iunlock() is used to drop the inode locks acquired with
681 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
682 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
683 * that we know which locks to drop.
684 *
685 * ip -- the inode being unlocked
686 * lock_flags -- this parameter indicates the inode's locks to be
687 * to be unlocked. See the comment for xfs_ilock() for a list
688 * of valid values for this parameter.
689 *
690 */
691 void
692 xfs_iunlock(
693 xfs_inode_t *ip,
694 uint lock_flags)
695 {
696 /*
697 * You can't set both SHARED and EXCL for the same lock,
698 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
699 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
700 */
701 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
702 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
703 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
704 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
705 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
706 XFS_LOCK_DEP_MASK)) == 0);
707 ASSERT(lock_flags != 0);
708
709 if (lock_flags & XFS_IOLOCK_EXCL)
710 mrunlock_excl(&ip->i_iolock);
711 else if (lock_flags & XFS_IOLOCK_SHARED)
712 mrunlock_shared(&ip->i_iolock);
713
714 if (lock_flags & XFS_ILOCK_EXCL)
715 mrunlock_excl(&ip->i_lock);
716 else if (lock_flags & XFS_ILOCK_SHARED)
717 mrunlock_shared(&ip->i_lock);
718
719 if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
720 !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
721 /*
722 * Let the AIL know that this item has been unlocked in case
723 * it is in the AIL and anyone is waiting on it. Don't do
724 * this if the caller has asked us not to.
725 */
726 xfs_trans_unlocked_item(ip->i_mount,
727 (xfs_log_item_t*)(ip->i_itemp));
728 }
729 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
730 }
731
732 /*
733 * give up write locks. the i/o lock cannot be held nested
734 * if it is being demoted.
735 */
736 void
737 xfs_ilock_demote(
738 xfs_inode_t *ip,
739 uint lock_flags)
740 {
741 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
742 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
743
744 if (lock_flags & XFS_ILOCK_EXCL)
745 mrdemote(&ip->i_lock);
746 if (lock_flags & XFS_IOLOCK_EXCL)
747 mrdemote(&ip->i_iolock);
748 }
749
750 #ifdef DEBUG
751 /*
752 * Debug-only routine, without additional rw_semaphore APIs, we can
753 * now only answer requests regarding whether we hold the lock for write
754 * (reader state is outside our visibility, we only track writer state).
755 *
756 * Note: this means !xfs_isilocked would give false positives, so don't do that.
757 */
758 int
759 xfs_isilocked(
760 xfs_inode_t *ip,
761 uint lock_flags)
762 {
763 if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
764 XFS_ILOCK_EXCL) {
765 if (!ip->i_lock.mr_writer)
766 return 0;
767 }
768
769 if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
770 XFS_IOLOCK_EXCL) {
771 if (!ip->i_iolock.mr_writer)
772 return 0;
773 }
774
775 return 1;
776 }
777 #endif
778
779 /*
780 * The following three routines simply manage the i_flock
781 * semaphore embedded in the inode. This semaphore synchronizes
782 * processes attempting to flush the in-core inode back to disk.
783 */
784 void
785 xfs_iflock(xfs_inode_t *ip)
786 {
787 psema(&(ip->i_flock), PINOD|PLTWAIT);
788 }
789
790 int
791 xfs_iflock_nowait(xfs_inode_t *ip)
792 {
793 return (cpsema(&(ip->i_flock)));
794 }
795
796 void
797 xfs_ifunlock(xfs_inode_t *ip)
798 {
799 ASSERT(issemalocked(&(ip->i_flock)));
800 vsema(&(ip->i_flock));
801 }